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Abstract

Theobject oriented(OO) paradigm has become the norm for software development. OO
languages, such as C++ [124],JAVA [7], EIFFEL [97], andSMALLTALK [71], are used
in almost every software project. The OO programming style, and the languages that
enable it, have acquired an aura of respectability. OO programming promotes reusability,
extendibility, reliability, and portability. All these blessings come however at acost of
runtime efficiency. Better understanding of this cost, and finding ways to reduce it, are
the subject of this thesis.

This thesis presents our contributions to the following three fundamental problems in
the runtime environment of OO languages: subtyping tests [136], message dispatching
(both single and multiple dispatching) [137,138], and object layout [139]. It is important
to note that although the problems take variations in different languages, these variations
are minor in the implementation of these languages. Out results will therefore be of
general interest, and applicable to many different languages.

The thesis also includes an application of the newly developed techniques which en-
abled us to develop the best algorithm for deciding isomorphism of simple types [140],
i.e., whether two non-recursive types using product- and function-type constructors, are
isomorphic under the axioms of commutative and associative products, and currying and
distributivity of functions over products. In particular, we show that this problem can be
solved inO(n log2 n) time andO(n) space, wheren is the input size. This result improves
upon theO(n2 log n) time andO(n2) space bounds of the best previous algorithm. We
also describe anO(n) time algorithm for thelinear isomorphism problem, which does
not include the distributive axiom, thereby improving upon theO(n log n) time of the
best previous algorithm for this problem.

The above contributions were published in five conference papers [136–140], two of
which [136,140] were accepted to a journal [69,70].
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List of Symbols

The following table explains the meaning of symbols used throughout our papers. The
next tables explain symbols used only in a single paper: PQ-tree symbols used in Chap-
ter 3, Object layout symbols used in Chapter 6, and Isomorphism symbols used in Chap-
ter 7.

Symbol Denotes
F The set of families;F ⊆ ℘(T )
T The set of types
T ′ Themultiple inheritance coreof the hierarchy, i.e., types which

have a descendant with more than one parent
T c The set of multi-types, i.e., tuples ofc types
T i The set of types in slicei
β The number of bits in a bitvector encoding, e.g., NHE
` Sum of cardinalities of all families, or the number of different

method implementations;` ≤ w
ι The maximal compression factor over the dispatching ma-

trix; ι = (nm)/`
κ The complexity of a hierarchy, or the number of slices used by

the TS technique
Di(t) The descendants oft in sliceT i

F A set of types defining the same message;F ∈ F
S A slice, i.e., a subset of types;S ⊆ T
Ti(F ) The set of all types which occur in positioni in some tuple of

the multi-familyF
a, b, t, t′, t” Type variables;a, b, t, t′, t” ∈ T
c An arity of a multi-method
k The number of slices in CT, SC, (B)PE, (C)PQE
m Number of families;m = |F|
n Number of types;n = |T |
o Some object
st The slice of typet
w Number of non-null entries in the dispatching matrix;` ≤ w ≤

nm
x, y Some integers in the range[1, . . . , n]
idt The position of typet in the ordering of its slice

5



Symbol Denotes
level(t) the length in nodes of the longest directed (upgoing) path start-

ing from typet
min(X) The subset of smallest types inX
pred(x) The immediate predecessor ofx in some given set of integers
veca The bit-vector of typea in NHE
A, . . . , J Concrete types
a, . . . , m Concrete messages
cand(F, t) The ancestors oft which are members ofF
dispatch(F, t) The result of dispatching typet over familyF
g-dispatch(F, t) The result of a generalized dispatching query:the entire setof

smallest candidates
(t1, . . . , tc) A multi-type inT c

[lt, rt] The interval of ids of descendants oft in relative numbering (in
SI hierarchies)

¹ The subtype relation (the transitive closure of≺d)
≺d The direct subtype relation (the transitive reduction of¹)
> The root of a SI hierarchy

PQ-tree symbols used in Chapter 3
Symbol Denotes
P A PQ-tree
P> The universal PQ-tree, which represents all possible orderings
consistent(P) The set of orderings represented byP
⊥ A PQ-tree which represents an empty set of orderings

Object layout symbols used in Chapter 6
Symbol Denotes
∆f The offset of a fieldf within its type
∆t The offset of typet
`t The layer of typet
θt(i) The number of ancestors of typet in layeri
θt The number of ancestors of typet
At(k) The expected number of extra dereferences required to accessk

random fields int
L The number of layers in TDBD;L = ds/2e
Lt The number of non-empty layers in typet
s The number of colors required to color the conflict graph, which

is also the number of semi-layers

6



Isomorphism symbols used in Chapter 7
Symbol Denotes
P⊥ A dummy P-node without aparent edge and without

termsϕ(P⊥) = ∅
T The product tree: Nodes are theP-nodes of theP/F-graph,

edges are defined byparent pointers.
φ(v) The union of terms of ancestors ofv in the product tree
ρ, ρ′ Types conforming to the product grammar
σ, σ′ Types conforming to the no-unit grammar
τ, τ ′ Types conforming to the general grammar
ϕ(v) The set of term nodesv
P/F-graph A graph whose nodes are eitherP-nodes orF-nodes, and

thatparent edges make a treeT
h(τ) The length of the longest path fromτ to any leaf
u An F-node (a node representing a function type with an

argument- and return-type)
v A P-node (a node representing a product type with a set of term

nodes)
arg (u) A P-node which is the argument type ofu
parent (v) A P-node, from whichv inherits additional terms
ret (u) A primitive-type specifying the return type ofu
./ An operation which concatenates of the terms of two products

7
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Chapter 1

Introduction

Theobject oriented(OO) programming paradigm has become the norm for software de-
velopment. OO languages, such as C++ [124],JAVA [7], EIFFEL [97], andSMALLTALK [71],
are used today in almost every software project, since it is widely recognized that the
paradigm promotes reusability, extendibility, reliability, and portability. All these bless-
ings come however at acost of runtime efficiency. Better understanding of this cost, and
finding ways to reduce it, are the subject of this thesis.

A unique challenge in the implementation of OO languages is providing support for
runtime operations related to thetype hierarchy. Formally, a hierarchy is a partially
ordered set (T ,¹) whereT is a set oftypesand¹ is a reflexive, transitive and anti-
symmetricsubtype relation. The distinction between type, class, interface, signature, etc.,
as it may occur in various programming languages does not concern us here. We shall
refer to all these collectively as types. Ifa andb are types, anda¹ b holds, we say thata
is asubtypeof b and thatb is asupertypeof a. For example, in Figure 1.1,Polygon has
three subtypes:Rectangle, Triangle, andPolygon itself.

Rectangle


Circle


Triangle


Polygon


Shape

draw


Screen
 PSPrinter


Device


draw
draw


draw
 draw


Figure 1.1: An example of a small hierarchy

The most important property derived from a type hierarchy istype conformance,
meaning that code applicable for typeb is also applicable for any of its subtypesa, a¹ b.
Cook [33] defines type conformance as

“a relation intended to capture the notion of one type being immediately com-

9
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patible with another, in a sense that in a context where a value of some type
is expected, any value of a conforming type can be used.”

For example, with the hierarchy of Figure 1.1, code expecting aShape can receive
any of its subtypes, e.g., aRectangle or a Circle. We therefore have a shape entity that
at runtime can refer to any subtype ofShape. Such phenomena are known asinclu-
sion polymorphism[23]. Meyer’s [96, Sect. 10.1.5 Polymorphism] definition of inclusion
polymorphism is:

“ Polymorphismmeans the ability to take several forms. In object-oriented
programming, this refers to the ability of an entity to refer at run-time to
instances of various classes.”

The consequences of inclusion polymorphism are that although the exact type of a
certain entitymustbe known atruntime, this typecannotbe predicted atcompile time.
This polymorphism is the major source of inefficiencies in OO programs. For instance,
what happens if we instruct a shape todraw itself? Since different shape entities have
different drawing methods, we need to execute the drawing method corresponding to the
dynamic type of the shape.

In this thesis, I focused on four ensuing algorithmic problems in the implementation
of the runtime environment of OO languages:

1. Subtyping testsGiven an objecto and a typeb, a subtype test is to determine
whethera, the type ofo, is a subtype ofb, a¹ b. Such tests (also known astype in-
clusiontests), occur either implicitly in type cast operations, e.g.,dynamic cast
in C++ [124],?= in EIFFEL [97], or explicitly in the execution of dedicated lingual
constructs such asJAVA ’s [7] instanceof , andSMALLTALK ’s [71] isKindOf:
method. Although there are many efficiency metrics to the problem, in general, we
seek an implementation which simultaneously optimizes the space consumption of
the hierarchy representation and the time for executing these tests in runtime. Sub-
typing tests have enjoyed extensive attention (see e.g., [1, 22, 25, 58, 59, 74, 75, 84,
90,115,127,133]).

A very difficult and interesting (but somewhat language specific) variant of the
subtyping problem occurs inEIFFEL (and to a lesser extent in the arrays ofJAVA ).
In this variant the type hierarchy is compounded by an interplay with genericity. For
example, if a double ended queue (DQueue) is a subtype ofQueue, then aDQueue
of Rectangle is a subtype aQueue of Polygon.

2. Single dispatchingMessage dispatchingstands at the heart of object-oriented (OO)
programs, being the only way objects communicate with each other. Adispatching
queryfinds the appropriate implementation of the message to be called, according
to the dynamic type of the message receiver.

Driesen and Ḧolzle [48] found C++ programs spend a median of 5.2% of their time
and 3.7% of their instructions in dispatch code. (This is only the direct cost; There
is also the cost of lost optimizations opportunities, such as inlining.) Furthermore, it
is customary to see dynamically typed languages spend more than 20% of their time
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dispatching messages [130]. The dispatching problem has been studied extensively
(see e.g., [31, 37, 44–50, 78, 86, 100, 102, 118, 130–132, 135]), the main objective
functions being the space requirement and dispatching time.

3. Multiple dispatching In single dispatching, the method to invoke depends only on
the type of a single argument, namely, the receiver. Sometimes it is necessary to
dispatch over several arguments, which is then calledmultiple dispatching.

For example, on the right of Figure 1.1, we see a hierarchy of rendering devices,
such as aScreen andPSPrinter. A shape can be drawn onto any rendering device,
and the appropriate drawing method will be determined by the dynamic types of
both the shape and the device. The search can be manually carried out on standard
OO languages by means of the tediousdouble dispatchingpattern. A more effective
alternative ismulti-methodswhich are believed to be more expressive, natural and
readable thanmono-methods.

Multi-methods are found in many new generation OO languages includingKEA [99],
POLYGLOT [2], CLOS[15], COMMONLOOPS[16], CECIL [26] andDYLAN [120].
The main reason this expressive lingual construct did not find its way into main-
stream OO languages is that solving the multiple dispatching problem is (still)
believed to be extremely space- and time-intensive, even though the OO research
community devoted much effort to find an efficient implementation of multiple dis-
patching [5,27,28,51,52,61,77,87,112].

4. Object layout Type conformance forces us to make the layout of a type compatible
with that of its supertypes. If a type can have several direct supertypes, then a layout
enabling direct field access may not exist. The challenge is in improving the state
of the art [53,68,101,113] in layout schemes which optimize both field access time
and objects’ memory footprint.

The research domain is defined by these four key problems, with the following varia-
tions:

1. Single inheritance vs. Multiple inheritanceIn a single inheritance hierarchy each
type has at most one direct supertype, which means that the hierarchy takes a tree or
forest topology, as inSMALLTALK , OBJECTIVE-C [36], and other OO languages.
The hierarchy of Figure 1.1 is an example of a single inheritance hierarchy. Algo-
rithms in the single inheritance setting tend to be more efficient than the general
case of multiple inheritance. Some OO languages fall in between these two vari-
ations. For example,JAVA has a multiple inheritancetypehierarchy, but a single
inheritanceclasshierarchy.

2. Incremental- vs. batch- algorithms We are also interested inincrementalalgo-
rithms where the hierarchy evolves at runtime. The most important kind of change
is the addition of types at the bottom of hierarchy, also calleddynamic loading.
(This is the case inJAVA , where types may be added as leaves at run time.) Previ-
ous research explored addition of methods to existing nodes, as well as deletion of
types and other modifications. We are in a search fortruly incrementalalgorithms,
i.e., algorithms whose total resource consumption in processingn update operations
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is the same as the bestbatchalgorithms for processing thesen updates submitted
together.

3. Statically- vs. dynamically typed languagesStatically typed languages such as
EIFFEL and C++ may provide (partial) type information. The challenge is in uti-
lizing this information at runtime. Conversely, it is often more difficult to find
algorithms for dynamically typed languages (sometimes calleddynamic-typing).

Outline This thesis is organized as follows. Chapter 2 summarizes the contributions
of our five papers. These papers are then included as Chapters 3–7, each of which is a
self-contained unit and can be read by itself:

1. Chapter 3 describes an efficient algorithm for subtyping test.

2. A space-efficient dispatching technique is presented in Chapter 4.

3. An incremental, constant time, dispatching technique is the subject of Chapter 5.

4. Chapter 6 includes a novel object layout scheme.

5. The penultimate Chapter 7 presents a surprising application of our dispatching tech-
niques in solving the problem of isomorphism of simple types.

Finally, conclusions and directions for future research are given in Chapter 8.



Chapter 2

Contributions

The algorithms which were developed in this thesis arepractical in the sense that we are
not only interested intheoretical complexity, but also in how these algorithms handle real
data. Therefore, one of our objectives was to collect adata-setto evaluate the algorithms
for each of the four problems. The data-sets, drawn from ten different programming
languages, have now become a de facto standard benchmark.

Forty-four hierarchies were assembled from the following sources:

1. The five multiple inheritance hierarchies (IDL, Laure, JDK 1.1, Ed, Eiffel4) used
by Eckel and Gil [53] in their benchmark of object layout techniques.

2. The Flavors hierarchy, representing themulti-inheritance coreof the Flavors lan-
guage [98], used by Pugh and Weddell [113, Fig. 5] in their benchmark of object
layout techniques.

3. Three newer versions of theJAVA runtime environment (JDK 1.18, JDK 1.22,
JDK 1.30).

4. The four hierarchies (Self, Unidraw, LOV, Geode) used in benchmark of row-
displacement in multiple inheritance hierarchies [47].

5. The eight hierarchies (Visualworks1, Visualworks2, Digitalk2, Digitalk3, NextStep,
ET++, IBM Smalltalk 2, VisualAge 2) used for benchmarking row-displacement
and compact-dispatch-tables [132] in single inheritance hierarchies.

6. The ensemble of sevenJAVA hierarchies (Corba, HotJava, IBM SF IBM XML,
Orbacus, Orbacus Test, Orbix) used in the definition of the “common program-
ming practice” [30], augmented by version 1.3.1 of the Java Development Kit
(JDK 1.3.1). Each of these eight hierarchies, was also used both for benchmark-
ing multiple inheritance dispatching algorithms and, after pruning interfaces, for
benchmarking single inheritance dispatching algorithms.

7. The two CECIL [26] and DYLAN [120] hierarchies used in all benchmarking of
multiple dispatching algorithms [51,52,77,112] contributed by Eric Dujardin.

We used these hierarchies for benchmarking single-dispatch algorithms, by project-
ing each multi-method on each of its arguments. (The details are in Section 4.7.)

13
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8. A collection of five other multiple dispatching hierarchies contributed by Wade
Holst: Cecil- and Cecil2 are two older versions of theCECIL run time library.
Vortex3 is aCECIL compiler written inCECIL, while Vor3 is an old version of this
compiler. Harlequin is a commercial implementation ofDYLAN including its GUI
library.

Table 2.1 shows the number of typesn, messagesm, and method implementations`,
of the 44 hierarchies used in our data-set. The three blocks in the table correspond to
single inheritance-, multiple inheritance-, and multiple dispatch- hierarchies. The next
column shows that the hierarchies were drawn from ten different OO languages. We see
that the hierarchies span a range of sizes, from about a hundred types up to almost 9,000
types. The number of messagesm is slightly higher than the number of types, and each
message has around five method implementations on average.

We used the following three metrics for evaluating our algorithms: (i) space, (ii) query
time, and (iii) the time for creating the encoding. All experiments were run on a Pentium
III, 900Mhz, the IBM T22 laptop type 2647-4EG, equipped with 256MB internal memory
and running a Windows 2000 operating system.

The publication arising from this thesis are as follows:

Chapter 3 Efficient Subtyping Tests with PQ-Encoding[136], in OOPSLA’01 conference
and accepted to the TOPLAS journal [70].

In this paper we presented a new subtyping tests scheme named PQ-Encoding
(PQE). The median improvement inspacewith the next best algorithm, NHE [90],
is by 37%, while the average improvement is 50%. In addition, PQEsubtyping-test
time is constant using only two comparisons, whereas NHE, which is a bit-vector
encoding, is non-constant. Thecreation timeof PQE is always less than half a
millisecond per type.

PQE is called afterPQ-trees, a data structure previously used in graph theory for
finding the orderings that satisfy a collection of constraints. The main reason that
our algorithm gives such good results is that PQ-trees use only linear time to pro-
cess a potentially exponential number of permutation. In a sense, our algorithm
chooses an ordering of the types of the hierarchy which satisfies many conflicting
constraints. The failing constraints are then collected together and the algorithm
tries to find another ordering for as many of these as possible. The process is re-
peated until all such constraints are satisfied at least in one ordering.

Chapter 4 Fast Algorithm for Creating Space Efficient Dispatching Tables with Applica-
tion to Multi-Dispatching[137], in OOPSLA’02 conference.

In this paper we presented thetype slicing(TS) technique for dispatching (and sub-
typing tests). The average improvement inspaceof TS over row-displacement [45,
47] (considered the best for multiple inheritance hierarchies) is by a factor of 4.6,
while the median improvement is by a factor of 2.6. In one hierarchy row-displacement
uses 1.24MB while TS uses only 40KB! The average improvement increation time
is by a factor of 37.4; in the toughest hierarchy the creation time of TS is 4.8 micro-
seconds per method implementation. The cost is in thedispatching time, which is
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Language Hierarchy n m `

S
ingle

Inheritance

SMALLTALK Visualworks1 774 1,170 4,624
SMALLTALK Visualworks2 1,956 3,196 13,581
SMALLTALK Digitalk2 535 962 3,330
SMALLTALK Digitalk3 1,357 2,402 9,444
SMALLTALK IBM Smalltalk 2 2,320 4,335 16,288
SMALLTALK VisualAge 2 3,241 6,529 26,205
OBJECTIVE-C NextStep 311 499 2,115
C++ ET++ 371 296 1,413
JAVA SI: JDK 1.3.1 6,681 4,392 23,815
JAVA SI: Corba 1,329 222 2,585
JAVA SI: HotJava 644 690 2,908
JAVA SI: IBM SF 6,626 11,664 88,280
JAVA SI: IBM XML 107 131 587
JAVA SI: Orbacus 1,053 980 3,821
JAVA SI: Orbacus Test 579 368 2,387
JAVA SI: Orbix 1,278 535 2,900

M
ultiple

Inheritance

SELF Self 1,802 2,459 21,753
C++ Unidraw 614 360 2,331
EIFFEL LOV 436 663 2,840
EIFFEL Geode 1,318 1,413 9,515
JAVA MI: JDK 1.3.1 7,401 5,724 28,683
JAVA MI: Corba 1,699 396 3,201
JAVA MI: HotJava 736 829 3,397
JAVA MI: IBM SF 8,793 14,575 116,152
JAVA MI: IBM XML 145 271 945
JAVA MI: Orbacus 1,379 1,261 4,996
JAVA MI: Orbacus Test 689 379 2,751
JAVA MI: Orbix 2,716 786 3,704
JAVA JDK 1.18 1,704 - -
JAVA JDK 1.22 4,339 - -
JAVA JDK 1.30 5,438 - -
JAVA JDK 1.1 226 - -
FLAVORS Flavors 67 - -
C++ IDL 67 - -
LAURE Laure 295 - -
EIFFEL Eiffel4 1,999 - -
EIFFEL Ed 434 - -

M
ultiple

D
ispatching

DYLAN Harlequin 666 229 1,016
DYLAN Dylan 925 428 1,783
CECIL Cecil 932 1,009 4,208
CECIL Cecil- 473 592 2,359
CECIL Cecil2 472 131 562
CECIL Vor3 1,660 328 1,864
CECIL Vortex3 1,954 476 2,496

Total 78,541 70,680 418,839

Table 2.1: Number of typesn, messagesm, and method implementations`, of the 44
hierarchies used in our data-set
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no longer constant, butlogarithmic in the number of different method implementa-
tions. In our data-set, dispatching uses one indirect branch and, on average, only 2.5
binary branches.

TS generalizes an existing dispatching technique for single inheritance hierarchies [60,
100] to also handle multiple inheritance hierarchies. This generalization comes
with an increase to the space requirement by a small factor ofκ. This factor can be
thought of as a metric of the complexity of the topology of the inheritance hierar-
chy. Surprisingly the same multiple inheritance complexity factorκ is also used in
our constant-time dispatching technique (Chapter 5).

We also described anincrementalsubtyping test scheme which is based on theo-
retical algorithms for range-minima and maintaining order in a list. In the worst
case hierarchy, the average time for inserting a new type is as little as 16 micro-
seconds. Thesubtyping-test timeis a small constant and thespace requirementsare
favorable: always better than the PE scheme [133], and worse than NHE [90] by a
median factor of 2.8.

Finally, the paper also has an application to the more general problem of multi-
dispatching. The best practical techniques for multiple dispatching known today
areCompressed N-dimensional Tables(CNT) [5, 52, 87] andSingle-Receiver Pro-
jections(SRP) [77]. Both techniques begin with the samemono-dispatch stage, in
which c independent single-dispatch queries are executed for a multi-method of ar-
ity c. The results of these queries are then used in theresolution stagewhich is tech-
nique specific. The mono-dispatch stage in SRP or CNT is currently carried out us-
ing either the technique ofselector coloring[44,118] or row-displacement [45,47]
for single dispatching. We showed that, in practice, the space requirements of the
mono-dispatch stage dominates those of the resolution stage (especially in SRP).
Therefore, our TS scheme for single dispatching can significantly reduce the space
requirements of multiple dispatching.

Chapter 5 Incremental algorithms for dispatching in dynamically typed languages[138],
in POPL’03 conference.

Previous theoretical algorithms tend to be impractical due to their implementation
complexity and large hidden constant. In contrast, successful practical heuristics,
including Vitek and Horspool’scompact dispatch tables(CT) [132] designed for
dynamically typed languages, lack theoretical support. In subjecting CT to theoret-
ical analysis, we are not only able to improve and generalize it, but also provide the
first non-trivial bounds on the performance of such a heuristic.

Let n,m, ` denote the total number of types, messages, and different method imple-
mentations, respectively. Then, the dispatching matrix, whose size isnm, can be
compressed by a factor of at mostι ≡ (nm)/`. Our main variant to CT achieves a
compression factor of1

2

√
ι. More generally, we describe a sequence of algorithms

CT1, CT2, CT3, . . . , where CTd usesd memory dereferencing operations during
dispatch while achieving compression by a factor of (at least)1

d
ι1−1/d. This tradeoff

between dispatching time and space requirements represents the first bounds on the
compression ratio of constant-time dispatching algorithms.
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Extending these algorithms to a multiple inheritance setting increases the space by
a factor of(2κ)1−1/d, whereκ is the same complexity factor of hierarchies used in
our logarithmic dispatching scheme (Chapter 4).

The most important generalization is anincrementalvariant of CTd for a single in-
heritance setting. This variant uses at most twice the space of CTd, and its time of
inserting a new type into the hierarchy is optimal. We therefore obtain algorithms
for efficient management of dispatching in dynamic-typing, dynamic-loading lan-
guages, such asSMALLTALK and evenJAVA ’s invokeinterface byte-code
instruction.

In our dispatching data-set, thecreation timeof CT2 is 6.7 micro-seconds per
method implementation. The space requirements of the CT schemes are favor-
able: row-displacement improves, on average, upon CT2 by 179% (CT3 by 41%,
CT4 by 12%, and CT5 by 3%). Even though it seems that row-displacement and
CT5 gives similar compression rates, in one hierarchy CT5 improves upon row-
displacement by a factor of 1,100%, whereas row-displacement improves upon CT5

by at most 91%. We also note that row-displacement is not suited for dynamic-
typing, dynamic-loading languages, and amending row-displacement for dynamic-
typing results in doubling its space requirements.

Chapter 6 Two-Dimensional Bi-Directional Object Layout[139], in ECOOP’03 confer-
ence.

C++ object layout schemes rely on (sometimes numerous) compiler generated fields.
In this paper we describe a two-dimensional bi-directional object layout scheme.
Our scheme is space optimal, i.e., objects are contiguous, and containno compiler
generated fieldsother than a single type identifier. As in C++ and other multiple
inheritance languages such as Cecil and Dylan, our scheme sometimes requires an
extra level of indirection to access some of the fields. Using the object-layout data
set, we show that our scheme improves field access efficiency over standard imple-
mentations, and competes favorably with (the non-space optimal) highly optimized
C++ specific implementations. However, our scheme relies on whole-program anal-
ysis, which requires only 10 micro-seconds per type, even in very large hierarchies.

After carrying out our research on two-dimensional bi-directional layout, we learnt
that similar results were independently obtained by Pugh and Weddell and described
in a 1993 technical report [114]. Their work suggests a similar layout algorithm,
using fields instead of types, and includes several theoretical bounds on complexity.
Our work takes a more empirical slant. We are now in the process of merging these
independent research efforts and making a unified journal submission.

Chapter 7 Efficient algorithms for isomorphisms of simple types[140], in POPL’03 con-
ference and accepted to a special issue on type isomorphism in the journal “Mathe-
matical Structures in Computer Science” (MSCS) [69].

Surprisingly the techniques developed in our two dispatching papers (Chapters 4–5)
are not limited to the OO arena. Thefirst order isomorphism problemis to decide
whether two non-recursive types using product- and function-type constructors, are
isomorphic under the axioms of commutative and associative products, and curry-
ing and distributivity of functions over products. We show that this problem can be
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solved inO(n log2 n) time andO(n) space, wheren is the input size. This result
improves upon theO(n2 log n) time andO(n2) space bounds of the best previous
algorithm. We also describe anO(n) time algorithm for thelinear isomorphism
problem, which does not include the distributive axiom, thereby improving upon
theO(n log n) time of the best previous algorithm for this problem.

We now hint on the relationship between type isomorphism and OO implementa-
tion. Note first that when substituting function-types for exponentiation and product-
types for multiplication, the first order isomorphism problem becomes an instance
of the problem of proving analgebraic equation, e.g., whether (2.1) holds

(
xb · (yb · zd

)c)a
= (x · yc)a·b · za·c·d . (2.1)

Consider now the left-hand side of (2.1), i.e., the expression
(
xb · (yb · zd

)c)a
. Stan-

dard algebraic rules show that the terma appears in the exponent of variablesx, y,
andz. Similarly, termc will appear in the exponent of variablesy andz, but not
of x. We can therefore describe the effect of each of the terms in the exponent in a
tree structure as depicted in Figure 2.1.

Figure 2.1: The tree structure of the left-hand side of (2.1)

We see in the figure that the leafx “inherits” the termsb anda, while leafz “inher-
its” the termsd, c anda. A similar process ofinheritanceof method implementa-
tions occurs in the dispatching problem. Therefore we could successfully borrow
dispatching techniques for single inheritance hierarchies such as switching to a dual
representation, efficient handling of intervals and segments, and incremental over-
laying of segment-partitionings.



Chapter 3

Efficient Subtyping Tests with
PQ-Encoding

Chapter Summary
Given a type hierarchy, asubtyping testis to determine whether one type is a direct or indirect
descendant of another type. Such tests are a frequent operation during the execution of object-
oriented programs. The implementation challenge is in encoding the hierarchy in a small space,
while simultaneously making sure that the tests have efficient implementation. We present a new
scheme for encoding multiple and single inheritance hierarchies, which, in the standard bench-
mark hierarchies, reduces the footprint of all previously published schemes. Our scheme is called
PQ-encoding(PQE) afterPQ-trees, a data structure previously used in graph theory for finding
the orderings that satisfy a collection of constraints. In particular, we show that in the traditional
object layout model, the extra memory requirements for single inheritance hierarchies is zero. In
the PQE subtyping tests are constant time, and use only two comparisons. The encoding creation
time of PQE also compares favorably with previous results. It is less than a second on all standard
benchmarks on a contemporary architecture, while the average time for processing a type is less
than one millisecond. Yet, PQE is not an incremental algorithm. Other than PQ-trees, PQE em-
ploys several novel optimization techniques. These techniques are applicable also in improving
the performance of other, previously published, encoding schemes.

One of the basic operations in the run time environment of object-oriented (OO) pro-
grams is asubtyping test. Given an objecto and a typeb, a subtype test determines
whethera, the type ofo, is a subtype ofb, i.e.,a is a direct or indirect descendant ofb
in the inheritance hierarchy. The subtyping tests (also known astype inclusiontests) we
refer to are carried out at runtime, and are distinct from static subtyping tests done by the
language type checker.

An OO programmer may apply a subtyping test explicitly using dedicated constructs
such asJAVA ’s [7] instanceof , andSMALLTALK ’s [71] isKindOf: method. In ad-
dition, several other language constructs are implemented using these tests. For example,
subtyping tests are implicit in the execution of type cast operations, e.g.,?= in theEIFFEL

programming language [97] anddynamic cast in C++ [124]. In JAVA for example,
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the lack of parametric polymorphism is a common source of such casts. When extracting
an elemento from a collection class, e.g.,Vector , the type ofo is Object . Therefore,
it is typically necessary to casto to the expected type.

Yet another construct which is implemented using subtyping tests is covariant over-
riding of arguments inEIFFEL. The compiler is inclined to make subtyping tests in con-
junction with calls to methods that use this feature1.

Also, the covariant nature of array subtyping inJAVA renders subtyping tests neces-
sary in assignments to elements of arrays whose dynamic type is unknown. Consider for
example the following code fragment

void f(Object x[]) {
x[1] = new A();

}
It may be a bit surprising that the assignment tox[1] in f requires a subtyping test. To
understand why, suppose that functionf was invoked with a value of typeB[] (an array
of elements of typeB) as an actual argumentx , e.g.,

f( new B[3]);

This invocation is correct since typeB[] is a subtype ofObject[] (an array of objects).
However, the assignment

x[1] = new A();

is legal only if typeA is a subtype of typeB. Otherwise, the runtime environment raises
anArrayStoreException exception.

Finally, we note that subtyping tests may also be part of the implementation of ex-
ception handling inJAVA , C++, and other languages. The following code excerpt is an
example of atry block, followed by acatch clause and block.

try { f(); ... }
catch (B b) {... }

Suppose that an objecto is throw n from thetry block, e.g., from within functionf() .
Then, the program should execute thecatch block, but only if typeB is a supertype of
the thrown object’s type. Thus, thecatch clause can be implemented with a subtyping
test. InJAVA , the subtyping test is with respect to the dynamic type ofo, while in C++ it
is with respect to the static type ofo. However, in both cases, this test must be carried out
at run-time.

Outline The remainder of this chapter is organized as follows. The subtyping test
problem is defined in Section 3.1. Some straightforward solutions for this problem are
described in Section 3.2. Section 3.3 makes some pertinent definitions. The data set of
the 13 hierarchies used in our benchmarking is presented in Section 3.4. A survey of prior
research is the subject of Section 3.5. This section also describes theslicing technique of
partitioning a hierarchy for the purpose of subtyping tests. The technique is common to

1Various mechanisms of static analysis have been proposed to eliminate this requirement, but none of
these have been implemented.
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many previous algorithms for the problem; it also stands as the basis of the PQE algorithm
which is described in Section 3.6. Section 3.7 presents our new optimization techniques,
improving instruction count, test time and encoding length. Section 3.8 presents the
results of running these algorithms on our benchmark. Finally, some open problems and
directions for future research are mentioned in Section 3.9. Section 3.10 demonstrates the
inner workings of the PQ-tree data structure.

3.1 Problem Definition

The problem we deal with is defined formally as follows. Ahierarchy is a partially
ordered set (T ,¹) whereT is a set of types and¹ is a reflexive, transitive and anti-
symmetricsubtype relation. If a,b are types, anda¹ b holds, we say that they are
comparable, that a is a subtypeof b and thatb is a supertypeof a. Given a hierar-
chy(T ,¹), |T | = n, thesubtyping problemis to build a data structure supporting queries
of the sorta¹ b. This data structure is called anencodingof the hierarchy.

The subtyping problem has enjoyed considerable attention recently (see e.g., [1, 22,
25,34,58,59,62,74,75,84,90,110,115,127,133]), the challenge being in simultaneously
optimizing its four complexity measures:

1. Space.Encoding methods associate certain data with each type. We measure the
average number of bits per type, also called theencoding length.

Note that we do not include in the measure the space consumed by each object.
Although the space overhead per object depends on the object layout model, it is
usually assumed that each object includes a pointer to a type information record.
Optimizing object space is beyond the scope of this thesis.

2. Instruction count.This is the number of machine instructions in thetest code, on a
certain hardware architecture. There are indications [133] that the space consumed
by the test code, which can appear many times in a program, can dominate the en-
coding length. An encoding is said to beuniform2 if there exists an implementation
of the test code in which the instruction count does not depend on the size of the
hierarchy. Only uniform encodings will interest us.

3. Test time.The time complexity of the test code is of major interest. Since the test
code might contain loops, the time complexity may not be constant even in uniform
encodings. Our main concern here are constant time encodings (which are always
uniform). To improve timing performance, loops of non-constant time encodings
may be unrolled, giving rise to non-constant instruction count, without violating the
uniformity condition. (Bit-vector encoding, presented in Section 3.5, is an example
of a uniform encoding which is non-constant time.)

In explicit subtyping tests and in type casts, the testa¹ b is not entirely arbitrarily
in the sense that the supertypeb is known at compile time. The test code can then

2The term is borrowed from circuit complexity. A family of circuits for the size dependent incarnations
of a certain problem is called uniform, if this family can be generated by a single Turing machine.
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bespecialized, by precomputing values which depend only onb and emitting them
as part of the test code. Specialization thus benefits both instruction count and test
time, and may even reduce the encoding length.

4. Encoding creation time.Another important complexity measure is the time for
generating the actual encoding, which can be large.

It is essential that a compiler will be able to finish its computation in a reasonable
time. In many cases, this is not possible. For example, the problem of finding
an optimal bit-vector encoding was proved to be intractable [75]. Heuristics of bit
vector encoding [25, 62, 74, 84, 90, 115] offer a tradeoff between creation time and
encoding length.

Most of the previous work assumed, as we shall do here, that the entire type hier-
archy is supplied at compile time.JAVA , E [76] and many other languages allow
types to be dynamically loaded at runtime. If the encoding creation time is suffi-
ciently small, then the encoding can berecomputedwhenever such a load occurs.
An active research topic is to find truly incremental algorithms, which can quickly
updatethe encoding.

3.2 Straightforward Solutions

The most obvious (uniform) representation as abinary matrixgives constant subtyping
tests, but the encoding length isn. This method is useful for small hierarchies and is used
e.g., for encoding theJAVA interfaceshierarchy [88] in CACAO 64-bit JIT compiler [72,
89]. The quadratic space becomes very noticeable in large hierarchies. For example, one
of the hierarchies in our data set has 5500 types which give rise to 3.8MB binary matrix.
The binary matrix encoding can be (non-uniformly) implemented using a zero encoding
length andO(n) instruction count: relying on specialization, the test code fora¹ b then
checks whethera is among the possiblyO(n) descendants ofb. More generally, a non-
uniform encoding is tantamount to representing the encoding data structure as part of the
test code, and therefore will not interest us.

The observation that stands behind the work on subtyping tests is that the binary ma-
trix representation is in practice very sparse, and therefore susceptible to massive opti-
mization. Nevertheless, the number of partially ordered sets (posets) with n elements
is 2Θ(n2), so the representation of some posets requiresΩ(n2) bits3. Thus, the encoding
length isΩ(n). In other words, for arbitrary hierarchies the performance of the binary
matrix implementation is asymptotically optimal.

Let the relation≺d be thetransitive reductionof ¹, i.e., a minimal relation whose
transitive closureis¹. More precisely, relation≺d is defined by the condition thata≺d b
if and only if a¹ b, a 6= b, and there is noc ∈ T such thata¹ c¹ b, a 6= c 6= b.

Figure 3.1 depicts a directed acyclic graph (DAG) representation of a hierarchy which
will serve as the running example of this chapter.

3The number of bipartite graphs withn elements is clearly2Θ(n2), and every bipartite graph is also a
poset.
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Figure 3.1: A small example of a multiple subtyping hierarchy

We employ the usual convention that edges are directed from the subtype to the su-
pertype, and that types drawn higher in the diagram are considered greater in the subtype
relationship. Thus, the figure specifies (for example) thatG≺d C andH¹A. In total in
this hierarchy,n = 9, |≺d| = 11, and|¹| = 27.

Another obvious solution to the subtyping problem isDAG-encoding, which is based
on the DAG defined by types as nodes and edges from≺d. In this encoding, a list of
parents is stored with each type, resulting in total space of|≺d|dlog ne bits4 in an idealized
bit-efficient representation. The DAG encoding length is therefore

|≺d|
n

· dlog ne.

The average number of parents,|≺d|/n, tends to be small; We will see that it is less
than 2 in all the standard benchmark hierarchies. Unfortunately, a subtyping test in DAG-
encoding isO(n) time.

TheClosure-encodingpresents another obvious tradeoff between space and test time.
In this encoding, with each type we store the list ofall of its ancestors using a simple
sorted array representation. A subtyping test is then implemented using a binary search
in O(log n) time. Since each entry in this array requiresdlog ne bits, the encoding length
is

|¹|
n
· dlog ne.

Theoretically superior representations of this list includeQ-fast tries[134], which achieve
deterministicO(

√
log n) time, or the randomized stratified trees (also calledvan Emde

Boas data structure) [128, 129], which achieveO(log log n) time. Another alternative
are perfect hash tables [64] which giveO(1) lookup time. In moderately sized tables
we expect the simple binary search algorithm to outperform the asymptotically better
competitors. Also, these sophisticated data structures come at a cost of an increase of the
encoding length by factors which can be prohibitively large.

The binary matrix, DAG-, and Closure-encoding are not very appealing techniques.
Previous contributions in this field included many sophisticated encoding schemes which
come close to DAG-encoding in space, while keeping the test time constant or “almost”
constant.

4Here and henceforth, all logarithms are based two.
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An important special case of the problem is single inheritance, which occurs when the
hierarchy DAG takes a tree or forest topology as mandated by the rules of languages such
asSMALLTALK [71] andOBJECTIVE-C [36]. The general case of multiple inheritance is
more difficult, and will be our main concern here.

3.3 Definitions

Given a typea ∈ T , we define the following sets:descendants(a) andancestors(a) (the
set of subtypes and supertypes ofa, respectively), as well aschildren(a) andparents(a)
(the set ofimmediatesubtypes and supertypes ofa, respectively). More precisely,

descendants(a) ≡ {b ∈ T | b¹ a}
ancestors(a) ≡ {b ∈ T | a¹ b}
children(a) ≡ {b ∈ T | b≺d a}
parents(a) ≡ {b ∈ T | a≺d b}

(3.1)

Also for a ∈ T , the valuelevel(a) is the length in nodes of the longest directed
(upgoing) path starting froma. Theheightof the hierarchy is the maximal level among
all types inT . Thekth-levelof the hierarchy is the set of all typesa for whichlevel(a) = k.

level(a) ≡ 1 + max {level(b) | b ∈ parents(a)}
height(T ) ≡ max {level(a) | a ∈ T } (3.2)

(In the above definition oflevel(a), the maximum over an empty set is defined as zero. In
other words, nodes without any parents are defined as being in level 1.)

In Figure 3.1 we have that

descendants(A) = {A, C, D, F, G, H}
ancestors(F) = {A, B, C, F}
children(A) = {C, D}
parents(F) = {C}

level(F) = 3

This hierarchy has three levels: with two, three, and four types, respectively.

The following definitions will also become pertinent:

roots(T ) ≡ {a ∈ T | parents(a) = ∅}
leaves(T ) ≡ {a ∈ T | children(a) = ∅} (3.3)

In Figure 3.1 we have that

roots(T ) = {A, B}
leaves(T ) = {F, G, H, I}.
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3.4 Data Set

To benchmark the algorithms, we started from the 9 multiple inheritance hierarchies used
by Eckel and Gil [53] in their benchmark of object layout techniques. Three newJAVA

hierarchies (newer versions of theJAVA runtime environment), as well as the Cecil com-
piler hierarchy [26] were added to this benchmark. In total, our data set represents an
array of large hierarchies drawn from six different OO languages. In particular, the
set includes all multiple inheritance hierarchies used in previous studies of encoding
schemes [74, 90, 133]. Eckel and Gil [53] gave a detailed description of these hierar-
chies. One of their findings is that many topological properties of typical hierarchies are
similar to those of balanced trees. This makes it possible to find more efficient encodings
for hierarchies used in practice. Comparison of different encoding schemes is done over
these 13 hierarchies which have now become a de facto standard benchmark.

The hierarchies in the data set are enumerated in ascending order of size in Table 3.1.
We see that the number of types ranges between 66 and 5,438. In total the 13 hierarchies
represent over 19,500 types.

Hierarchy n |≺d|/n |¹|/n αa βb γc |T ′|/n
IDL 66 0.98 3.83 8 6 7 15%
JDK 1.1 225 1.04 3.17 7 6 8 15%
Laure 295 1.07 8.13 16 11 9 18%
Ed 434 1.66 7.99 23 10 9 61%
LOV 436 1.71 8.50 24 9 9 62%
Unidraw 613 0.78 3.02 9 8 10 4%
Cecil 932 1.21 6.47 23 12 10 33%
Geode 1,318 1.89 13.99 50 13 11 75%
JDK 1.18 1,704 1.10 4.35 16 9 11 18%
Self 1,801 1.02 29.89 40 16 11 9%
Eiffel4 1,999 1.28 8.78 39 17 11 46%
JDK 1.22 4,339 1.19 4.37 17 9 13 22%
JDK 1.30 5,438 1.17 4.37 19 9 13 21%

amax{|ancestors(a)| | a ∈ T }
bheight
cdlog ne

Table 3.1: Topological properties of hierarchies in the data set

Table 3.1 gives also some of the topological properties of the hierarchies. Examining
the third column in the table we see that the average number of parents,|≺d|/n, is always
less than 2. On the other hand, the average number of ancestors,|¹|/n, can be large.
In the Self hierarchy a type has in average almost 30 ancestors! The maximal number
of ancestors plays an important factor in the complexity of some of the algorithms. We
see that there exists a type in the Geode hierarchy which has 50 ancestors in total. In
comparing the height of the hierarchy withlog n we see that the hierarchies are shallow;
their height is similar to that of a balanced binary tree.

We can learn a bit more on the topology of inheritance hierarchy by considering the
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setT ′, which can be thought as themultiple inheritance coreof the hierarchy. Formally,
a type is in the core if it has a descendant with more than one parent. Conversely, the
setT \ T ′ is a collection of maximal subtrees discovered in a bottom-up traversal of the
hierarchy. It was previously noticed [133] that encoding is easier if the core is considered
first, and thebottom treesof T \ T ′ are added to the encoding later. In Table 3.1 we see
that in most hierarchies the core is rather small, typically less than half the number of
types. Treating the core and the bottom trees separately will reduce the run time of our
encoding algorithm.

3.5 Previous Work

This section gives an overview of various encoding methods proposed in the literature.
We describe the data structure used in each such encoding, and how it is deciphered
to implement subtyping tests. Little if any attention is devoted to describing the actual
generation of the data structure and the theory behind it.

3.5.1 Encoding of Single Inheritance Hierarchies

Relative numbering

Perhaps the most elegant encoding algorithm isrelative numbering[119] (also called
Schubert’s numbering) which guarantees both optimal encoding length ofdlog ne bits
and constant time subtyping tests. However, these achievements are only possible in a
single inheritance hierarchy. For a typeb ∈ T , let rb denote its ordinal (i.e., an integer in
the range1, . . . , n) in a postorder traversal ofT . A basic property of postorder traversal
is that

rb = max{ra | a¹ b}. (3.4)

Let lb be defined by

lb = min{ra | a¹ b}. (3.5)

Combining (3.4) and (3.5) with the fact that in postorder traversal the descendants of any
type are assigned consecutively, we find thata¹ b iff

lb ≤ ra ≤ rb. (3.6)

Thus, in relative numbering, each typea is encoded by an interval[la, ra] as exemplified
by Figure 3.2.

In the figure we have (for example) thatdescendants(D) = {D, H, I}. Ther-descriptor
of each of these descendants, i.e.,rD = 8, rH = 6 andrI = 7, fall within the interval[6, 8]
associated with typeD. No otherr-descriptor falls in this interval.

Recall that sinceb is known at compile time, values which depend only onb can be
precomputed. Henceforth, such values are marked by a “#” prefix. With this notation, we
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Figure 3.2: Relative numbering in a tree hierarchy

write (3.6) as

#lb ≤ ra ≤ #rb. (3.7)

We note that#lb and#rb are compile-time constants and hence the test (3.7) can be
specialized by eliminating the memory fetch of these. In doing so, we find thatlb is not
part of the encoding, bringing down the encoding length of relative numbering todlog ne.

Relative numbering is used in CACAO [72,89] to represent theJAVA class inheritance
hierarchy [88] (Recall that the binary matrix is used in CACAO for the interface hierar-
chy.) Range-compression [1], described below, is a generalization of relative numbering
for multiple inheritance.

Cohen’s encoding

A variant of Dijkstra’s displays [43] is Cohen’s encoding [29]. His encoding is yet another
example of an algorithm initially designed for single inheritance, and later generalized to
multiple inheritance. (The generalized algorithm, known as Packed Encoding [133], will
be described below.) Cohen’s encoding relies on hierarchies being relatively shallow, and
more so, on types having a small number of ancestors. As Table 3.1 shows, this is indeed
the case in some of our multiple inheritance hierarchies. A typea is associated an arrayra

of size

level(a) ≤ |ancestors(a)|
(in single inheritance,level(a) = |ancestors(a)|), with entries for each

b ∈ ancestors(a).

Specifically, each typeb, bº a, is stored in locationlevel(b) in arrayra. Thus, the test
whetherbº a is carried out by checking whetherb indeed occurs in locationlevel(b) of
arrayra. The encoding is optimized by storing notb itself in this location, but rather an
id, which is unique among all types in its level.

Since different levels come in different sizes, someid’s may require fewer bits than
others. Typically, anid is stored in either a single byte or in a 16 bits word. It is even
possible to pack severalid’s into a single byte. As a result of this compression the en-
tries ofra, which are not of equal size, cannot be referenced using ordinary array access
operations.
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We say thatr is apseudo-array, and use the notationr@ i instead ofr[i] for denoting
pseudo-array access. Pseudo-arrays are only used if the indexi is always known at com-
pile time. Therefore, a pseudo-array access is the same as record member selection, and
is no slower than a non-pseudo array access. (If several pseudo-array entries are packed
together in a single byte, then the required shift and mask operations may slow down this
operation in comparison to normal array accesses.)

Cohen’s encoding stores with each typea its level,la = level(a), its uniqueid within
this levelida, as well as the pseudo-arrayra, such that for eachb ∈ ancestors(a),

ra@ lb = # idb . (3.8)

The testa¹ b is carried out by checking thatla ≥ #lb and then that (3.8) holds. Note
thatlb is known at compile time.
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Figure 3.3: Cohen’s encoding of the tree hierarchy of Figure 3.2

Consider for example the 3-level tree hierarchy depicted in Figure 3.3. As shown in
the figure, each type has a (pseudo-) array with at most 3-identifiers. The pseudo array of
typeH in the 3rd level has three entries:rH@ 1 = 1 since the ancestor ofH at the 1st level
is A, andidA = 1. Similarly, the ancestor at the 2nd level isD, idD = 3. The last entry of
this array stores theid of H.

Also observe that in the figure howid’s are reused at different levels. For example,
for typesC andF which are at different levels we have thatidC = idF = 2.

The array boundary checkla ≥ #lb in Cohen’s encoding is inelegant. We observe that
it can be eliminated at the price of allocating globally uniqueid’s. Then, it is possible to
concatenate the arrays, making sure that the largest array is at the end. Even if there is an
overflow in the array accessra[lb], the location found will not containidb.

Jalapẽno [4], the IBM implementation of theJAVA virtual machine (JVM), uses Co-
hen’s algorithm for subtyping tests where the supertype is a class. The main reason is that
this encoding is incremental, whereas vanilla relative numbering is not.
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3.5.2 Encodings of Multiple Inheritance Hierarchies

Packed encoding

Cohen’s algorithm was generalized to the multiple inheritance setting by Vitek et al. [133]
into what is calledPacked Encoding(PE) andBit-Packed Encoding(BPE), which are both
constant-time methods. Cohen’s algorithm, PE, BPE and our algorithm share a common
theme: slicing, in which the setT is partitioned into disjointslices(sometimes called
buckets)S1, . . . , Sk. For each sliceSi we store the entire information required to answer
queries of the sorta¹ b, a ∈ T andb ∈ Si, i.e., queries in which the supertype is drawn
from Si. Typea has a pseudo-arrayra of lengthk, wherera@ i holds information for
sliceSi. In essence, we store, in a very compressed format, the set of descendants of each
element inSi. The compression is possible since there is a great deal of sharing in the
descendants set of different members ofSi.

PE associates with each typea ∈ T a unique integerida within its slicesa, so thata
is identified by the pair〈sa, ida〉. Also associated witha is a byte arrayra, such that for
all b ∈ ancestors(a), indexsb storesidb, i.e.,

ra[sb] = # idb . (3.9)

A necessary and sufficient condition fora¹ b to hold is then (3.9). It should be clear that
no two ancestors ofa can be on the same slice. Thus, the number of slices is at least the
size of the largest set of ancestors. Checking the fifth column of Table 3.1 we see that
some hierarchies require 40 slices or more.

Comparing (3.9) with (3.8), we see that slices play a role similar to that of levels in
Cohen’s algorithm. In fact, Cohen’s algorithm partitions the hierarchy intoheight(T )
anti-chains5, while PE partitions the hierarchy into anti-chains where no two elements
in an anti-chain have a common descendant. Fall [58], who observed that this technique
might be used for subtyping tests, noted that it is NP-hard to find a minimal such partition,
and stopped short of finding a constant time subtyping test. The heuristic suggested by
Vitek et al. [133] along with the constant time subtype test made PE viable. Based on this
heuristic, Palacz and Vitek [110] recently gave an incremental implementation of PE.

Vitek, Horspool and Krall’s PE algorithm constrains each slice to a maximum of 255
types, so thatida can always be represented by a single byte. The encoding length is
then8k, wherek is the number of slices. The inventors of PE observed thatk is usually
the maximal number of ancestors unless multiple inheritance is heavily used. Thus, even
though the general problem is intractable, their heuristics often finds an optimal solution.

Consider Figure 3.4 for an example of PE representation of the hierarchy of Figure 3.1.
The types of the hierarchy are partitioned into five different slices:S1 = {A}, S2 =
{B}, S3 = {D}, S4 = {C, E}, andS5 = {F, G, H, I}. This is the smallest possible number
of slices, since typeG (for example) has five ancestors.

The only difference between BPE and PE is that BPE permits two slices or more to be
represented within a single byte. Thus, in BPEra is a pseudo-array, and the array access

5An anti-chainis a set of types where no two types are comparable. Clearly, each level is an anti-chain.
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Figure 3.4: PE representation of the hierarchy of Figure 3.1

in (3.9) becomes a pseudo-array access:

ra@ sb = # idb . (3.10)

Starting from Figure 3.4 we can represent slicesS1, S2 andS3 using a single bit,S4 using
two bits, andS5 in three bits, for a total of seven bits, which can fit into a single byte.

Bit-vector encoding

One of the most explored directions in prior art isbit-vector encoding[25, 62, 74, 75, 84,
90,115]. In this scheme, each typea is encoded as a vectorveca of β bits. If veca[i] = 1
then we say thata hasgenei. Let φ(a) be the set of genes ofa. Relationa¹ b holds
iff φ(a) ⊇ φ(b), which can be easily checked by maskingvecb againstveca, specifically,
applying the test:

vecb and veca = vecb . (3.11)

Figure 3.5 gives an example of a bit-vector encoding of the hierarchy of Figure 3.1
which uses 6 genes.
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Figure 3.5: Bit-vector encoding of the hierarchy of Figure 3.1. (We only write the genes
a type adds to its parents.)

The set of genes of typeD (for example) isφ(D) = {1, 2, 4}, and thusvecD = 110100.
The genes of the ancestors of typeD are contained inφ(D), and every other type has at
least one gene not inφ(D).
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Bit-vector encoding effectively embeds the hierarchy in the lattice of subsets of the
set{1, . . . , β}. It is always possible to do so by settingβ = n and in lettingveca be
the row of the binary matrix which corresponds toa. A simple counting argument shows
that β must depend on the size of the hierarchy. Hence, bit-vector encoding is non-
constant time, but it is uniform. For efficiency reasons, the implicit loop in (3.11) can be
unrolled, giving rise to a non-constant instruction count.

The challenge is in finding the minimalβ for which such an embedding of the hierar-
chy in a lattice is possible. Although the problem is NP-hard [75], several good heuristics
were proposed, including Kaci et al. [84] work, Caseau’sCompact Hierarchical Encod-
ing [25], later improved by Habib et al. [74]. Currently,Near Optimal Hierarchical En-
coding (NHE), due to Krall et al. [90], is the best general bit vector encoding. Better
results can be obtained for the special case of single inheritance bydichotomic encod-
ing [115] and itspolychotomic encodinggeneralization [62].

Range compression

It is only natural to ask then whether it is possible to promiseconstant encoding length,
while maintaining uniformity and “almost constant” time. An affirmative answer to this
question was given by Agrawal et al. [1] in theirrange-compressionencoding which
generalizes relative numbering. Range compression encodes each typeb as an integeridb,
with its ordinal in a postorder scan of a certain spanning forest of the hierarchy. Then, the
setΦ(b) of id’s of the descendants ofb,

Φ(b) = {ida | a ∈ descendants(b)}, (3.12)

is represented by an array of consecutive disjoint intervals

[lb@ 1, rb@ 1], [lb@ 2, rb@ 2], . . . , [lb@ γ(b), rb@ γ(b)].

Thus,a¹ b iff

#lb@ i ≤ ida ≤ #rb@ i (3.13)

holds forsomei, 1 ≤ i ≤ γ(b). In single inheritance, all descendants of a type are as-
signed consecutive numbering in a postorder traversal, and therefore the set (3.12) can be
represented using a single interval. The encoding then degenerates to relative numbering.

Figure 3.6 gives a range-compression encoding of the hierarchy of Figure 3.1. We
have for example

Φ(B) = {1, 2, 3, 5, 6, 7, 8, 9},

which can be represented as two intervals[1, 3] and[5, 9]. Thus,lB = 〈1, 5〉, rB = 〈3, 9〉
andγ(B) = 2.

Examining (3.13) we see that onlyida has to be stored for a typea, since everything
else is specialized into the subtyping test site. The specialization reduces the encoding
length todlog ne, but at a price of increasing the instruction count from constant toγ(b),
which can be in the order ofn. In all of our hierarchies however, the average ofγ(b)
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Figure 3.6: Range-compression encoding of the hierarchy of Figure 3.1. (Edges of the
spanning forest are in bold.)

over allb ∈ T was always less than 2. The maximalγ(b) = 55 was found in the Geode
hierarchy.

The usual straightforward implementation of range compression requiresO(γ(b))
time. If γ(b) is large then a binary search on (3.13) reduces the time toO(log γ(b)).
Note that this faster implementation does nothing to improve the instruction count in the
specialized implementation which remainsΩ(γ(b)).

Other non-constant encoding techniques were used in large data- and knowledge-
bases, e.g., modulation techniques [58,84], sparse terms encoding [59], and representation
using union of interval orders [22]. The common objective is a small average, rather than
worst-case, time for testing, which may be considered unsuitable for an implementation
of the runtime environment of OO languages.

3.6 PQ-Encoding

This section describes PQ-encoding (PQE), our new encoding scheme, which achieves
the smallest space requirements among all previously published encodings. In a nut-shell,
PQE combines the ideas ofrelative numberingwith slicingas used in PE and BPE.

The essence of relative numbering is in the (global)consecutiveness property, i.e.,
the requirement that the descendants of any given type are numbered consecutively; this
property makes it possible to represent the entire set of descendants as a pair of two in-
tegers: the end points of the interval. In single inheritance, the consecutiveness property
is satisfied by the numbering of a simple postorder visit. For multiple inheritance hierar-
chies, it is only natural to try to generalize relative-numbering by replacing the postorder
visit by a DFS of the inheritance graph. Two issues must be addressed in order to make
such a generalization work.

1. The encoding must chose one DFS visit of the inheritance hierarchy from many
different such visits, which may lead toessentiallydifferent orderings of the nodes.
(Note that different DFS visits of a single inheritance hierarchy give rise to essen-
tially the same relative numbering encoding.)
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2. In general, it is not guaranteed that there exists any single numbering which satisfies
the consecutiveness property. Therefore, the generalization must handle hierarchies
in which the consecutiveness property cannot be satisfied.

As explained in the previous section, the range-compression technique of Agrawal et
al. [1] addresses these issues by applying a heuristic for choosing a DFS. Also, if this
heuristic fails, i.e., in case the set of descendants of a certain type does not fill up a single
range, then this set is represented as a collection of ranges.

PQE uses two techniques in the generalization of relative numbering:

1. Employing a sophisticated algorithmic tool, namelyPQ-trees, for efficiently con-
sidering together even an exponential number of orderings. In particular, if there
existsany orderingof the hierarchy which satisfies the global consecutiveness prop-
erty, then the PQ-trees technique is guaranteed to find one inO(|¹|) time.

2. Using the slicing technique to make sure that subtyping tests require constant time,
even if no ordering which satisfies the consecutiveness property exists.

We first (Section 3.6.1) explain data structure used by the encoding and the imple-
mentation of constant time subtyping tests. Section 3.6.2 explains the slicing technique
in greater detail. In Section 3.6.3 we describe the PQ-trees data structure. Section 3.6.4
shows how it is used to find a PQ-encoding.

3.6.1 Subtyping Tests in the PQ-Encoding

The set of types is partitioned into disjointslices, and each type has a distinctid with
respect toeachof the slices. Specifically, letk denote the number of slices. Then, for
each type three pieces of data are stored:

1. an integersa, 1 ≤ sa ≤ k, which is the number of the slice to whicha belongs,

2. a pseudo-arrayida of lengthk, such thatida@ i is theid of typea with respect to
slicei, 1 ≤ ida@ i ≤ n and

3. an interval[la, ra], represented as a pair of integers,1 ≤ la ≤ ra ≤ n, which are the
smallest and the largestid (with respect to slicesa) of the descendants ofa.

In totalk +3 integers are stored for each type. Our main effort, for which we will harness
PQ-trees, is to minimize the number of slicesk. Fine tuning of the representation as
discussed below in Section 3.7 may make the encoding length less than(k + 3)dlog ne.

The selection ofid’s and intervals is such that subtyping tests can be made using two
comparisons. Specifically,a¹ b iff

#lb ≤ ida@ sb ≤ #rb. (3.14)

Thus, subtyping tests begins with the pseudo-array accessida@ sb which finds theid of a
with respect to the slice ofb. Then we check if thisid is in the range[lb, rb] of descendants
of b.
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Sinceb is known at compile time, testing (3.14) requires exactly the same number of
RISC instructions as relative numbering (3.7). Note that the two comparisons in (3.14)
are between integers of fixed size, which needs not to be longer thanlog2 n bits. In each
of the hierarchies in our data set, 16 bits comparisons are sufficient, and it is extremely
unlikely that hierarchies will ever contain more than232 types. In contrast, subtyping
tests in a bit vector encoding scheme may be implemented in only one comparison of bit
vectors, but since the length of these vectors is not fixed (e.g., 95 bits for Geode in the
NHE scheme), this comparison must be repeated several times.

Also note that the test (3.14) is similar to array bounds checking. Therefore, it may be
possible to optimize the implementation on an architecture with dedicated instructions for
this kind of check. Such architectures include the Intel 80186+ series (bound mnemonic)
and the Motorola 680x0 series as well as Motorola 68300 (chk2 mnemonic).

Palacz and Vitek [110] explain that for reasonably sized hierarchies, including all
hierarchies in standard benchmarks, it is possible to implement the check (3.14) using a
single jump instruction instead of two. We now give a slightly improved version of the
technique they describe. Consider the predicate

(x1 > y1) ∧ (x2 > y2) (3.15)

wherexi and yi, i = 1, 2 are 15-bit integers. Then we packx1 andx2 (respectively,
y1 andy2) together in a single 32-bit integerx (respectively,y). Let x = 216x1 + x2,
andy = 216y1 + y2 + M , whereM = 232 + 216. Then, the expression

(y − x) and M (3.16)

is zero if and only if (3.15) holds. Checking whether (3.16) is zero requires a subtraction,
a bit mask operation and a jump.

3.6.2 Slicing

The essence of slicing is that when the global consecutiveness property cannot be satisfied,
we maintain a weaker, local property. More specifically, given a sliceS ⊆ T , let ϕ(S) ⊆
℘(T ) be the set of sets of descendants of types in this slice, i.e.,

ϕ(S) = {descendants(t) | t ∈ S}.

Definition 3.1 A sliceS satisfies thelocal consecutiveness propertyif there is an ordering
of T in which all members ofϕ(S) are consecutive.

A partitioning ofT into slices which satisfies the local consecutiveness property always
exists, since this property trivially hold for singletons. The local consecutiveness property
makes it possible to represent the set of all descendants of any type using merely two
integers, and implement every type check as interval inclusion test, as done in (3.14).

Figure 3.7 describes a PQE representation of the running example. The global con-
secutiveness property holds in this case— only one slice is used—and each type has a sin-
gle id. To check whetherG is a descendant ofA, we only need to check whetheridG = 4
falls in the range[lA, rA] = [1, 6].
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Figure 3.7: PQ-encoding of the hierarchy of Figure 3.1

The numbering of Figure 3.7 was found using a PQ-tree, a data structure that main-
tains a set oforderings(permutations) of someuniverse. Initially, the PQ-tree represents
the set of all9! orderings of typesA, . . . , I. The tree is updated progressively, narrowing
down this set, to reflect the constraints that the descendants of all types are consecutive.
For each of the types, we try to update the PQ-tree so that it represents only the orderings
in which the descendants of this type are consecutive.

In the running example, this update process never fails; we therefore ended in a PQ-
tree representation of all orderings which satisfy the global consecutiveness property. The
ordering depicted in Figure 3.7 was obtained by picking one of these orderings.

If an ordering which satisfies the global consecutiveness property exists, then our
algorithm is guaranteed to find it. In the general case, we use a greedy heuristic for
minimizing the total number of slices, and hence the encoding length: “try to make the
current slice as large as possible without violating the local consecutiveness property”.

Figure 3.8 shows our running example hierarchy augmented with a new typeN, added
as an additional ancestor ofE.
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Figure 3.8: A two slices PQ-encoding of the hierarchy of Figure 3.1 augmented with a
new typeN

There is no ordering of the types in this hierarchy which satisfies the global consecu-
tiveness property. Therefore, PQ-encoding is inclined to use two slices:

S1 = {A, B, C, D, E, F, G, H, I},
S2 = {N}. (3.17)
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We see that the greedy heuristic assigns all types butN to the first slice. In Figure 3.8 the
slice of each type is written to its left.

Comparing Figure 3.8 with Figure 3.7 we also see that each type has now twoid’s
instead of one. To check whetherG is a descendant ofN, we first surmise that the slice
of N is 2. We therefore use thesecondid of G, idG@ 2 = 6 and check whether it falls in
the range[lN, rN] = [7, 10].

3.6.3 PQ-Trees

PQ-trees were invented by Booth and Leuker [17]6 who used them to test for theconsec-
utive 1’s property in binary matrices of sizer × s, in O(k + r + s) time, wherek is the
number of 1’s in the matrix. Booth and Leuker’s result gave rise to the first linear-time
algorithm for recognizing interval graphs. Later, PQ-trees were used for other graph-
theoretical problems, such as on-line planarity testing [12, 13] and maximum planar em-
beddings [14,82,83].

Definition 3.2 A PQ-tree over a universeT is either a special⊥ symbol, or an ordered
tree data-structure with a leaf for every member ofT , and such that each internal node is
labelled as either aQ-nodeor a P-node.

A PQ-tree represents a set of orderings ofT . The⊥ symbol represents an empty set
of orderings. Otherwise, each Q-node in the data-structure represents the requirement that
all children of the node must occur in the order they occur in the tree or in reverse order.
A P-node represents the requirement that these children must occur together, but in no
specific order.

The universal PQ-tree, denotedP> represents the set of all orderings; it has a P-
node as a root and a leaf for every member ofT . A more interesting example is given
by Figure 3.9 which depicts a PQ-tree over the universeT = {A, B, C, D, E}. This tree
represents the requirement thatA, B, andC must occur together, either in this order or in
the reverse order〈C, B, A〉.

Q


B


D
 E


P


C
A


Figure 3.9: A PQ-tree over the universeT = {A, B, C, D, E}, with a single P-node (de-
picted as a circle), a Q-node (depicted as a rectangle) and five leaves (depicted as oc-
tagons)

Let consistent(P) denote the subset of orderings of the universeT which is repre-
sented by a PQ-treeP. The specific ordering ofT obtained by a DFS traversal ofP,P 6=
⊥, is denotedfrontier(P).

6In fact, Lempel et al. [92] were the first to coin the termPQ-expressions. PQ-trees are nothing more
than an efficient representation of PQ-expressions.
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In Figure 3.9 we have

frontier(P) =〈A, B, C, D, E〉, (3.18)

and

consistent(P) ={〈A, B, C, D, E〉, 〈C, B, A, D, E〉, 〈A, B, C, E, D〉, 〈C, B, A, E, D〉,
〈E, A, B, C, D〉, 〈E, C, B, A, D〉, 〈D, A, B, C, E〉, 〈D, C, B, A, E〉,
〈D, E, A, B, C〉, 〈D, E, C, B, A〉, 〈E, D, A, B, C〉, 〈E, D, C, B, A〉}.

(3.19)

There are two transformations of a PQ-treeP which preserveconsistent(P): swap-
ping any two children of a P-node, and reversing the order of the children of a Q-node.
PQ-treesP1 andP2 are equivalent (P1 ≡ P2) if P2 can be reached fromP1 by a series of
these transformations. Thus,consistent(P) can be more formally defined as

consistent(P) = {frontier(P ′) | P ′ ≡ P} , (3.20)

andconsistent(⊥) = ∅.
A constraint(on orderings) is the requirement that certain elements of the universe

occur together. A constraint is represented simply as a subset of the elements of the
universe. (In our application, each constraint will be the set of descendants of a given
type.) We denote the set of all orderings that satisfy constraintI asΠ(I).

Consider the special casesI = ∅, |I| = 1, or I = T . Then, it is easy to see that all
orderings satisfyI. Thus, in all these cases,

Π(I) = consistent(P>).

More generally,

Fact 3.3 For every constraintI there exists a PQ-treeP, P 6= ⊥, such that

Π(I) = consistent(P).

PROOF. The root ofP is a P-node whose children are the leavesT \I and another
P-node whose children are the leavesI.

Let I ⊆ ℘(T ) be a collection of constraints. Then,Π(I) is the set (which may be
empty) of orderings that satisfyall constraints inI, i.e.,

Π(I) =
⋂
I∈I

Π(I).

(In our application, each sliceS generates a collection of constraintsϕ(S).)

For example, the requirement that typesA andB are consecutive, and that typesB
andC are consecutive, is represented by

I =
{ {A, B} , {B, C}}

.

It is easy to check thatΠ(I) is the set (3.19) of orderings consistent with the PQ-tree
of Figure 3.9. Another example is the empty set of constraints which is satisfied by all
orderings, i.e.,Π(∅) = consistent(P>). More generally,
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Theorem 3.4 (BOOTH-LEUKER (1976)) Suppose that|T | > 2. Then, for every col-
lection of constraintsI there exists a PQ-treeP, and for every PQ-treeP there exists a
collection of constraintsI such thatΠ(I) = consistent(P).

Algorithm 3.1 Compute the PQ-tree of all orderings which satisfy a set of constraintsI

Given a universeT , and a set of constraintsI ⊆ ℘(T ), return a PQ-tree of all orderings
of T which satisfyI.

ProceduregenTree(I)
P ← P> // P> is the universal PQ-tree.
For all I ∈ I do
P ← reduce(P , I)

od
return P

Constructively, the treeP is generated fromI using the iterative process described
in Algorithm 3.1. The heart of the algorithm is the procedurereduce which “adds” a
constraint to a PQ-tree in a time proportional to the size of the constraint. We here use
Booth and Leuker [17] clever implementation ofreduce as a black box.7 Formally,

Theorem 3.5 (BOOTH-LEUKER (1976)) Given a PQ-treeP and a constraintI, the
call reduce(P , I) runs inO(|I|) time, while the value it returns satisfies

consistent(reduce(P , I)) = consistent(P)
⋂

Π(I).

Note that the setconsistent(P)
⋂

Π(I) may be empty, in which casereduce returns⊥.

3.6.4 Finding a PQ-encoding

There are hierarchies for which Algorithm 3.1 can be used to find a PQ-encoding. A
case in point is our running example (see Figure 3.7): Each of the nine types in this
example imposes a constraint on the permissible orderings. Singleton constraints are not
interesting since they are satisfied by any ordering. The remaining constraints are

IC = {C, F, G},
ID = {G, D, H},
IE = {H, E, I},
IA = {C, F, G, D, H, A},
IB = {C, F, G, D, H, E, I, B}.

(3.21)

The constraintIC is that the descendants of typeC must occur consecutively, etc. The
call genTree({IC, ID, IE, IA, IB}) returns the PQ-tree of Figure 3.10. (Section 3.10 shows
and explains the intermediate trees generated in the computation process.)

7The curious reader may care to know thatreduce conducts a bottom-up traversal of the input tree,
applying one of eleven PQ-tree transformations at each step.
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Figure 3.10: The PQ-tree returned from the callgenTree on the constraints (3.21)

The PQ-tree of the figure has one Q-node and two P-nodes with two children each.
Therefore, this tree represents 8 different orderings, each satisfying the global consecu-
tiveness property. The encoding of Figure 3.7 uses the ordering represented by the tree’s
frontier 〈A, C, F, G, D, H, E, I, B〉.

In the general case, a PQ-encoding may require more than one slice. In such cases,
the application ofgenTree to the set of all constraintsϕ(T ) returns⊥. (An example can
be found in Section 3.10.)

Algorithm 3.2 generates a PQ-encoding foranygiven hierarchy(T ,¹).

The main data structure used by the algorithm is the setS, which is an internal rep-
resentation of the set of slices. Eachµ ∈ S is a record〈P , id〉, whereµ.P is the PQ-tree
of the slice, andµ. id is the id of the slice. The setS is discarded after the algorithm
computes the encoding.

After a simple initialization (line 1), the algorithm comprises of three stages. The first
outer loop (lines 2–15) finds the slices. In this loop we try to find an existing slice for
each type, by trying to incorporate (line 4) the constraints that its descendants must lie
consecutively, into each of the PQ-trees of the existing slices. If this should fail then we
create a new slice (lines 11–14).

The second stage is the loop of lines 16–22, which assigns a uniqueid to each type
with respect to each slice. The last stage (lines 23–26) is to find the interval of theid’s
of the descendants of each typea ∈ T , i.e., theid’s, with respect to the slice ofa, of the
right-most and left-most type among the descendants ofa.

Lemma 3.6 Algorithm 3.2 runs inO (|S| · |¹|) time.

PROOF. The first stage is the slowest. At this stagereduce is invoked at most|S| times
for each of the types in the input. Using Theorem 3.5 the total time of all such invocations
is

O
(
|S| ·

∑
a∈T

|descendants(a)|
)

= O
(
|S| · |¹|

)
.

The second stage runs in time

O
(
|S| · |T |

)
⊆ O

(
|S| · |¹|

)
,

while the third stage time complexity is

O
( ∑

a∈T
|descendants(a)|

)
= O

(
|¹|

)
⊆ O

(
|S| · |¹|

)
.
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Algorithm 3.2 Compute the PQ-encoding of a hierarchy(T ,¹)

1: S ← ∅ // S is a set of the slices created so far. Each sliceµ ∈ S is represented as a
// record〈P , id〉, whereµ.P is the PQ-tree of the slice, andµ. id is theid of the slice.

2: For all a ∈ T do // Find a PQ-tree consistent with typea.
3: For all µ ∈ S do // Try to find a sliceµ into whicha could be inserted
4: P ′ ← reduce(µ.P , descendants(a))
5: If P ′ 6= ⊥ then // Typea can be inserted into sliceµ
6: µ.P ← P ′ // In the updated PQ-treedescendants(a) are consecutive
7: sa ← µ. id // Typea belongs to sliceµ
8: next a // Finished handling typea
9: fi

10: od
// Typea could not be inserted into any of the existing slices

11: µ ← new Slice //Generate a new sliceµ
12: µ.P ← reduce(P>, descendants(a)) // By Fact 3.3µ.P 6= ⊥.
13: µ. id ← |S|+ 1 // Sliceid’s are allocated in order1, 2, . . .
14: S ← S ∪ {µ}
15: od
16: For all µ ∈ S do // Assign uniqueid’s to types
17: id ← 1 // The first unusedid in the sliceµ.
18: For all a ∈ frontier(µ.P) do // Assignid’s to all types with respect to sliceµ
19: ida@ (µ. id) ← id
20: id ← id +1
21: od
22: od
23: For all a ∈ T do // Assign an interval to each typea
24: D ← {idb@ sa | b ∈ descendants(a)};
25: [la, ra] ← [min(D), max(D)]
26: od

We do not know of any efficient algorithm for finding the optimal PQ-encoding, i.e.,
the encoding which achieves the minimal number of slices. This is the reason why Algo-
rithm 3.2 is non-deterministic in the following sense: The order at which types are inserted
into PQ-trees (line 2) is unspecified. After having tried several traversal orders, including
a random one, we concluded that the differences in the encoding length is small. Our em-
pirical findings indicate that the best results are obtained by a reverse topological-order in
which the leaves with the largest number of ancestors are visited first.

Similarly, the order at which we try to find the slices (line 3) is not specified by the
algorithm. We found empirically that the best encoding is obtained by trying the slices
in the order of decreasing size, i.e., trying the largest slice first, and the smallest one last.
A heuristic which gives almost identical results is to try the slices at the order of their
creation, with the oldest slice first.
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3.7 Optimizations

In this section we describe how Algorithm 3.2 can be further optimized. We have five dif-
ferent, non-language specific, optimization techniques targeted at improving the various
complexity measures.

1. ID Range Compaction(Section 3.7.1) reduces the space complexity measure, specif-
ically by decreasing the memory footprint of the pseudo-arraysida. With this opti-
mization, borrowed from ideas originated by Vitek et al. [133], it is possible to use
byte-sized entries for all but the first entry of these arrays.

2. Pruning Bottom Trees(Section 3.7.2) targets the encoding creation time measure.
We show that the heavy-weight PQ-trees algorithm needs to be run only on the
smaller core portion of the input hierarchy.

3. Reordering Type Records(Section 3.7.3) is a novel technique which simultaneously
improves three complexity measures: space, instruction count and test time. In this
optimization, the type records of the runtime environment are pre-sorted in linear
time by the first entry of theid pseudo-array. This makes it possible to eliminate
this first entry which is (in a sense) encoded by the pointer stored in each object
to its type record. A comparison ofid’s stored in the first entry is replaced by a
comparison of these pointers. (The main cost is in the requirement that type records
occur in a fixed order, which may be a burden to other parts of the computing
environment.)

4. Heterogeneous Encoding(Section 3.7.4) also reduces space complexity, by switch-
ing to binary matrix encoding in slices which contain no more than 8 types. This
optimization which is similar to the one suggested by Vitek et al. [133] may in-
crease the instruction count and the test time complexity measures in subtyping
tests involving these slices.

5. Coalescing ID-Arrays(Section 3.7.5) is another novel technique which targets the
space complexity while increasing the instruction count and the test time. The idea
here is that if suffixes of theid pseudo-arrays are identical, they can be shared at
the cost of an extra indirection.

3.7.1 ID-Range Compaction

ID-range compaction reduces the encoding length as generated by Algorithm 3.2. LetD
be the set of descendants of a sliceS:

D =
⋃
a∈S

descendants(a).

Clearly, |S| ≤ |D|. However, it is often the case, especially with the smaller slices,
that |S| ¿ |D|, and that|D| is close ton. ID-range compaction relies on the observation
that in these casesid’s can be reused while numbering the types inD. This reuse makes
it possible to use fewer bits for the representation of eachid.
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The critical point to note is that two typesb1, b2 ∈ D need to be assigned distinct
identifiers only if there is a typea ∈ S, such thatb1 ∈ descendants(a), while b2 6∈
descendants(a). Phrased differently,S partitionsT into equivalence classes, such that
typesb1 andb2 are in the same equivalence class iff

ancestors(b1) ∩ S = ancestors(b2) ∩ S. (3.22)

These equivalence classes are called theS-partitioningof T .

The number of differentid’s needed to encode a sliceS is exactly the number of
equivalence classes in theS-partitioning ofT . We argue that this number is less than
twice the slice size, specifically that there are at most

min(2|S|, |T |)

equivalence classes in theS-partitioning ofT . The reason is that the local consecutiveness
property ensures that for everya ∈ S there is an intervalIa which consists theid’s of
descendants ofa. These|S| intervals partition the types inD into at most2|S| − 1
segments, such that all types in the same segment can receive the sameid. The setE0 ≡
T \D defines an additional equivalence class, which is not contained in any interval.

Consider, for example, Figure 3.11, in which the types inD were initially num-
bered3, . . . , 15.
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Figure 3.11: Reducing the range needed for PQE

IntervalsI1, I2 andI3 drawn in the figure partitionD into 5 = 2 · 3 − 1 segments.
This is the maximal possible number of segments, since every type inD must belong to
at least one interval. The equivalence classes in this example areE0 = {1, 2, 16}, E1 =
G1, E2 = G2, E3 = G3 ∪G5, andE4 = G4.

In all hierarchies in the data set, we found that all slices, except the first, were of
size 128 or less. Thus the integral range required for numbering is at most 256 andida can
be represented as a byte array, with each slice adding a single byte to the encoding length.
The first slice receives some special handling as will be described below in Section 3.7.3.

It is possible to modify Algorithm 3.2 to ensure that all but one (the first) slice has
their range bounded by 256. Specifically, line 5, must not only checkP ′, the PQ-tree
returned by thereduce routine, but also make sure that the range required for numbering
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does not exceed 256.8 Storing the current required numbering range of a PQ-tree, and
updating it with eachreduce is straightforward. One can also manage the equivalence
classes of all slices incrementally inO(|¹|) total time.

3.7.2 Pruning Bottom Trees

Recall that in Section 3.4 we defined the core of a multiple inheritance hierarchyT ′ ⊆ T ,
such thatt ∈ T ′ if t has a descendant with more than one parent. The setT \ T ′ is a
collection of bottom-trees discovered in a bottom-up traversal of the hierarchy. Intuitively,
the core is where the intricacies of multiple inheritance occur. The bottom-trees are a
forest of single inheritance hierarchies, hanging at the bottom of the core.

By pruning in a preprocessing stage all bottom-trees, we reduce the run time of Algo-
rithm 3.2. A lighter machinery is then used to produce the encoding of the bottom-trees.
Let S1, . . . , Sk be the slices ofT ′ found in the PQ-encoding of the pruned hierarchy,
andπ′1, . . . , π

′
k be the orderings ofT ′ with respect to each slice. Thus,π′i, i = 1, . . . , k is

the ordering defined by theid’s of all types with respect to sliceSi. Formally,π′i satisfies
the constraintsϕ(Si).

Next we describe how to extendπ′i of T ′ into an orderingπi of T in such a way that
it will satisfy the constraintsϕ(Si ∪ (T \ T ′)). Consider an arbitrary bottom-tree whose
root is t. Sincet is not in the core, it has a single parentt′, i.e., parents(t) = {t′}.
Type t′ must be in the core, otherwiset would not be the root of the bottom tree. (Note
that t′ might have several other children which are roots of other bottom trees.) When
extending the orderingπ′i of T ′, we insert the relative numbering ordering of this bottom-
tree immediately after (or before)π′i(t

′).

Figure 3.12 gives an example of the insertion of relative-numbering orderings into the
ordering of the core. Figure 3.12a shows the core of the hierarchy of the running example,
whereas the bottom-trees are highlighted in bold in Figure 3.12b.

Figure 3.12a shows an orderingπ′ of the coreT ′ which satisfies the constraintsϕ(T ′),

π′ = 〈A, C, G, D, H, E, B〉.

Figure 3.12b shows the extended orderingπ of T which satisfy the constraintsϕ(T ):

π = 〈A, N1, C, N2, N5, N6, N3, G, D, H, N7, E, N4, B〉.

Note that the resulting orderingπi of T satisfies the old constraints inϕ(Si) (since
descendants in a bottom-tree are adjacent to their parent in the core) and the new constraint
in ϕ(T \ T ′) (since relative-numbering ordering satisfies these constraints).

In order to complete the process of incorporating the bottom-trees into a PQ-encoding
of the core, we must also assign each of the types in the bottom-trees into a slice. The fact
that we inserted the relative numbering ordering of each bottom-tree makes it possible to
chose any slice we want for each type in a bottom-tree. We chose to use the first slice for
all these types since ID-range compaction works best when the first slice is much larger

8Note that this does not necessarily happen when the slice size hits 128.
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Figure 3.12: PQE of the core of the running example (a) and PQE after inserting some
bottom-trees (b)

than the others. Another motivation for this choice is the “reordering of type records”
optimization which, as we shall see below, makes it possible to eliminate all bits used for
the first slice.

3.7.3 Reordering Type Records

Consider again the subtyping testa¹ b. So far it was assumed that the typea is givenat
run time. In reality, however, an objecto is given and the runtime system must first infer
its typea. Typically o stores a pointerpa to its type record, a memory block with run time
representation ofa. The various encoding schemes store their auxiliary information in
this area. Many object-oriented language implementations mandate other uses to the type
records, including dispatching, downcasting, serialization, and garbage collection.

The reordering type recordsoptimization technique makes use of the degree of free-
dom the compiler has in placing type records in memory.9 The simplest application of
this technique is to relative numbering (Section 3.5): Type records are placed in memory
in the same order as postorder traversal of the type hierarchy. In doing so, the pointerpa

plays the role as the ordinal in the postorderra. As a result, the encoding length is reduced

9We make the natural assumption that the location of the encoding tables is in a protected location of
memory which is not subject to garbage collection. The reason is that these tables are generated as part of
the compilation process and are not changed at runtime.
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to zero and one load instruction in the subtyping test is saved.

Similarly, in range-compression (3.13),pa replaces the globalida. If specialization is
used then we obtain an encoding scheme with zero encoding length, but non-constant test
time and instruction count.

We do not know whether the technique is applicable to either bit-vector encodings or
to Cohen’s algorithm and its generalizations, PE and BPE. However, in PQE, the ability to
reorder type records makes it possible to eliminate entirely theid’s of types with respect
to the first slice. Specifically,ida@ 1 of a typea is encoded in the pointerpa. The saving
is significant since the first slice occupies the largest number of bits. This technique also
saves one load instruction when typeb belongs in the first slice. Since the first slice
constitutes around 90% of the types, we expect this saving to lead to a noticeable saving
in the average test time.

We finally note that this technique is applicable even with the unique C++ object
layout. In this layout [68] an object may contain several pointers to severaldistinct type
records (VTBLs in the C++ jargon).

The reason that we can encode integers in pointers even though there is no unique
valuepa for a typea is that the subtype tests of relative numbering (3.7), range com-
pression (3.13), and PQE (3.14), all check forinequalityrather than equality. We simply
allocate a range of memory addresses to all type records of a given type, rather than a
single address, as the valuera (as in (3.7)) or theid (as in (3.13) and (3.14)).

3.7.4 Heterogeneous Encoding

Heterogeneous encoding is yet another optimization targeted at reducing the encoding
length. Recall that in the binary matrix each type adds exactly one bit to the encoding
of all other types. The PQ-encoding of a small slice withk < 8 types adds a byte to the
arrayida of each other typea, which is less efficient than using the binary matrix for types
in this slice. In heterogeneous encoding, subtyping testsa¹ b, whereb belongs in such a
small slice, are implemented using the binary matrix. Sinceb is known at compile time,
the compiler can choose the appropriate code to plant at the subtyping test. We found that
heterogeneous encoding may give rise to significant improvement to the encoding length.
On the other hand, the total number of types in small slices is negligible, and therefore
we do not expect a noticeable impact on the instruction count and test time.

3.7.5 Coalescing ID-Arrays

We now turn to describingCoalesced PQ-Encoding(CPQE). This memory optimization
is based on the observation that the contents of the pseudo-arraysida tend to be similar.
We rely on the fact that the first entry of these arrays is represented implicitly. Letid′a de-
note the array obtained fromida by truncating its first entry. Then, many of the arraysid′a
are identical, and need to be stored only once.

More specifically, we claim that the number of distinct arraysid′ is exactly the number
of equivalence classes inG-partitioning ofT , whereG = T \S1. In other words, two
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typesa, b are in the same equivalence class iffid′a = id′b. Formally,

Lemma 3.7 Leta, b be two types, andG = T \S1. Then

ancestors(a) ∩G = ancestors(b) ∩G ⇔ ida@ i = idb@ i for 2 ≤ i ≤ k.

PROOF. We previously showed (3.22) that two types can have the same identifiers if
and only if they are in the same equivalence class, i.e.,

ida@ i = idb@ i ⇔ ancestors(a) ∩ Si = ancestors(b) ∩ Si.

SinceS2 . . . Sk partitionG we have that

ancestors(a) ∩G = ancestors(b) ∩G ⇔
ancestors(a) ∩ Si = ancestors(b) ∩ Si for 2 ≤ i ≤ k ⇔

ida@ i = idb@ i for 2 ≤ i ≤ k.

(3.23)

Furthermore, the number of distinct arraysid′ is always smaller or equal to the size of
the core. (The core is the set of types not belonging to a bottom tree; See Section 3.4.)
Recall that the bottom trees were added to the first slice after they were pruned (see
Section 3.7.2). Since each type in a bottom tree has the same ancestors set as the root of
that tree, they are in the same equivalence class, and therefore can be coalesced together.

CPQE uses a bucket sort to find the distinct values of arraysid′ in linear time, and
then represents each typea as a pointerp′a to one of these distinct values. The cost of the
coalesced representation is in another level of indirection for subtyping tests involving the
second or higher slice.

The pointerp′a is not stored as an absolute memory address but rather as an index of
an arrayZ, whose entries are the distinctid′ arrays. Also the degree of freedom in placing
entries inZ, is employed to encodeida@ 2 (id’s of the second slice) inp′a in the same
fashion thatida@ 1 was encoded aspa.

In the testa¹ b, if it is found thatb belongs in sliceS2, then instead of usingida@ 2 in
the test (3.14), the compiler emits code for comparingp′a with the valueslb andrb, which
are, as usual, specialized into the test code. The entries in arrayZ are then the arraysid′′

produced by truncating the first two entries of the arraysid.

A strong incentive to use CPQE is raised by languages such as C++, in which ob-
jects may containmultiplepointers to severaldistinct type records [68]. Since these type
records are similar, but not identical, the implementer must choose between (i)replicating
the subtyping encoding data in each such record, or (ii)sharingat the cost of another level
of indirection during subtyping tests. Coalescing optimization may tip the scale towards
the sharing alternative.

3.8 Results

Having described different optimization techniques we would like to appreciate the trade-
offs offered by these. To do so, we define (Section 3.8.1) variants of the main encoding
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scheme. We then show (Section 3.8.2) how the encoding length of these variants depends
on the output of our main algorithm (Algorithm 3.2), and in particular the number of slices
and the distribution of their size. Section 3.8.3 compares the encoding length achieved
by the different variants with the achievements of previous work. Section 3.8.4 gives the
results of our timing of the algorithm for computing the encoding length.

3.8.1 Variants of the PQ-Encoding Scheme

There are many variants of PQ-encoding, depending on which of the optimizations de-
scribed in the previous section are applied. The first two optimizations: ID range com-
paction and bottom tree elimination, which do not add to the main complexity measures
are in fact incorporated to the main algorithm. We next define three encoding variants
which successively apply the three other optimizations:

1. Regular PQ-encoding, or RPQE for short is the variant in which reordering the type
records is used to eliminate the representation of the first slice from theid arrays.

2. The principal acronym PQE is reserved to the variant which also applies the het-
erogenous encoding optimization. As explained above, the cost is in longer subtyp-
ing tests in the rare cases involving the smaller slices.

Thus, in PQE, there are three kinds of slices: The first slice, whose representation
is eliminated thanks to reordering of type-records. Heterogeneous encoding based
on the binary matrix representation is used for slices whose size is smaller than 8.
Each of the remaining slices occupies a single byte in the arrayid, which is used in
the basic subtyping tests of PQE (3.14).

3. CPQE is the encoding variant obtained from PQE by applying in addition the re-
maining fifth optimization: coalescing of ID-arrays, which adds to the cost of sub-
typing tests involving the third or higher slice.

3.8.2 Output of the PQ-Algorithm

Algorithm 3.2, the main algorithm behind the PQ-encoding, returns a partitioning of the
hierarchy into slices. It was mentioned before that the size of slices vary widely. Using
the hierarchies in our data set we now turn to studying this variety in detail.

Table 3.2 displays some of the essential parameters of the slice size distribution. These
parameters will become useful in appreciating the algorithm performance and the trade-
offs offered by the different optimizations. We can also use these to calculate the encoding
length of the three encoding schemes described above.

Even though we do not have a non-trivial upper bound on the number of slices, the
second column of the table shows that in actual hierarchies,k, the number of slices, is
often small, and it does not increase as quickly asn. Thus, we have reasons to believe
that O(kn), the asymptotic space complexity of algorithm Algorithm 3.2, is closer to
linear than quadratic. Similar conclusions can be drawn onO(k|¹|), the time complexity
of the algorithm.
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Hierarchy ka n1/nb k2
c n2

d n2/n me

IDL 1 100.0% 0 0 0.0% 0
JDK 1.1 2 99.6% 1 1 0.4% 1
Laure 2 98.0% 1 6 2.0% 7
Ed 10 87.8% 7 20 4.6% 145
LOV 12 86.2% 9 26 6.0% 164
Unidraw 2 99.7% 1 2 0.3% 2
Cecil 5 94.1% 2 6 0.6% 101
Geode 16 86.0% 8 24 1.8% 419
JDK 1.18 6 97.5% 3 9 0.5% 74
Self 13 97.2% 11 31 1.7% 63
Eiffel4 11 89.1% 3 9 0.5% 376
JDK 1.22 8 97.6% 4 12 0.3% 235
JDK 1.30 8 97.7% 4 17 0.3% 286

anumber of slices
bfraction of types in the first slice
cnumber of small slices
dtotal number of types in small slices
enumber of distinctid′ arrays

Table 3.2: Some characteristics of the slice partitioning of the PQ algorithm

Integerk is also useful in computing the encoding length of RPQE. Recall that with
the exception of the first slice, theid’s with respect to each slice can be represented in
a single byte. Therefore, the encoding length of RPQE is8(k − 1). (Also, consider a
variant of RPQE in which type records are not reordered. Then, the encoding length in
this variant is16 + 8(k − 1) = 8(k + 1).)

The next column in the table gives the ration1/n, wheren1 is the number of types in
the first slice (which is also the largest slice). We see that in all hierarchies over85% of
the types fall in this slice. In fact, in more than half the hierarchies, this slice occupies at
least97.5% of all types. Thus, we expect that an overwhelming portion of the actual sub-
typing tests will use this slice. The test time of these will greatly benefit from reordering
of type records.

Small slices, i.e., slices with no more than 8 types, receive special handling by PQE.
The heterogeneous encoding optimization specifies that types in these slices use a binary
matrix representation. The subtyping test then involves bit operations, and is not as simple
as the range testing used for the other slices.

The fourth column of Table 3.2 showsk2, the number of small slices. We see that
most of the slices generated by the PQ-algorithm are small. However, examining the next
column (the total number of types in the small slicesn2, k2 ≤ n2 ≤ 8k2), we see thatn2

is small. The penultimate column of the table shows that the fraction of types in small
slices is tiny, typically less than1%. We are lead to hope that the frequency of the more
complex tests will be equally negligible.

Interestingly, the values shown in Table 3.2 can be used to compute the encoding
length of PQE. Since all slices except the first and small slices occupy a single byte inid-
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array, we have that this length is

8(k − k2 − 1) + n2.

To compute the encoding length of CPQE we need the final column of the table which
showsm, the number of distinctid′ arrays. We see that this number is much smaller than
the number of types. In fact,m ≤ 256 in all hierarchies except for Eiffel4, Geode, and
JDK 1.30. The pointerp′a can thus often be represented as a single byte. More generally,
the precise encoding length of CPQE is

8

⌈
log m

8

⌉
+

(8(k − k2 − 2) + n2)×m

n
.

3.8.3 Encoding Length in the Data Set

Table 3.3 compares the encoding length in bits of the three encoding variants with that of
other encoding schemes.

Hierarchy CPQE PQE RPQE NHE BPE PE DAGa Closureb Binary matrix
IDL 8 0 0 17 32 96 7 27 66
JDK 1.1 8 1 8 19 32 64 9 26 225
Laure 8 6 8 23 63 128 10 74 295
Ed 17 36 72 54 94 216 15 72 434
LOV 21 42 88 57 94 216 16 77 436
Unidraw 8 2 8 30 63 96 8 31 613
Cecil 10 22 32 58 94 192 13 65 932
Geode 39 80 120 95 157 408 21 154 1,318
JDK 1.18 9 25 40 39 94 128 13 48 1,704
Self 9 39 96 53 126 344 12 329 1,801
Eiffel4 27 65 80 72 157 312 15 97 1,999
JDK 1.22 10 36 56 62 157 184 16 57 4,339
JDK 1.30 18 41 56 65 188 216 16 57 5,438

aComputed idealistically as(|≺d| · dlog ne)/n.
bComputed idealistically as(|¹| · dlog ne)/n

Table 3.3: The encoding length of different algorithms

The most important conclusion to draw from the table is that in all hierarchies in the
data set, the encoding length achieved by PQE is better than that of all other encoding
schemes. The only exception to these is an idealistic DAG representation, in which, as
mentioned above, test time can beO(n).

We stress again that the memory requirements of PQE is zero for all single inheritance
hierarchies. As can be seen in the table, zero memory footprint occurs even in IDL, which
is multiple inheritance. The median improvement over the next best algorithm, NHE, is
by 37%, while the average improvement is 50%.

PQE remains the shortest encoding even if it is not optimized by reordering type
records (in which case the encoding length increases by 16): Without this optimization,
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PQE is better than NHE in 9 out of the 13 hierarchies. In one hierarchy (LOV), the
encoding length of NHE is 1 bit shorter than PQE, in two hierarchy (Self and JDK 1.18)
it is 2 bits shorter, and in one hierarchy (Eiffel4) it is 9 bits shorter.

In comparing PQE with NHE we must also recall that the test time in the bit vector
based NHE is non-constant. Thus, even if the two schemes use the same number of bits,
subtyping tests in PQE are likely to be more efficient since they do not need to access all
bits in the representation of the compared types.

The space reduction of PQE over BPE, the best previousconstant time encoding, is
even more impressive: In the Eiffel4 hierarchy BPE total space requirement is 39KB,
compared with 16KB in PQE. These differences are significant since subtyping tests are
very frequent. Vitek [110] benchmarks give 320,000 tests in a second. Smaller encoding
makes it possible to fit the entire representation in the cache.

Examining the second and third columns of Table 3.3 we see that coalescing ofid
records, employed by CPQE, shortens the encoding length of PQE, by factors ranging
between 2 and 4.3. In fact, CPQE competes favorably even with the idealized DAG
encoding!

Hierarchies IDL, Laure, Unidraw and JDK 1.1 are anomalous in the sense CPQE gives
a longer encoding than PQE. This phenomenon is explained by the fact that the two-level
structure employed by CPQE requires at least 8 bits forp′a.

We finally note that even RPQE competes favorably with NHE, winning in 7 out of
the 13 hierarchies in the data set.

3.8.4 Encoding Creation Time

Table 3.4 compares the encoding creation time of PQE with that of NHE and PE. The
creation time of RQPE and CPQE is the same as PQE, and the creation time of BPE is
the same as PE.

The comparison is not easy, since the algorithms were run on different machines.
Algorithm 3.2 was written in C++ based on the PQ-tree implementation of Leipert [91].
More experimentation is required before a faithful and fair comparison is possible. It
appears as if PQE, which is based on a linear algorithm, outperforms the quadratic NHE
algorithm. PE, which use a fast implementation of set unions and intersections using bit-
vector operations, seems to be the fastest. The Geode hierarchy is toughest for PQE and
NHE. In this hierarchy, the average time for processing a type is less than one millisecond
in PQE. In all benchmarks the time for computing PQE is less than a second.

3.9 Conclusions and Future Research

The PQE algorithm improves the encoding length, creation time, test time and instruction
count of NHE, the most space-efficient previously published encoding algorithm. The
CPQE variant reduces the encoding length even further at the cost of an extra indirection
in some, typically infrequent, subtyping tests.
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Hierarchy (R| C)PQEa NHE b (B)PEc

IDL 1 - 5
JDK 1.1 1 19 10
Laure 4 21 9
Ed 77 136 12
LOV 95 168 10
Unidraw 1 93 10
Cecil 50 - 13
Geode 668 1,902 28
JDK 1.18 29 - 26
Self 122 1,367 22
Eiffel4 299 - 29
JDK 1.22 140 - 77
JDK 1.30 187 - 90

a266 Mhz Pentium II
b500 Mhz 21164 Alpha
c750 Mhz Pentium III, user time in Linux

Table 3.4: Encoding creation time in milliseconds of different algorithms

The main problem which this chapter leaves open is an incremental algorithm for
the subtyping problem, as required by languages such asJAVA , in which types may be
added as leaves at run time. (Section 4.8 in the next chapter presents such an incremental
algorithm.) It turns out that the PQ-data structure is not susceptible to efficient updates of
this sort.

On the theoretical side, it would be very interesting to see any non-trivial lower bound
for the encoding length.

An interesting instance of the subtyping problem occurs when the ordinary type hier-
archy is compounded by an interplay withgenericity, as inEIFFEL and in the proposed ad-
dition of generics toJAVA . In EIFFEL, a double ended queue of rectangles is a subtype of a
queue of polygons (DQueue[Rectangle]¹Queue[Polygon]) since (i)Rectangle¹ Polygon,
and (ii) the generic classDQueue[T ] inherited fromQueue[T ]. EIFFEL has a default sub-
typing rule which can be written as

∀a, b, A • a¹ b ⇒ A[a]¹A[b],

and the definition of generic classes which inherit from others adds other rules such as

∀a • A[a]¹B[a],

∀a, b • C[a, b]¹D[a[b]].

The research question is whether pre-processing of such rules can make it possible to
decide subtyping more efficiently.
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3.10 A Detailed PQ-Tree Example

The example below will shed some light on the “magic” behind Theorem 3.5 and the
implementation ofreduce due to Booth and Leuker [17].

We first trace the execution ofgenTree (Algorithm 3.1) where the input is the con-
straints (3.21) of the running example. The algorithm starts with a universal PQ-treeP>
over the universe

T = {A, B, C, D, E, F, G, H, I},

and iteratively callsreduce for each of the input constraints in the order they appear
in (3.21). The output of the algorithm is then the PQ-tree depicted in Figure 3.10, which
satisfies these constraints. (Using any other order would have resulted in an equivalent
PQ-tree.)

Figure 3.13 shows the PQ-tree at each of the intermediate steps in this iterative pro-
cess. Each subfigure shows the next input constraint (variableI in Algorithm 3.1), and
the current PQ-tree (variableP in the algorithm), where the leaves corresponding to types
constrained to appear together in the next iteration are highlighted. Thus, Figure 3.13b is
the PQ-tree obtained by performingreduce(P>, IC), while figures 3.13c, d, e, f show the
PQ-tree after reducing it with constraintsID, IE, IA, andIB, respectively.

Imposing the constraintIC = {C, F, G} on the initial universal tree (Figure 3.13a)
yields the tree of Figure 3.13b, which uses an extra P-node to ensure that these three types
occur together. The next constraint to add isID = {G, D, H}. Since typeG is common
to bothIC andID we have that the permissible orderings must have a subsequence which
matches one of the following two patterns:

1. TypesC andF occur together, in any order, then typeG, and then typesD andH
together, but in any order.

2. TypesD andH occur together, in any order, then typeG, and then typesC andF
together, but in any order.

These two patterns are captured by the PQ-tree of Figure 3.13c, in which one P-node
forcesC andF to occur together, while another P-node forcesD andH to occur together.
The Q-node of this tree makes sure thatG falls between the pairs{C, F} and{D, H}.

The transition between Figure 3.13c and Figure 3.13d is even more interesting. Letαc

be the subtree rooted at the Q-node of Figure 3.13c. Then, subtreeαc ensures that the five
typesC, F, G, D andH occur together. To this requirement we now must add the con-
straintIE = {H, E, I}, which means thatH must be adjacent to eitherE or I. Therefore,H
must occur in a boundary position (either first or last) in the placement of the five types
in αc. The problem is thatαc allowsD to take the place ofH in this boundary position.
The remedy is in “lifting” bothH andD to the containing Q-node, making sure that ifH is
first, thenD is second, while ifH is last thenD is in the penultimate position. After having
guaranteed thatH is in a boundary position, procedurereduce incorporates a P-node of
typesE andI into the boundary ofα. The result is shown in Figure 3.13d.
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Figure 3.13: Intermediate PQ-trees in the invocation ofgenTree on the constraints of the
hierarchy Figure 3.1

The transition from Figure 3.13d to Figure 3.13e is rather simple. Letαd be the
subtree rooted at the Q-node of Figure 3.13d. Then, the constraintIA = {C, F, G, D, H, A}
is almost satisfied byαd; the only missing requirement is thatαd does not guarantee thatA
is adjacent to the others in the requirement. Procedurereduce then makes the leafA a
child of this Q-node. It is possible to do so, since the set{C, F, G, D, H} has a “free”
boundary (the other boundary is constrained to be eitherE or I.

The transition from Figure 3.13e to Figure 3.13f follows the same lines as the previous
transition. Again, the set{C, F, G, D, H, E, I} has only one “free boundary” in the Q-node
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of Figure 3.13e. The constraint{C, F, G, D, H, E, I} is realized by addingB in the Q-node
at this free boundary. Figure 3.13f (which is the same as Figure 3.10) is the final PQ-tree,
representing the eight different orderings which satisfy the constraints in (3.21).

To see a situation in which Algorithm 3.1 returns⊥, which will make it necessary
to use more than one slice, consider the hierarchy depicted before in Figure 3.8. This
hierarchy is identical to the running example except that a new typeN was added as a
parent of typeE. This new node adds the constraint that all of its descendants must lie
together, i.e., the constraint

IN = {N, E, H, I}, (3.24)

is added toI.

Figure 3.14 shows the PQ-tree of the augmented hierarchy after all theother con-
straints in (3.21) were incorporated. (This tree is easily obtained by adding typeN to the
PQ-tree of Figure 3.13f.)
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Figure 3.14: PQ-tree with a new configuration in whichreduce will return⊥

Consider now the constraint (3.24), depicted by highlighting typesN, E, H, I in Fig-
ure 3.14. By examining the figure, we see thatN cannot be made adjacent to any of the
typesE, H, I. For example,N cannot be adjacent toH, becauseH lies betweenD, and
one ofE and I. In other words, the set{H, E, I} has no “free” boundaries. Therefore,
calling reduce with the PQ-tree of Figure 3.14 and the constraint (3.24) returns⊥.



Chapter 4

Fast Algorithm for Creating Space
Efficient Dispatching Tables with
Application to Multi-Dispatching

Chapter Summary
The dispatching problem can be solved very efficiently in the single inheritance setting. In this
chapter we show how to extend one such solution to the multiple inheritance setting. This gener-
alization comes with an increase to the space requirement by a small factor ofκ. This factor can
be thought of as a metric of the complexity of the topology of the inheritance hierarchy.

On a data set of 35 hierarchies totaling some 64 thousand types, our dispatching data structure,
based on a noveltype slicing technique, exhibits very significant improvements over previous
dispatching techniques, not only in terms of the time for creating the underlying data structure, but
also in terms of total space used.

The cost is in the dispatching time, which is no longer constant, but doubly logarithmic in the
number of types. Conversely, by using a simple binary search, dispatching time is logarithmic in
the number of different implementations. In practice dispatching uses one indirect branch and, on
average, only 2.5 binary branches.

Our results also have applications to the space-efficient implementation of the more general
problem of dispatching multi-methods.

A by-product of our type slicing technique is anincrementalalgorithm for constant-timesub-
typing testswith favorable memory requirements. (The incremental version of the subtyping prob-
lem is to maintain the subtyping data structure in presence of additions of types to the inheritance
hierarchy.)

Message dispatchingstands at the heart of object-oriented (OO) programs, being the
only way objects communicate with each other. Indeed, it was demonstrated [48] that OO
programs spend a considerable amount of time in implementing dynamic dispatching.
There is a large body of research dedicated to the problem of “efficient” implementa-
tion of message dispatching [31, 37, 44–50, 60, 78, 86, 100, 102, 118, 130–132, 135]. The
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principal optimization objective adopted by most of this prior research was a compact
representation of the dispatching data structure, while maintaining a small, preferably
constant, dispatch time. A heavy toll incurred in many cases was the time required for
creating the dispatching data structure.

This research revisits the problem, trying to optimize another important complexity
metric,creation time, i.e., the time required for generating the dispatching data structure.
Our motivation is the staggering importance of dynamic compilation and re-compilation
systems, as found inJAVA . Previous work tended to be conceptually locked in the static
compilation model, with few reports on creation time values; when reported, these times
were measured in seconds for modest size hierarchies.

Our noveltype slicingtechnique gives rise to a very fast algorithm for creating space
efficient dispatching data structure. The creation time is improved by one, two and some-
times three orders of magnitude compared to the famousrow displacement(RD) algo-
rithm [47]. In a collection of 35 hierarchies, totaling over 60,000 types, the slowest run-
time of our algorithm was less than a third of a second on a modern processor; this time
was on a hierarchy of circa nine thousand types and fourteen thousand messages. In the
vast majority of the hierarchies, the creation time was less than a hundredth of a second.
Its space requirementimproves those of RD (arguably the best previously published algo-
rithm in this category), in 32 out of the 35 hierarchies of our data set; the median reduction
in space is by a factor of 2.6.

The improvement of creation time and of space requirement comes with a penalty of
a small increase to dispatching time. Specifically, dispatching requires a binary search
in which the number of branches is logarithmic in the number of implementations of the
dispatched message, or alternatively, doubly-logarithmic in the number of types. Each
dispatch requires about 2.5 branches on average as well as one dereferencing operation.
These numbers may be compared with the two dereferencing steps required by theVirtual
Function Tables(VFT) [57] standard implementation strategy of C++ [124] in the single
inheritance setting. Note that in contrast with our results and most other dispatching
algorithms, the VFT technique is valid only instatically typedlanguages [132]. Some
dispatching schemes, such as RD and selector coloring (SC), require additional space and
one more comparison at runtime in order to work indynamically typedlanguages.

Interestingly, there is a strong practical evidence that binary searches, which are used
in our implementation, may be faster than the simple VFT implementation. The trick
is to inline the binary search by generating what was called “static branch code” by the
implementors of the SmallEiffel compiler [135], instead of the more general binary search
routine. It was shown that with this optimization a binary search between fewer than 50
results was faster than the VFT implementation in most architectures.

One of the explanations of this phenomenon is that indirect branches do not schedule
well on modern processors [46, 48–50]. Other, less direct, advantages of inlined binary
search is that it can take better advantage of type inference and that it is more suscep-
tible to inlining of method code and any ensuing optimization. The cost of inlining is
(of course) in an increase to the code size. Note that several other previous publica-
tions suggested using a combination of binary searches, array look-ups, and even linear
searches [3,27,78,102] for dispatching.
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Informally, we can say that our algorithm generalizes the linear spaceinterval con-
tainmentalgorithm [60,100] which is restricted to the single inheritance setting. Our main
theoretical result is that the generalization to the multiple inheritance case comes with aκ
(the number of slices) factor increase of space. This factor depends only on thetopology
of the multiple inheritance hierarchy, and can be thought of as a metric of its complexity.
In practice this factor is small, but in arbitrary hierarchies it might be in the order of the
number of types.

In all single inheritance hierarchies,κ ≡ 1. We provide a heuristic for finding an
upper bound ofκ, and an actual implementation of the generalization. In our data set
of 19 multiple inheritance hierarchies the median value ofκ is 6.5, the average is 7.3,
and the maximum is 19. We stress that the space increase is by a factor of at mostκ; in
practice, we find much better results.

Our dispatching technique has also applications to space-efficient implementation of
multi-dispatching.

Finally, our type slicing technique also provides anincrementalalgorithm for constant-
time subtyping testswith favorable memory requirements. We provide theoretical anal-
ysis of our algorithm, as well as practical evidence that our algorithm is fast even when
compared to previous non-incremental algorithms.

Outline The remainder of this chapter is organized as follows. The dispatching prob-
lem is defined in Section 4.1. Some straightforward solutions for this problem are de-
scribed in Section 4.2. A survey of prior dispatching techniques including a detailed
description of interval containment is the subject of Section 4.3. Our new slicing tech-
nique is described in Section 4.4. The data set of the 35 hierarchies used in our bench-
marking, collected from both single and multiple dispatching languages, is presented in
Section 4.5. Section 4.6 presents the experimental results, comparing the performance
of our algorithm with those of previous algorithms. The application of our results to the
problem of multiple dispatching is presented in Section 4.7. An incremental algorithm for
constant-time subtyping tests is the concern of Section 4.8. Finally, Section 4.9 mentions
open problems and directions for future research. Section 4.10 describes our heuristic for
performing type slicing.

4.1 Problem Definitions

Formally, ahierarchyis a partially ordered set (T ,¹) whereT is a set of types and¹ is
a reflexive, transitive and anti-symmetricsubtype relation. If a andb are types, anda¹ b
holds, we say thata is a subtype(or a descendant) of b and thatb is a supertype(or an
ancestor) of a. Direct subtypes (supertypes) are calledchildren(parents).

Similarly, we abstract away from the nomenclature of different languages, and use
the termmessagefor the unique identifier of a family ofmethods(also called member
functions, operations, features, implementations, etc.). A message, which is sometimes
called aselector(in e.g., SMALLTALK [71] or OBJECTIVE-C [36]) or a signature(in
e.g., JAVA [7] or C++ [124]), may include, depending on the programming language,
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components such as name, arity, and even the type of parameters. We will use the terms
messageandselectorinterchangeably. Note that a consequence of feature renaming in
EIFFEL [97], is that the message does not always include the name of a routine. The
intuition however is the same in all OO languages: when an object receives a message
encoded as a selector,dispatching on the type of the receivermust take place at runtime
to find and invoke the implementation which is most appropriate for the receiver’s type.

We use the following notation. Themin operator return the set of smallest types in
any given set:

min(X) = {t ∈ X | 6 ∃t′ ∈ X : t′ 6= t, t′¹ t}. (4.1)

Let F ⊆ T denote thefamily of types which have amethod implementationfor the same
message. Given a familyF and a typet, cand(F, t) is the set of candidates inF , i.e.,
those ancestors oft in which an implementation of the given message exists:

cand(F, t) ≡ F ∩ ancestors(t). (4.2)

A dispatching querydispatch(F, t) returns eitherthe smallest candidateor null if no
such unique candidate exists. (Anull result represents either themessage not understood
or message ambiguouserror conditions.) Specifically,

dispatch(F, t) ≡
{

t′ if min(cand(F, t)) = {t′},
null otherwise.

(4.3)

Figure 4.1 depicts a hierarchy which serves as the running example of this chapter.
Type names are written with uppercase letters; messages with lower case letters.
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Figure 4.1: A small example of a hierarchy and the methods implemented in each type

For instance, we see in the figure that for the familyFc = {C, D, E}:
cand(Fc, K)= {C, E} dispatch(Fc, K)= E
cand(Fc, B)= ∅ dispatch(Fc, B)= null (message not understood)
cand(Fc, H)= {C, D, E} dispatch(Fc, H)= null (message ambiguous)

The type checker of statically typed languages makes sure at compile time that dis-
patching never results innull. It would therefore be a compilation error in statically typed
language to sendc to objects whose static type isB or H. Moreover, it is a compilation
error even to send this message to any ancestor ofH, e.g., typeC. The reason is that the
type analyzer cannot infer [66] that the dynamic type is notH.
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We shall assume a pre-processing stage in which all ambiguities are resolved by an
appropriate augmentation of the families. In the example, we add typeH to the familyFc

sincedispatch(Fc, H) resulted inmessage ambiguous. As in previous work [77, 112] in
which this assumption was made, our working hypothesis is that the ensuing increase of
problem size is insignificant in practice.

Figure 4.1 is an example of amultiple inheritancehierarchy, since, e.g., typeD has
two parents:A andC. Single inheritance, in which each type has at most one parent, is
mandated by languages such asSMALLTALK and OBJECTIVE-C. The fact that single
inheritance hierarchies take a simple forest topology, makes single inheritance an impor-
tant special case, for which very efficient algorithms exist. The general case of multiple
inheritance is more difficult, and will be our main concern here.

Definition 4.1 Given a hierarchy (T ,¹) and a family collectionF ⊆ ℘(T ), thedispatch-
ing problemis to encodethe hierarchy in a data structure supportingdispatch(F, t)
queries for allF ∈ F , t ∈ T .

From a practical point of view we assume that each object includes an accessible type-
id, and tacitly ignore the object space overheads and the time of retrieving such type-id.
Also, the message is given at runtime as an integer selector. We usually assume that this
selector is known at compile time, and accordingly allow any pre-processing which is
dependent solely on this selector. Given the object type-id and this selector, thedispatch
query means that the runtime system must compute the address of the method defined in
the smallest candidate, and jump to it.

A solution to the dispatching problem is measured by the following three metrics:
(i) the space that the data structure occupies in memory, (ii) the time required for process-
ing a query, and (iii) the time for generating the data structure from the input hierarchy.
We would like to express these metrics as a function of the following parameters of the
problem:

• The number of types in the hierarchy

n ≡ |T |. (4.4)

• The number of different messages that can be sent during runtime

m ≡ |F|. (4.5)

• The total number of different method implementations

` ≡
∑
F∈F

|F |. (4.6)

• The number of valid message-type combinations, i.e., combinations which do not
result innull

w ≡ |{〈F, t〉 | dispatch(F, t) 6= null}|. (4.7)
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4.2 Straightforward Solutions

The most obvious solution to the dispatching problem is in an × m dispatching ma-
trix, storing the outcomes of all possible dispatching queries. We stress that the order
of rows and columns in the dispatching matrix is arbitrary, and the performance of some
algorithms for compressing the matrix may depend heavily on the chosen ordering.

The dispatching matrix of our running example is presented in Figure 4.2(a), where
the nm − w type-message pairs which result innull are represented as empty entries.
The figure depicts in grey all` entries which represent a method implemented in a certain
type. For example, the top right grey entry is to say that typeA has an implementation of
messagel. (Recall that typeH was added to familyFc to resolve an ambiguity. Therefore,
the cell corresponding to〈H, c〉 is rendered in grey.)
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Figure 4.2: (a) The dispatching matrix, and (b) the sorted dictionary for messageb

In the matrix representation queries are answered by a quick indexing operation. How-
ever, the space consumption is inhibitivly large, e.g., 512MB for the dispatching matrix
in the largest hierarchy in our benchmarks (8,793 types and 14,575 messages).

There are two opportunities for compressing the dispatching matrix:

Null elimination There is much empirical evidence to show that dispatching matrices are
very sparse.Null elimination, which was the objective of almost all previous work,
is the attempt to store only the non-null elements in the matrix.

The ratio(nm)/w is an upper bound on the compression rate which null elimination
might achieve. The matrix of Figure 4.2(a) has120 = 10 × 12 entries, out of
which, 46 are non-null. Null elimination in this case gives a compression factor of
no more than120/46 ≈ 2.6. In our benchmarks we found that on average, null
elimination might achieve compression by a factor of circa 150.

Null elimination can be achieved by storing each column as asorted dictionary, i.e.,
a sorted array of〈key,value〉-pairs. In the running example, the sorted dictionary
for messageb is depicted in Figure 4.2(b). In this implementation, the query time
is logarithmic in the number of non-null entries in each column. Space is linear in
this number.

Dynamic perfect hashing(DPH) [42] is theoretically better than sorted dictionaries.
In this algorithm each column (or the entire matrix for that matter) is stored as a
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hash table. Indices (or their concatenation) serve as keys. The space requirement
is linear inw. More importantly, query time is constant! Unfortunately, DPH is of
mere theoretical interest since it carries large hidden constants, which might offset
any saving of space due to null elimination.

The more sophisticated previously published practical algorithms, try, and in most
cases achieve complete, or almost complete null elimination with no hidden con-
stants and constant search time.

Duplicates elimination Even though optimal null elimination may give very good re-
sults, it still leaves something to be desired. In one hierarchy of our data set,
featuring 3,241 types, an optimal null elimination scheme still requires 2.4MB.
Duplicates eliminationimproves on null elimination by attempting to store only the
distinct` entries of the dispatching matrix. Therefore, the compression factor of du-
plicates elimination is at most(nm)/`, which was around 725 in our benchmarks.

The ratiow/` gives the factor by which duplicates elimination can improve on null
elimination. This ratio was as high as 122.4 in one of our benchmarks. In the matrix
of Figure 4.2(a) there are 27 distinct entries, i.e.,` = 27, so duplicates elimination
has the potential of compressing the dispatching matrix by a factor of120/27 ≈
4.44.

It is not difficult to come close to full duplicates elimination, with a simple represen-
tation of the hierarchy as a graph where types are nodes and immediate inheritance
relations are edges. The cost is of course the search time, which becomesO(n),
since each dispatch must traverse all the ancestors of a receiver in order to find the
smallest candidate. Sophisticated caching algorithms make the typical case more
tolerable than what the worst case indicates. This is the implementation in lan-
guages such asSMALLTALK .

Our challenge here is to come as close as possible to optimal duplicates elimination,
i.e., space linear in the number of implementations`, while still maintaining small, prefer-
ably constant, query time.

4.3 Previous Work

This section gives an overview of some of the dispatching techniques proposed in the
literature. The performance of these techniques might be improved by using various forms
of caching at runtime (see e.g., [31,37,78]).

VFT: Virtual Function Tables [57] As mentioned above, the VFT technique is valid
only in statically typed languages [132]. In a single inheritance setting, VFT achieves
optimal null elimination and constant dispatch time. A distinguishing property of the
technique is that it does not require whole program information. The VFT of any type can
be constructed using only information regarding its ancestors.
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The multiple inheritance version of the VFT is much more complicated than the single
inheritance version, with complicated space and time overheads. Each type stores multi-
ple VFTs, and if a method is inherited along more than one path, then it will be stored in
these more than once. Further, in presence of shared (virtual) inheritance, searching for
an implementation is carried out by either following a chain of pointers to ancestors, or
by additional increase to object size usinginessential virtual base pointers[68]. It was
shown [53] that these space overheads can be very significant. Even with this overhead,
dispatching time increases due to what is known in the C++ jargon asthis -adjustment.1

RD: Row Displacement[45,47] Another null elimination technique is due to Driesen [45]
who suggested to displace the rows in the dispatching matrix by different offsets so that
they could be merged together in amaster array. Later [47] it was found thatselector
based RD, i.e., a displacement of columns rather than rows, gives much better compres-
sion values. In fact this technique comes very close (median value 94.7%) to optimal null
elimination.

In dynamically typed languages vanilla RD does not work, sincenull entries which
correspond tomessage not understoodwill usually become occupied. It is possible to
amend RD with an increase to space requirement and adding one more comparison at
runtime.2 We stress that duplicates elimination (which we use) does not suffer from this
limitation.

CT: Compact dispatch Tables[130–132] The very good compression results of RD
were improved significantly by Vitek and Horspool on some hierarchies. Their CT tech-
nique aims at duplicates elimination. The idea is to partition the set of familiesF into
disjointslicesF1, . . . ,Fk. Slicing breaks the dispatching matrix intok sub-matrices, also
calledchunks. Identical rows within each chunk are then merged. Each typet has an ar-
ray rt of sizek. Entry rt[i] points to the row oft in chunki. Dispatching in CT requires
an extra load compared to the dispatching matrix, but the merging of rows may reduce the
space requirement.

Our algorithms for multiple inheritance adopt the slicing idea. However, we slice the
set of types rather than the set of families.

SC: Selector Coloring[44, 118] SC aims at null elimination by slicing the set of mes-
sages. Each slice must satisfy the following property:no two messages in the slice can
be recognized by the same type.In other words, in each chunk, a row can have at most
one non-null entry. This property makes it possible to merge together all the columns in
a chunk, resulting in a space requirement ofn× k.

The performance of SC is improved as the number of slices decreases. Since it is
computationally hard to find an optimal slicing, the slices must be found using a heuristic.

1In general, dispatching in C++ is tightly coupled with its peculiar object-layout, and is therefore not
directly applicable to languages with different layout scheme. Simple object-layout have the advantage of
fast synchronization, hash-codes, and easier garbage collection.

2The trick is to add a prologue to each method which checks that the method indeed corresponds to the
sent message.
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As in RD,null entries are treated as empty in SC and therefore additional storage and an
extra comparison are required in dynamically typed languages. CT also uses SC in each
of the chunks.

Jalapẽno [3] JAVA ’s invokeinterface bytecode instruction, i.e., messages sent to
receivers whose static type is aninterface , cannot be implemented using the VFT
technique. Jalapeño, an IBM implementation ofJAVA virtual machine, uses a fast incre-
mental variant of SC in realizing these instructions. Messages are hashed intok slices,
wherek is an a-priori fixed number. Each type has aninterface method tableof lengthk.
When the slicing property of SC does not hold, i.e., some type recognizes more than one
message in the same slice, then a conflict resolution thunk must be generated by the com-
piler. Since there is no bound on the number of conflicting messages in each hash table
entry, dispatch time is not necessarily constant. It is easy to see that the total memory
requirement isnk for the tables, plusO(w) memory for conflict resolution.

Interval Containment for single inheritance hierarchies[60,100] Interval containment
achieves optimal duplicates elimination at the cost of non-constant dispatch time. Our
dispatching technique is a generalization of interval containment for multiple inheritance
hierarchies. Let us describe this technique in greater detail.

Interval containment assignsid’s to types in a preorder traversal of the tree hierarchy.
An important property of the preorder traversal is that descendants of a typet define an
interval. Therefore, each familyF , defines a set of intervals, one for each typet ∈ F .

Figure 4.3(a) shows a tree hierarchy with three implementations of a messagea in
types:A, B, andF, i.e., familyFa = {A, B, F}. Then, as can be seen in Figure 4.3(b), these
family members define three intervals in the preorder traversal:[1, 7], [5, 7], and [3, 3],
respectively. The intersections of those three intervals partition the types into four seg-
ments:[1, 2], [3, 3], [4, 4], and[5, 7], which correspond to family members:A, F, A, andB,
respectively. The dispatch of messagea on any given type depends only on the segment
this type belongs to. If, for example, the receiver is of typeG whoseid is 6, then we find
that it belongs to segment[5, 7], and therefore returnB.
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Figure 4.3: (a) A familyFa = {A, B, F} in a tree hierarchy, (b) the intervals and seg-
mentsFa defines, and (c) the representation ofFa as a sorted dictionary

Given a familyF , there are|F | intervals which partitionT into at most2|F | + 1
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segments, where all types in a segment have the same dispatching result. FamilyF is
represented as a sorted dictionary, mapping segments’ starting point to methods. In our
example, Figure 4.3(c) shows a sorted dictionary that represents the segment partitioning.
This dictionary serves as the dispatching table forFa.

Note that the sorted dictionary representation is linear in|F |. The total memory for
representing all families is thereforeO(`). In fact, the number of memory cells required
by this representation is at most

∑
F∈F

2(2|F |+ 1) = 2m + 4
∑
F∈F

|F | = 2m + 4`.

It remains to describe the representation of the sorted dictionary and the procedure to
determine the segment to which a specific type belongs. Algorithmically, the problem is
characterized as follows: Given a set of integersS ⊆ [1, . . . , n], build a data structure to
implement the predecessor operation,pred(x), defined as

pred(x) = max{y ∈ S | y ≤ x}, (4.8)

for any integerx ∈ [1, . . . , n]. Let s = |S|. In our case,s, which is smaller than twice the
number of different implementations, is typically much smaller thann. We will therefore
be more interested by algorithms whose resource demands are dependent ons, rather than
onn.

In an array implementation it is possible to implementpred(x) using abinary search
in O(log s) time, while the space requirement isO(s). The hidden constants are small.

If the number of integers is not so small, then a theoretically superior algorithm is
the Q-fast trie [134], which achievesO(

√
log n) time while still maintaining the space

linear in s. Stratified trees, also calledvan Emde Boas data structure[128, 129], offer
a different tradeoff, with space linear inn and timeO(log log n). In the randomized
version of stratified trees the expected space requirement is reduced toO(s). In practice
we expect the simple binary search algorithm to outperform these asymptotically better
competitors.

4.4 Dispatching using Type Slicing

Our dispatching technique for multiple inheritance hierarchies is a generalization ofinter-
val containmentfor single inheritance hierarchies. The idea behind interval containment
is that there is an ordering of the tree hierarchy in which the descendants of any given
type are consecutive. The difficulty in the multiple inheritance case is that an ordering
of T with the above property might not exist. Figure 4.4 shows the smallest hierarchy for
which such an ordering is impossible. The reason is that such an ordering imposes the
contradicting constraints thatA, B andC must be adjacent toD.

Instead of imposing a global ordering, we partition the set of typesT into disjoint
slicesT 1, . . . , T κ and impose a local ordering condition on each of the slices. For a
sliceT i and a typet (not necessarily inT i), let Di(t) be the set of descendants oft in T i,
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Figure 4.4: The smallest multiple inheritance hierarchy for which no ordering exists
where all descendants of any type are consecutive

i.e.,

Di(t) = descendants(t) ∩ T i .

Figure 4.5 shows a partitioning of the hierarchy of Figure 4.1 into two slices:

T 1 = {B, A, D, G, C, F, J},
T 2 = {E, H, K}.

The grey entries in any column represent a set of descendants of some type. The sets of
descendants of typeA, for example, in the two slices are

D1(A) = {A, D, G},
D2(A) = {E, H, K}. (4.9)
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Figure 4.5: Type slicing for the hierarchy of Figure 4.1

The type slicing technique is based on the demand that the setsDi(t) areconsecutive
in some ordering of the rows. Visually this means that the grey entries are consecutive
within each chunk. For instance, in Figure 4.5 the sets of (4.9) define theintervals

D1(A) = [2, 4],

D2(A) = [1, 3].
(4.10)

Formally, each sliceT i must satisfy the following slicing property:

There is an ordering ofT i in whichDi(t) is consecutive for alltypest ∈ T .

Each typet is identified by a pair〈st, idt〉, wherest is an id of the slice to whicht
belongs, andidt is the position oft in the ordering of this slice. Thanks to the slicing
property, the setDi(t) defines aninterval for eachi, 1 ≤ i ≤ κ.

A partitioning ofT into slices which satisfy the slicing property always exists, since
this property trivially hold for singletons. We will strive to minimizeκ, the total number
of slices.
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Finding the slices We are unaware of any non-exponential method for finding the min-
imal number of slices. Instead we use a greedy heuristic: “try to make the current slice
as large as possible without violating the slicing property”. Specifically, we traverse the
types in a topological order, and try to insert each type into each of the slices. If all these
insertion attempts fail then a new slice is created.

Given a sliceT i and a typet, PQ-trees [17, 136] can be used to check whether there
is any ordering ofT i ∪{t} which satisfies the slicing property, inO(n · |T i|) time. In
insertingn types using this strategy, the total time might be cubic inn, which is highly
undesirable.

Instead we use a heuristic which, by not disturbing the existing order ofT i, achieves
a run time that depends only on the number of ancestors oft. Therefore, the total runtime
of the above algorithm for finding the slices isO(κ|¹|). The exact details of the heuristic
are presented in Section 4.10.

Dispatching using type slicing Given a typet and a familyF , a dispatching query
returns the smallest typet′ ∈ F such thatt′º t. LetT i be the slice oft. Given a typet′, we
have thatt′º t iff t ∈ Di(t

′). We therefore must consider all intervals ofDi(t
′), Di(t

′) 6=
∅, wheret′ ∈ F . Since there are at most|F | such intervals, we obtain a partition ofT i

into 2|F |+1 segments, where the result of the dispatch ont depends only on the segment
to whicht belongs.

Figure 4.6 shows the dispatching representation for the family

Fc = {C, D, E, H}

in the hierarchy of Figure 4.1. Consider, for example, the first slice. Only typesC andD
define non empty intervals, which are[3, 7] and [3, 4], respectively. We also consider
the implicit interval[1, 7] for the methodmessage not understood. Those three intervals
partition the types into three segments:[1, 2], [3, 4], and[5, 7]. Messagec is represented
in the first slice using an appropriate data structure storing those three segments, and
mapping them to:null (message not understood), D, andC, respectively.
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Figure 4.6: (a) The intervals and segments of messagec in the two slices of Figure 4.5,
and (b) the message representation in each slice
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In general, a familyF is encoded in sliceT i by a data structure of choice which
represents a set of segments, mapping each one to the appropriate method implementation.
As in vanilla interval containment, this data structure can be a simple array, a Q-fast trie,
or a stratified tree. Obviously, each slice has its own unique such data structure.

Dispatching on typet ∈ T and familyF ∈ F is carried out in three stages:

1. Findingst, the id of the slice oft,

2. following this slice to find the respective data structure ofF , and then

3. carrying on as in single inheritance in a search ofidt in this data structure to find
the dispatching result.

Thus, dispatching in multiple inheritance hierarchies requires only two more steps in
comparison to dispatching in single inheritance hierarchies. The space requirement in
multiple inheritance hierarchies increases by a factor of at mostκ. Curiously, this factor
depends only on the topology of the hierarchy and the quality of the slicing algorithm. It
does not depend in any way on the number of messages.

Reducing the number of slices We now describe one optimization that given the set of
messages reduces the number of slicesκ. In our multiple inheritance benchmarks,κ is
reduced by an average of 1.35. (In the LOV hierarchy, for example, the number of slices
is reduced from 12 to 7.) The key observation is that the dispatching algorithm assumes
that each family membert ∈ F defined an interval for each slice. Therefore,Di(t) must
be consecutive inT i, only for those typest which are indeed members in some familyF .

Formally, we say that a typet is significantif there exists a familyF such thatt ∈ F ,
and redefine the slicing property as follows:

There is an ordering ofT i in whichDi(t) is consecutive for all significant
typest ∈ T .

Optimizations for statically typed languages We also note that instatically typed lan-
guages, thebinary searchalgorithm can be optimized. Suppose that we dispatch on an
object whosestatic typeis a. Then, at runtime, the binary search can begin at a smaller
interval, restricted only to the interval of descendants ofa in each of the slices.

Moreover, we can even discard segments which correspond tomessage not under-
stood, since such a case does not occur in statically typed languages.

4.5 Data Set

The data set for benchmarking dispatching algorithms has 16 single inheritance hierar-
chies with 29,162 types, 12 multiple inheritance hierarchies with 27,728 types, and seven
multiple dispatch hierarchies with 7,082 types.
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This benchmark includes 5 hierarchies out of 13 hierarchies used in previous exper-
imental work on subtyping. (We were unable to obtain information on the definition of
messages and methods in the other eight hierarchies.) As observed previously [53] many
of the topological properties of these hierarchies are similar to those of balanced binary
trees. The average number of ancestors in these hierarchies is less than 9 for all hierar-
chies, with the exception of Geode, in which it is 14.0 and Self, in which it is 30.9.

All degenerate families, i.e., families of size one (singletons), were eliminated from
the data set prior to running the experiments, since no runtime dispatching is required for
such families.

We stress that by eliminating degenerate families we only made the inputmore difficult
for our new dispatching algorithm and any other duplicates elimination scheme, including
CT. The reason is that degenerate families, in which there are only two distinct values in
their corresponding columns, have the greatest potential for duplicates elimination.

Table 4.1 gives a summary of the pruned hierarchies. The three blocks in the table
correspond to single inheritance-, multiple inheritance-, and multiple dispatch- hierar-
chies. We see that the hierarchies span a range of sizes, from about a hundred types up to
almost 9,000 types.

The row denotedTotal in this and some of the subsequent tables corresponds to the
total or universal hierarchy obtained by a simple disjoint union of all hierarchies in the
ensemble. In most cases, the “Total” row therefore corresponds to an average of the
different hierarchies, weighted by size. In Table 4.1, this row indicates that in total the
dispatching benchmark spanned some 64 thousand types and 70 thousand messages.

The`/n column shows the average number of method implementations per type. Ex-
amining the entries along this column we see that in many multiple dispatch hierarchies,
there are about one or two methods per type. A typical value of the other hierarchies is
four or five implementations per type. The San Francisco (SI: IBM SF) project gives the
largest number of methods per type (13.3).

In checking thè /m column we find that families tend to be small, with average
values of around four to six methods in a family in most hierarchies. We note that the
average number of comparisons in a binary search in families is no greater thandlog2

`
m
e.

The reason is that the geometrical mean is no greater than the arithmetical mean, and
therefore

1

m

∑
F∈F

log2|F | = log2
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F∈F

|F |
) 1

m

≤ log2

(
1

m

∑
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|F |
)

= log2

`

m
.

(4.11)

Thus, just by inspecting thè/m column we learn that the number of comparisons is
about 3.

The next(nm)/w column gives the best possible factor by which null elimination can
improve upon the complete dispatching matrix. As can be seen from the table, this matrix
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Hierarchy n m `/n `/m (nm)/w w/`

S
ingle

Inheritance

Visualworks1 774 1,170 6.0 4.0 11.4 17.1
Visualworks2 1,956 3,196 6.9 4.2 21.6 21.3
Digitalk2 535 962 6.2 3.5 7.1 21.7
Digitalk3 1,357 2,402 7.0 3.9 9.0 38.3
IBM Smalltalk 2 2,320 4,335 7.0 3.8 49.1 12.6
VisualAge 2 3,241 6,529 8.1 4.0 35.6 22.7
NextStep 311 499 6.8 4.2 9.6 7.7
ET++ 371 296 3.8 4.8 9.0 8.6
SI: JDK 1.3.1 6,681 4,392 3.6 5.4 228.8 5.4
SI: Corba 1,329 222 1.9 11.6 42.5 2.7
SI: HotJava 644 690 4.5 4.2 18.6 8.2
SI: IBM SF 6,626 11,66413.3 7.6 268.9 3.3
SI: IBM XML 107 131 5.5 4.5 10.8 2.2
SI: Orbacus 1,053 980 3.6 3.9 55.3 4.9
SI: Orbacus Test 579 368 4.1 6.5 37.6 2.4
SI: Orbix 1,278 535 2.3 5.4 62.7 3.8

M
ultiple

Inheritance

Self 1,802 2,459 12.1 8.8 18.9 10.8
Unidraw 614 360 3.8 6.5 27.3 3.5
LOV 436 663 6.5 4.3 20.5 5.0
Geode 1,318 1,413 7.2 6.7 15.2 12.9
MI: JDK 1.3.1 7,401 5,724 3.9 5.0 300.7 4.9
MI: Corba 1,699 396 1.9 8.1 49.6 4.2
MI: HotJava 736 829 4.6 4.1 24.5 7.3
MI: IBM SF 8,793 14,57513.2 8.0 328.3 3.4
MI: IBM XML 145 271 6.5 3.5 16.9 2.5
MI: Orbacus 1,379 1,261 3.6 4.0 70.1 5.0
MI: Orbacus Test 689 379 4.0 7.3 34.9 2.7
MI: Orbix 2,716 786 1.4 4.7 95.1 6.1

M
ultiple

D
ispatching

Cecil 932 1,009 4.5 4.2 12.9 17.3
Dylan 925 428 1.9 4.2 5.6 39.5
Cecil- 473 592 5.0 4.0 17.4 6.8
Cecil2 472 131 1.2 4.3 3.6 30.6
Harlequin 666 229 1.5 4.4 6.6 22.7
Vor3 1,660 328 1.1 5.7 35.3 8.3
Vortex3 1,954 476 1.3 5.2 3.0 122.4

Total 63,97270,680 6.5 5.9 1,242.0 8.7
Median 1,053.0 690.0 4.5 4.4 21.6 7.3
Minimum 107 131 1.1 3.5 3.0 2.2
Maximum 8,793 14,57513.3 11.6 328.3 122.4

Table 4.1: Statistical and topological properties of the 35 hierarchies used in benchmark-
ing dispatching algorithms
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is very sparse. In most cases, 90% or more of its cells arenull. In hierarchies such as
MI: JDK 1.3.1 and MI: IBM SF we even find that the potential compression is by a factor
as high as 300. (The 1,242.0 bound for the universal hierarchy is meaningless.)

How much can duplicates elimination improve on anoptimal null elimination? The
answer is in thew/` column. We observe a potential foradditionalcompression by factors
of about 10. Duplicates elimination performs very well precisely on the multiple dispatch
hierarchies, where mere null elimination is not as effective as it is in other hierarchies.

4.6 Experimental Results

In order to evaluate the quality of the order-preserving heuristic used in our TS technique,
we compared it with a much more powerful, but time consuming, heuristic which uses
PQ-trees. The superscript PQ shall denote the variant which use the PQ heuristic.

Space requirement We follow the popular convention of ignoringcode spacerequire-
ment, i.e., assuming that there is a single generic dispatching routine which receives a
message-selector and a type-id. Although our results indicate that inlining of the binary
search might be worthy, further research is required to estimate the incurred code space
penalty. The following definition is pertinent to the comparison of algorithms.

Definition 4.2 Let W be the number of 4-bytes words the algorithm uses to encode the
dispatching tables of a certain hierarchy, then the algorithm’sredundancy factoron this
hierarchy isW/`.

In other words, the redundancy factor of a dispatching algorithm in a certain hierarchy is
the ratio between the total space requirement of that algorithm and the lower bound ideal
implementation which uses4 bytes for storing the address of each method.

Table 4.2 gives the redundancy factor of different algorithms on the 35 hierarchies in
our dispatching benchmark. In reading the table, remember that better algorithms have
lower redundancy factors.

Algorithms CT, TS, and TSPQ attempt to achieve duplicates elimination. The other
algorithms rely on null elimination. The results in the table do not include the additional
provisions mentioned above for the RD, CT, and SC algorithms to support dynamically
typed languages. The redundancy factors have to be appropriately adjusted to include
selector verification information.

Since we did not have access to the original implementation and heuristics of SC and
CT, redundancy factors reported in the respective columns present a lower bounds on these
values: In SC, the number of slices is no less than the maximal number of messages that
a type understands. In estimating CT, the set of messages was divided into chunks of 14
messages each (as prescribed in [132]). We then applied the SC lower bound estimate in
each chunk.

The results of the VFT technique are calculated in the traditional manner [47], under
the assumption that there are no virtual bases. The size of a type VFTs equals the sum
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Hierarchy CT VFT SCa RD TSPQ TS Memb

S
ingle

Inheritance

Visualworks1 18.3 17.1 24.3 17.3 2.8 2.5 45
Visualworks2 37.5 21.3 39.8 21.7 2.6 2.5 134
Digitalk2 15.8 21.7 59.8 22.0 3.0 2.7 35
Digitalk3 29.8 38.3 92.5 38.8 3.0 2.7 98
IBM Smalltalk 2 48.9 12.6 37.5 15.4 3.0 2.6 165
VisualAge 2 63.0 22.7 62.3 29.2 3.0 2.6 267
NextStep 10.7 7.7 21.8 7.9 2.9 2.6 22
ET++ 9.9 8.6 26.0 8.9 2.6 2.4 13
SI: JDK 1.3.1 91.9 5.4 67.9 6.2 2.6 2.4 219
SI: Corba 10.1 2.7 25.2 3.7 2.8 2.7 27
SI: HotJava 15.5 8.2 33.7 8.5 2.8 2.5 28
SI: IBM SF 66.0 3.3 26.0 3.5 2.4 2.2 744
SI: IBM XML 4.2 2.2 8.4 2.5 2.5 2.1 5
SI: Orbacus 22.6 4.9 35.0 5.1 2.8 2.4 36
SI: Orbacus Test 8.4 2.4 43.9 2.9 2.5 2.3 21
SI: Orbix 21.3 3.8 35.7 4.6 2.8 2.5 29

M
ultiple

Inheritance

Self 17.6 10.8 27.3 11.1 3.0 2.8 240
Unidraw 10.7 3.5 15.3 4.0 2.7 2.5 23
LOV 12.1 12.8 11.8 5.2 4.4 4.5 50
Geode 19.2 44.9 40.4 16.2 5.5 6.1 228
MI: JDK 1.3.1 109.2 5.8 62.4 5.5 4.1 4.1 463
MI: Corba 18.5 6.5 35.6 4.9 3.4 3.3 42
MI: HotJava 17.3 8.5 39.0 7.6 4.2 4.6 60
MI: IBM SF 82.3 5.9 26.2 3.5 3.8 3.7 1,663
MI: IBM XML 5.7 3.5 8.7 2.6 3.5 3.3 12
MI: Orbacus 28.0 6.9 37.5 5.3 4.0 3.8 75
MI: Orbacus Test 8.8 3.5 45.3 3.0 3.2 3.2 35
MI: Orbix 45.1 7.0 64.5 6.7 3.6 3.4 49

M
ultiple

D
ispatching

Cecil 19.5 34.0 34.6 17.8 4.2 4.1 68
Dylan 20.5 46.3 71.6 40.2 3.5 3.5 24
Cecil- 12.7 12.7 27.7 7.2 4.5 4.8 45
Cecil2 11.6 100.3 69.7 31.2 3.3 3.9 9
Harlequin 14.2 47.9 83.3 23.5 4.3 4.4 18
Vor3 24.1 19.4 50.8 9.3 3.4 3.5 26
Vortex3 29.2 375.7 159.7 124.0 3.5 4.1 40

Total 55.7 22.8 48.5 13.3 3.3 3.2 433
Median 18.5 8.5 37.5 7.6 3.0 2.8 42
Minimum 4.2 2.2 8.4 2.5 2.4 2.1 5
Maximum 109.2 375.7 159.7 124.0 5.5 6.1 1,663

aA lower bound on SC redundancy factor
bThe space requirements of TS in kilo-bytes

Table 4.2: The redundancy factor of different dispatching algorithms and the total memory
requirements of TS in kilo-bytes
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of its parents VFTs plus the number of newly introduced messages. However, in practice
inheritance is usuallyshared(not repeated), giving rise to other overheads [53].

In studying the last column of the table (labeled “Mem”) we see that the total space re-
quirement of type slicing ranges between 5KB to almost 1.7MB. When viewed in relative-
rather than absolute-terms (in the penultimate column labeled TS showing redundancy
factors), we find that the space requirement of type slicing is about three or four times
larger than a theoretic optimal duplicates elimination.

In comparing the columns TS and TSPQ we find that using the PQ-heuristic does not
always improve the space performance. In fact, in all single inheritance hierarchies, and
several multiple inheritance hierarchies, itincreasesthe memory consumption of the al-
gorithm. The improvement, in the few cases it occurs, is quite small; a maximum of 15%
in the Vortex3 hierarchy.

RD is better than our main TS algorithm in three out of 35 hierarchies: IBM SF
(redundancy factor 3.5 in RD vs. 3.7 in TS), IBM XML (2.6 vs. 3.3), and Orbacus Test
(3.0 vs. 3.2) multiple inheritance hierarchies. We see that even in these cases the space
requirement of TS is comparable to that of RD.

TS however always wins against CT, VFT, SC, and against RD in all other hierar-
chies, sometimes by factors as large as 30. For instance, in the Vortex3 hierarchy, RD
uses 1.24MB, an optimal null elimination scheme will use 1.22MB, while TS uses 40KB!

The average improvement of TS over RD is by a factor of 4.6, while the median
improvement is by a factor of 2.6. In fairness, it should be said that all these algorithms
dispatch in constant time, using simple array references, while TS uses a non-constant
time binary search. This constant time must be extended to include selector verification in
dynamically languages, which is not required in TS. Conversely, as we saw in Section 4.4,
the search time in TS can be reduced in statically typed languages.

In general, the VFT algorithm is the next best algorithm amongsingle inheritance
hierarchies. The RD algorithm is usually the second best formultiple inheritance hierar-
chies, while CT performs well onmultiple dispatch hierarchies.

We remind the reader that the comparison presented in Table 4.2 is different than that
reported in the literature, since even though we used the same hierarchies, we eliminated
degenerate families from the benchmark. Different algorithms compress such families to
different levels.

Creation time Table 4.3 compares the times for creating the compressed dispatching
data structures using RD with those of TS and those of TSPQ. Since we could not obtain
the original implementations of SC and CT, their runtime is not reported. Vitek and Hor-
spool [132] report that CT required 1.5 seconds for NextStep hierarchy, and 4.8 seconds
for Visualworks2, on a Sparc station 5. The implementation of VFT is so straightforward
and fast that its runtime overhead can be considered as zero for many practical purposes.

TS is consistently better than RD, sometimes by a factor of hundreds. The average
improvement of TS over RD is by a factor of 37.4, while the median is 6.3. (Since RD is
a heuristic it may sometimes find a good solution quickly.) TSPQ is very slow.



4.6. EXPERIMENTAL RESULTS 73

Hierarchy RD TS TSPQ

S
ingle

Inheritance

Visualworks1 54 5 261
Visualworks2 250 13 2,430
Digitalk2 54 3 130
Digitalk3 281 9 1,040
IBM Smalltalk 2 3,430 15 3,790
VisualAge 2 18,800 24 8,160
NextStep 13 1 50
ET++ 9 1 60
SI: JDK 1.3.1 162 26 33,600
SI: Corba 11 3 561
SI: HotJava 22 2 211
SI: IBM SF 1,620 69 30,300
SI: IBM XML 1 1 10
SI: Orbacus 27 4 401
SI: Orbacus Test 12 1 110
SI: Orbix 18 3 571

M
ultiple

Inheritance

Self 242 30 27,600
Unidraw 9 3 371
LOV 18 5 3,430
Geode 182 38 66,800
MI: JDK 1.3.1 240 88 324,000
MI: Corba 26 9 10,400
MI: HotJava 30 7 3,390
MI: IBM SF 903 307 1,740,000
MI: IBM XML 2 1 140
MI: Orbacus 31 11 12,700
MI: Orbacus Test 11 4 1,740
MI: Orbix 31 14 12,400

M
ultiple

D
ispatching

Cecil 57 9 6,410
Dylan 48 5 1,870
Cecil- 18 4 2,490
Cecil2 16 1 2,650
Harlequin 23 2 2,710
Vor3 24 9 23,400
Vortex3 394 11 42,100

Table 4.3: Encoding creation time in milliseconds, on a 900 Mhz Pentium III, of different
dispatching algorithms

Dispatch time Recall that in TS we associate with each message an array of theκ
addresses of the appropriate binary search code in each slice. The main performance
metric of such code is the number of conditionals.

We computed the average number of such conditionals, taking care to weigh each
slice proportionally to the number of types in it. The average number of such conditionals
in the 35 hierarchies ranged between 0.6 and 3.4; the median value being 2.5. (Even
though the experiments used only non-degenerate families, i.e., families with two or more
methods, it turned out to be that the number of conditionals was sometime zero, precisely
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when there was only one method implementation in a slice.)

A potentially better technique eliminates the jump by coalescing the jump and the
binary branch code of each message. Observe that with this technique dispatching time
increases fromO(log|F |) to O(log κ|F |). In practice, if this is implemented then the
average number of comparisons ranges between 2.5 to 3.8; the median becomes 2.9. We
see that the indirect jump is substituted by about one or two comparisons on average.
We should also say that this coalescing technique reduces the total memory requirement,
since it eliminates the array of theκ addresses which was associated with each message.
We finally note that, for this technique, we can use a weaker definition for the complexity
of an hierarchy, which is:there exists an ordering ofT in which the descendants of any
type define at mostκ intervals.

4.7 Multiple Dispatching

Interestingly, our results have applications also to the more general multiple dispatching
problem.

4.7.1 Introduction to Multiple Dispatching

Remember that in ordinary dispatching, the method to be invoked depends only on the
type of a single receiver. In contrast to this single dispatching,multiple dispatchingis
the dispatch over several arguments. Consider, for example, a geometric modeling ap-
plication, in which shapes such as rectangles, triangles, circles, are to be depicted on
various drawing canvases, such as screens, printers and files. Then, the appropriate draw-
ing method is to be selected according to both the shape and canvas kind. Languages
such asPOLYGLOT [2], KEA [99], COMMONLOOPS [16], CLOS [15], CECIL [26],
DYLAN [120] make only a partial list of the new generation OO languages which sup-
port multiple dispatching in the form ofmulti-methods.

Even though multi-methods are believed to be more expressive, natural and readable
thanmono-methods, they did not find their way into more mainstream languages. One of
the reasons is probably the perceived cost of implementation. The prospect of efficient
multiple dispatching drew much research effort [5, 27, 28, 51, 52, 61, 77, 87, 112]. The
contribution that this paper makes is improving the memory requirements of two existing
practical techniques of multiple dispatching.

Multiple dispatching can be viewed as dispatching over tuples. Given a hierarchy(T ,¹),
we define thec-tuplehierarchy(T c,¹′), where

(a1, . . . , ac)¹′(b1, . . . , bc) iff ∀i = 1, . . . , c : ai¹ bi.

A multi-methodm(t1, . . . , tc) can be thought of as a mono-method defined in themulti-
type(t1, . . . , tc) ∈ T c. However, this perspective does not lead to any efficient algorithms
because of the size of thec-tuplehierarchy.
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4.7.2 Review of Algorithms for Multiple Dispatching

The best practical techniques for multiple dispatching known today areCompressed N-
dimensional Tables(CNT) [5, 52, 87] andSingle-Receiver Projections(SRP) [77]. Both
techniques begin with the samemono-dispatch stage, in which c independent single-
dispatch queries are executed for a multi-method of arityc. The results of these queries
are then used in theresolution stagewhich is technique specific.

The mono-dispatch stage quickly reduces the number of candidate methods using the
following observation. For a given multi-familyF , let Ti(F ) be the set of all types which
occur in positioni in some tuple of the multi-familyF , i.e., if (t1, . . . , ti, . . . , tc) ∈ F
thenti ∈ Ti(F ). Then, the dispatching ofF on a multi-type(t1, . . . , tc), can be made eas-
ier by first using a single-dispatch algorithm for finding for eachi = 1, . . . , c, the dispatch-
ing resultt′i = dispatch(Ti(F ), ti). Notice that it might be the case that(t′1, . . . , t

′
c) 6∈ F .

Consider, for example, the multi-family

F = {(A, A), (A, D), (B, D), (E, D)}, (4.12)

defined over the type hierarchy of our running example (Figure 4.1). Then,

T1(F ) = {A, B, E},
T2(F ) = {A, D}. (4.13)

In dispatching the multi-type(H, D), the mono-dispatch stage first determines thatt′1 = E
and thatt′2 = A. The resolution stage then continues with the multi-type(E, A). Note that
even though(E, A) 6∈ F , we still have thatdispatch(F, H, D) = dispatch(F, E, A).

Fact 4.3 (DUJARDIN ET AL. [52, P. 129]).If dispatching never result innull then there
is always a unique sucht′i. Further, dispatching on(t1, . . . , tc) is the same as dispatching
on (t′1, . . . , t

′
c), i.e.,

dispatch(F, t1, . . . , tc) = dispatch(F, t′1, . . . , t
′
c).

The CNT technique creates ac-dimensional dispatch table with entries for each multi-
type in the cartesian product

T1(F )× · · · × Tc(F ).

The dispatching table for the multi-family of (4.12) is shown in Table 4.4.

A D
A (A, A) (A, D)
B null (B, D)
E (A, A) (E, D)

Table 4.4: CNT representation for the multi-family of (4.12)

The resolution stage in CNT requires onlyO(c) time. The number of memory cells
for representing the multi-dimensional dispatch table is reduced fromO(nc) to

|T1(F )| × · · · × |Tc(F )| = O(|F |c), (4.14)
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which might still be very large.

SRP gives a different tradeoff in which the time of resolution increases toO(c|F |),
while the space (in bits) is

|F | (|T1(F )|+ · · ·+ |Tc(F )|) = O(c(|F |)2). (4.15)

An asymptotic comparison of the bound (4.15) withO((|F |)c log|F |), the bound on num-
ber of bits in the CNT representation obtained from (4.14), as well as practical experience,
shows that SRP is usually more space efficient than CNT.

SRP uses an encoding of subsets ofF as bit vectors of length|F |. The positions in
this bit vector are given in a topological order, so that smaller multi-types are positioned
first. For alli = 1, . . . , c, and for allt ∈ Ti(F ), the technique encodes the set of all family
members which might be candidates if theith argument is of typet, i.e., the set

{(t1, . . . , ti, . . . , tc) ∈ F | t¹ ti}. (4.16)

At the resolution phase, the intersection of allc sets defined by (4.16) is computed
by ANDing the bit-vector representation of these sets. The smallest multi-type in the
intersection is then found using afind-first-setoperation, which can often be implemented
as a single machine instruction.

Assuming that the multi-methods in (4.12) are positioned in the following order:

{(E, D), (B, D), (A, D), (A, A)},

then the bit-vectors assigned with the setsT1(F ) andT2(F ) of (4.13) are shown in Ta-
ble 4.5.

T1(F ) vector
A 0011
B 0100
E 1111

T2(F ) vector
A 0001
D 1111

Table 4.5: SRP representation for the multi-family of (4.12)

4.7.3 Reducing the Space Requirement of the Mono-dispatch Stage
with Type Slicing

We applied the mono-dispatch reduction on multiple dispatching benchmarks, drawn
from various languages. The resulting hierarchies were used as benchmarks to single-
dispatching algorithms. Degenerate multi-families, and degenerate arguments were re-
moved.3

The mono-dispatch stage in SRP or CNT [5, 52, 77, 87] is currently carried out using
either the technique of SC or RD for single dispatching, which are both null elimination
schemes.

3A multi-family F is degenerate if|F | = 1. Theith argument is degenerate if|Ti(F )| = 1.
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Table 4.6 compares the average number ofbitsper multi-family for the mono-dispatch
stage and the resolution stage. Themono-dispatch stageis carried out using either our
type slicing (TS) technique, or using an ideal null elimination scheme which requiresw
entries. Theresolution stageis carried out using either SRP or CNT. The results were
broken down by arity of the multi-method, which ranged between 2 to 4.

Arity
Hierarchy 2 3 4

TS wa SRP CNT TS wa SRP CNT TS wa SRP CNT
Cecil 296 718 234 110 380 1,718 168 501 263 2,798 16 16
Dylan 228 1,100 115 142 496 3,903 609 8,906 697 4,031 801 38,475
Cecil- 269 177 180 473 327 137 30 73 408 272 16 16
Cecil2 241 373 270 644 286 740 30 73 352 272 16 16
Harlequin 283 466 148 185 284 471 123 238 0 0 0 0
Vor3 330 303 347 925 485 278 666 1,449 328 320 16 16
Vortex3 351 2,100 294 720 469 5,996 302 828 472 320 16 16

aAn ideal null elimination scheme

Table 4.6: Average number of bits per family for the mono-dispatch stage and the resolu-
tion stage

The space requirements presented in the table are in a way a lower bound, since we
used a bit granularity rather than byte. For instance, in the ideal null elimination scheme,
an entry for familyF occupiesdlog2|F |e bits. Also, in thec-dimensional matrix of CNT,
the number of bits in one matrix entry is not necessarily divisible by 8. The same is true
for the bit-vector size in SRP, or the size of entries in our array implementation of TS.
Therefore, shift and mask operations are needed in order for the assumption to hold.

We observe the following in the table:

1. The relative advantageof SRP over CNT (in theresolution stage) increases with
the arity. For example, in theDYLAN hierarchy SRP improves on CNT by 19% for
an arity of 2, by 93% for an arity of 3, and by 98% for an arity of 4. This fact is in
agreement with the theoretical analysis of SRP in (4.15) and of CNT in (4.14).

2. The space requirement of themono-dispatch stageusing an ideal null elimination
scheme dominates those of theresolution stageusing SRP. In other words, the ben-
efits of a space efficient resolution stage are wasted if we simply use RD or SC in
the mono-dispatch stage.

The reason that null elimination performs so poorly in the multiple dispatching
benchmark is that many multi-methods haveroot-type argumentsto handle unex-
pected combination of arguments. Null elimination schemes cannot compress such
multi-methods. Therefore, it was even suggested [77] to compare different algo-
rithms on data sets without such multi-methods. Duplicates elimination schemes,
such as CT and our TS, performs especially well on such cases.

3. Using TS instead of a null elimination scheme reduces, in most cases, the space
requirement of themono-dispatch stage. In the Cecil- and Vor3 hierarchies (and
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in the Cecil2 hierarchy for the case of an arity 4) an ideal null elimination scheme
is better than TS. However, in the other five hierarchies TS is better by as much
as 92%.

4.8 Incremental Algorithm for Constant-time Subtyping
Tests

4.8.1 Problem Definition

In the incremental versionof the subtyping problem, the type hierarchy may grow during
program execution as new types are added as leaves. Such additions are allowed, e.g.,
in JAVA [7]. This dynamic hierarchy model gains increasing popularity since it shortens
the initialization time of applications loaded from a local storage device, such as a disk,
and even more so from a remote device such as the network. Also, in mission critical
systems, in which an application cannot be restarted, it is convenient to make updates to
the running software by simply loading more types. Finally, we note that this problem
also appears in the implementation of ScopedMemory of Real-time Java [34, 110] where
the memory is organized at runtime in a dynamic tree structure.

Almost all previous work on the subtyping problem [59,84,90,115,127,133] mention
an incremental extension of the proposed algorithm. However, these after thought addi-
tions invariably suffer from the limitation that the total time for building the associated
data structures is much greater in a piecemeal feed of the type hierarchy, than if the entire
hierarchy is supplied up front.

An algorithm for the dispatching problem is also a solution to the subtyping problem,
since if we associate with each typet a unique familyFt = {t}, thena¹ b holds precisely
whendispatch(Fb, a) 6= null. We know of no opposite reduction. Indeed, solutions of
the subtyping problem tend to be more efficient then their dispatching counterparts.

After this reduction, applying TS gives constant-time subtyping tests. The reason is
that the dispatch time isO(log|F |), and |F | = 1. For completeness we describe the
subtyping algorithm in detail.

4.8.2 Previous Work on Subtyping Tests

(B)PE: (Bit) Packed Encoding[133] SC was specialized into a subtyping test scheme
called Packed Encoding (PE), by Vitek, Horspool and Krall. They also suggested packing
several identifiers into the same byte, resulting in an encoding called Bit Packed Encod-
ing (BPE).

NHE: Near Optimal Hierarchical Encoding[90] Bit-vector encodingembeds the hi-
erarchy in the lattice of subsets of{1, . . . , β}. In this scheme, each typea is encoded as a
vectorveca of β bits, such that relationa¹ b holds iff

vecb ∧ veca = vecb . (4.17)
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The challenge in building a bit-vector encoding is in finding the minimalβ for which
such an embedding is possible. The problem is NP-hard [75], but several good heuristics
were proposed. Currently, NHE due to Krall, Vitek and Hoorspool, is the best (in terms
of smallestβ) algorithm for bit vector encoding.

Bommel and Beck [127] describe an incremental technique for updating a bit-vector
encoding. Although no asymptotic results are given, and testing was limited to “randomly
generated hierarchies”, it appears from the authors description that the technique is useful
for small hierarchies, with at most 300 types.

PQE: PQ-Encoding[136] PQ-encoding, which uses PQ-trees [17] gives one of the best
compression results of the subtyping matrix, while maintaining constant time for queries.
PQE is not incremental since it requires feeding whole program information into a very
sophisticated data structure.

Dynamic subtyping in single inheritance Dietz [40, 41] suggested an asymptotically
optimal solution to the dynamic subtyping problem, i.e., linear space requirement and
constant time for queries and additions. The idea is to maintain the pre- and post-orders
of the tree in anordered list(see Section 4.10). Subtyping tests are answered by using
two ORDER queries relying on the fact thata¹ b iff a occurs beforeb in the post-order
andb occurs beforea in the pre-order.

A different incremental algorithm for single inheritance is Cohen’s algorithm [29].
Let lt = |ancestors(t)| denote the level oft. The algorithm associates with each typet an
array of lengthlt, storing the type-id of eacht′º t in positionlt′. Cohen’s algorithm gives
simpleand constant-time subtyping tests. The cost is that the space requirement might
be O(n2) if the hierarchy is, for instance, a long chain. In practice, since the maximal
number of ancestors is relatively small, the space requirement of Cohen’s encoding is
tolerable. Jalapẽno [4], IBM implementation of theJAVA virtual machine (JVM), uses
Cohen’s algorithm for subtyping tests where the supertype is a class.

4.8.3 Subtyping using Type Slicing Scheme

Our incremental subtyping algorithm is based on the order-preserving heuristic for main-
taining the slices (described in Section 4.10). The non-incremental variant is described
next.

Figure 4.5 showed the slicing of the running example into two slices. We associate
with typeA, for example, the following data,

sA = 1,

idA = 2,

D1(A) = [2, 4],

D2(A) = [1, 3].

(4.18)

Encoding a hierarchy in this fashion requires at most2κn + 2n memory cells.
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Sincedescendants(t) =
⋃

1≤i≤κ Di(t), we have thata¹ b holds if and only if the
position ofa is within the appropriate interval ofb, i.e.,

ida ∈ Dsa(b). (4.19)

For instance, we test whetherG¹A, by retrieving the slice ofG, sG = 1, and its identi-
fier, idG = 4. We then determine whether this identifier falls inside the appropriate interval
of A. In this example, we conclude thatG¹A since4 ∈ [2, 4].

4.8.4 Experimental Results for Type Slicing

To make the comparison of incremental and non-incremental algorithms meaningful, we
do not include in the space requirement pointers or other auxiliary data used in computing
the encoding or in maintenance of the dynamic data structure. In the case of ourtype
slicing (TS) algorithm this auxiliary data is a small number of (about four) words per
type.

TheBTS variantof the basic TS algorithm appliesbit packingto compress the iden-
tifiers of types in small slices, in a manner similar to BPE. Note that the BTS and the
BPE variants are slower than their non-packing counterparts, since they are obliged to
use shifts and masks to unpack the type identifiers. As mentioned in Section 4.6, the
superscript PQ shall denote the variant which use the PQ heuristic.

Creation time Table 4.7 compares both the total and the per-type run time of differ-
ent subtyping algorithms on modern computing platforms. In the worst case hierarchy
(Geode), the average time required to insert a type using (B)TS algorithms is as little
as 16 micro-seconds. We also see that the PQ variants of TS are very slow, requir-
ing 17.223 mSecper typein this hierarchy, whereas the basic TS algorithms require just
a little more (21 mSec) to process theentirehierarchy.

To estimate the cost of using the PQE in an incremental fashion, we can compare the
total timeof PQE with theper-type timeof the incremental (B)TS. In doing so we find
that (B)TS is three to four orders of magnitude faster than PQE. Even thetotal runtimeof
the (B)TS algorithms is, on average, three times faster than that of PQE.

Despite the fact that the data on the NHE runs was generated on a different architec-
ture, we argued [136] that PQE is in general faster than NHE.

Space requirement The main metric of subtyping algorithms is the encoding length,
i.e., the number of bits per type. Table 4.8 compares the encoding length obtained by
TS and its three variants with those of some other algorithms over the standard ensemble
of 13 multiple inheritance hierarchies.

In comparing the last two columns of the table we learn that our quick order-preserving
heuristic can be improved, sometimes by as much as 40% by applying the PQ heuristic.
However, in going through the BTS column we discover that bit-packing is a more effec-
tive compression technique, outperformed by TSPQ in only two out of the 13 hierarchies.
Therefore, it seems worthwhile to spend the little extra time in the subtyping tests of BTS.
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Hierarchy
PQEa NHE b (B)PEc (B)TS a (B)TSPQ a

Total PerT Total PerT Total PerT Total PerT Total PerT
(mS) (µS) (mS) (µS) (mS) (µS) (mS) (µS) (mS) (µS)

IDL 1 15 - - 5 75 0.1 1 1 15
Laure 3 10 21 71 9 31 0.5 2 90 305
Unidraw 1 2 93 151 10 16 1.6 3 90 147
JDK 1.1 1 4 19 84 10 44 0.3 1 30 133
Self 48 27 1,367 759 22 12 20.2 11 12,100 6,715
Ed 29 67 136 313 12 28 1.7 4 711 1,638
LOV 42 96 168 385 10 23 2.0 5 941 2,158
Eiffel4 146 73 - - 29 15 19.5 10 11,400 5,703
Geode 311 236 1,902 1,443 28 21 20.6 16 22,700 17,223
JDK 1.18 15 9 - - 26 15 10.0 6 2,520 1,479
JDK 1.22 81 19 - - 77 18 38.1 9 32,500 7,490
JDK 1.30 113 21 - - 90 17 53.8 10 49,800 9,158
Cecil 24 26 - - 13 14 4.4 5 2,000 2,146

Total 815 42 - - 341 17 172.8 9 134,883 6,880
Median 29 21 136 313 13 18 4.4 5 2,000 2,146

a900 Mhz Pentium III
b500 Mhz 21164 Alpha
c750 Mhz Pentium III, user time in Linux

Table 4.7: Total time (in mSec) and average time per type (µSec) for generating a subtyp-
ing encoding

Hierarchy PQE NHE BPE PE BTSPQ BTS TSPQ TS
IDL 0 17 32 96 56 64 40 56
Laure 6 23 63 128 72 80 88 152
Unidraw 2 30 63 96 72 72 88 88
JDK 1.1 1 19 32 64 64 64 56 56
Self 39 53 126 344 88 96 120 152
Ed 36 54 94 216 144 152 376 408
LOV 42 57 94 216 144 152 376 408
Eiffel4 65 72 157 312 160 176 312 344
Geode 80 95 157 408 248 264 600 632
JDK 1.18 25 39 94 128 104 112 152 184
JDK 1.22 36 62 157 184 152 168 280 312
JDK 1.30 41 65 188 216 160 192 280 376
Cecil 22 58 94 192 104 112 184 216

Total 40 61 145 227 144 161 266 315
Median 36 54 94 192 104 112 184 216
Minimum 0 17 32 64 56 64 40 56
Maximum 80 95 188 408 248 264 600 632

Table 4.8: The encoding lengths of different subtyping algorithms
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Note also that applying the PQ heuristic on top of bit packing does not yield much:
the maximal compression of the encoding length in doing so is 16.7%. Therefore, our
basis of comparison of the incremental algorithms with their static counterparts will be
the BTS column.

The BTS encoding is better than PE in all hierarchies, but is only better than BPE in
the Self hierarchy. It is slightly worse than BPE in all but the Geode hierarchy. BTS does
not yield as good encoding length as NHE and PQE. However, since BTS is incremental,
it can answer subtyping queries during any stage of the creation process—a task in which
PE, BPE, NHE and PQE fail.

4.9 Open Problems

The most important problem this thesis leaves open is an incremental dispatching algo-
rithm, i.e., allowing additions of types, along with their methods, at the bottom of the
hierarchy. Another natural extension worth investigating is in allowing alsodeletionof
leaves from the hierarchy, as supported, at least in part, byJAVA . Other extensions include
addition of new methods to existing types, or as it might be the case in knowledge repre-
sentation, reasoning, database management, and query processing, allowing insertion of
types anywhere in the hierarchy.

In the more pure algorithmic front, it would be both interesting and useful to general-
ize the PQ-tree data structure to support modifications of existing constraints when a new
element is added to the universe.

Our algorithms assumed that ambiguities are resolved by an appropriate augmentation
of families. Some OO languages resolve ambiguities based on alinearization of the
partial order¹. COMMONLOOPS[16], for example, uses a global type ordering, while
CLOS[15] uses a local type ordering. Extending our algorithms to support linearization
based ambiguity resolution appears to be a worthy prospect.

Dispatching and linearization also occur inJAVA exception handling, as the following
code excerpt shows.

try {... }
catch (D d) {... }
catch (E e) {... }
catch (A a) {... }

When an objecto of a dynamic typea = a(o) is thrown in atry block, the program
executes the firstcatch block whose argument is a supertype ofa. Thus, each of the
catch clauses is a subtyping test. When the number of such clauses is large, it might be
worthwhile to choose the exception handler using a dispatching algorithm which will find
the clause with the smallest supertype.4 Ambiguities are resolved using the order of the
catch blocks chosen by the programmer.5

4The above code, if read in C++ [124], leads to the same problem. This is due to the separate compilation
model of C++, in spite of the fact that exceptions are caught according to thestatictype of the thrown object.

5In fact, there is no possibility for ambiguity inJAVA exception handling. The reason is that a type in
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4.10 An Order-Preserving Heuristic for Finding the Slices

The algorithm for creating the slices uses the order-preserving heuristic as an internal
procedure in the following fashion. We traverse the types in a topological order, i.e., as if
the hierarchy is given to us incrementally where new types can be added only as leaves.
For each such type we try to find the first slice it can be added to, without violating the
slicing property. If no such slice is found, we create a new slice.

Given a sliceT i and a typet, we give an algorithm whose runtime is|ancestors(t)|,
which checks whether there is a valid list location for insertingt, and if so, finds it. The
idea is to maintain anordered listfor all types in a slice. The slicing property is slightly
modified so that the setsDi(t) are consecutive inthe ordered listof sliceT i.

An ordered listis a data structure supporting two kinds of operations:INSERT trans-
actions andORDER queries of the following sort. Given two positions in the list (usually
as pointers to list nodes), determine which one precedes the other. In a paper entitled
“Two Algorithms for Maintaining Order in a List”, Dietz and Sleator [41] give the best
algorithm for this problem, achievingO(1) worst-case time per operation. However,
the authors comment that their other algorithm “is probably the best algorithm to use
in practice”, even though it is theoretically inferior, since its amortized6 insertion time
is O(log n). This other algorithm is based on a technique known asself-adjustment. In a
nutshell, each list node is assigned an integer position in an increasing order, thusORDER

queries are answered in constant time. “Holes” are left to support future insertions, and
if a “hole” is filled, then we redistribute the positions in some “sufficiently large and un-
even” list interval. We implemented this simple algorithm and indeed found it to be very
fast in practice.

Before describing the order-preserving heuristic we need to make the notions of list
locations and list intervals more precise.

Definition 4.4 A locationof a linked list is either (i) the beginning of the list, (ii) the end
of the list, or (iii) any point between two consecutive nodes of the list. Aninterval in the
list is a set of consecutive locations. Theboundaryof an interval comprises its first and
last locations. All other locations are called theinteriorof the interval.

The boundary usually contains two locations, the first and the last. For example,
the interval marked asD1(A) in Figure 4.7 has two interior locations and two boundary
locations.

The interior ofdegenerate intervalsis empty; in such intervals the first and last loca-
tions are the same. Anempty intervalhas an empty boundary and an empty interior.

Definition 4.5 Theinterval of the setDi(t) in the ordered list ofT i includesall locations
in the sub-list defined byDi(t).

thecatch block must be a subtype of theclass Throwable , andJAVA has a single inheritanceclass
hierarchy (and ambiguities cannot occur in a single inheritance hierarchy).

6Theamortized timeof an operation isc(n), if a sequence ofn operations requires at mostnc(n) time.
The worst case time of any single operation can however be much greater thanc(n).
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Figure 4.7: Addition of a new type to the first slice of Figure 4.5

In other words, the interval of the setDi(t) also includes the location prior to the first
element ofDi(t), as well as the location following its last element.

In the example, we see in Figure 4.5 thatA has three descendants in the first slice,
i.e.,D1(A) = {A, D, G}. In Figure 4.7 we see that these three types are consecutive in the
ordered list of the first slice and that the interval ofD1(A) has four locations.

When inserting a new typet to the ordered list ofT i, we search for a list location
where insertingt will not violate the slicing property. Such locations must belong to the
interval of Di(t

′) for all ancestorst′ of t, i.e., t′º t. Let I denote the set of all such
intervals, and letΛ denote the intersection of all intervals inI. A list locations inΛ is
called acandidatefor insertingt.

Algorithmically, Λ is computed by finding the largest first location of the intervals
in I, and the smallest last location of these intervals. (Comparisons are carried out using
simpleORDERqueries.) IfΛ is empty, then we conclude thatt cannot be inserted intoT i.
The time for computing the intersection and for checking whether it is empty is in the
following asymptotic growth class:

O(|parents(t)|) ⊆ O(|ancestors(t)|).

It is also required thatt does not “break” any interval ofDi(t”), t” 6 º t. More
precisely, a location is aninvalid candidateif it belongs to theinterior of these intervals.
Although it is possible to check each candidate location` ∈ Λ against every interval of
a typet” ∈ T \ ancestors(t), the running time of this exhaustive search may be linear in
the size of the hierarchy!

Figure 4.7 shows the ordered list of the first slice of Figure 4.5. We try to insert to that
slice a new type whose parents areA andC. We see the intervals ofD1(A) andD1(C),
and their intersectionΛ. The new type can only be inserted in a candidate location` ∈ Λ.
The candidate location between typesD andG, for example, is invalid since it belongs to
the interior of the interval ofD1(D), andD is not an ancestor of the new type. The other
two candidate locations are valid.

Thecountsλ` associated with each location in Figure 4.7 are a part of a more efficient
implementation for determining if a location is an invalid candidate. For each location`
in the ordered list, letλ` be the number of all intervalsDi(t), such that̀ is in theinterior
of Di(t). For instance, the location between typesD andG has a count of3, since it is in
the interior ofD1(A), D1(C) andD1(D).

A location ` in the interior of Λ is contained in the interior ofall intervals defined
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by Di(t
′), t′º t. Therefore, for all candidate locations` ∈ Λ we have that

λ` ≥ |ancestors(t)|. (4.20)

The location is an invalid candidate if it is contained in the interior of any other interval,
and therefore

λ` > |ancestors(t)|. (4.21)

In the example of Figure 4.7, the location between typesD andG is an invalid candidate,
since its count is strictly higher than the number of ancestors.

We must be more careful in checking a location` in theboundaryof Λ. Let I ∈ I be
arbitrary. Then, by definitioǹ ∈ I. It is not however guaranteed that` is in the interior
of I. We therefore compute the numbern` of intervalsI ∈ I such that̀ is in the interior
of I. A boundary locatioǹ is an invalid candidate iff

λ` > n`. (4.22)

In our example, both boundary locations are valid candidates.

Although there are several special cases and many nitty-gritty details, it is a straight-
forward matter to update inO(1) time the countsλ` with every insertion. (Note that the
count may change only for two locations: before and after the insertion point.) Also,
computingn` and checking (4.22) can be done inO(|ancestors(t)|) time. It is potentially
more time consuming to do the check (4.21) since we have no a priori bounds on|Λ|.

Non-exhaustive techniques for finding a valid insertion location We found empiri-
cally that if t could not be inserted at the boundary ofΛ, then it was rarely possible to
insert it to the interior ofΛ. For example, out of the 4339 types of JDK 1.22, only 22
types (less than 0.5%) were inserted in the interior ofΛ. In all other hierarchies of our
data set, the total number of such types was even smaller, and their fraction was always
lower than 1%.

Therefore, it does not seem necessary to apply the check (4.21) at all. Nevertheless, we
should note that there are ways of implementing (4.21) more efficiently than an exhaustive
search. It follows from (4.20) and (4.21) that there exists a valid location` in the interior
of Λ if and only if

min{λ` | ` is in the interior ofΛ} = |ancestors(t)|.

Therefore, the problem of finding a valid location in the interior ofΛ is reduced to the
famousrange minimaproblem [65]. A simple solution to the range minima problem is to
maintain a balanced binary search tree (BBST) over the ordered list ofT i, such that each
internal node in it stores the minimum ofλ` of all locations̀ in the subtree rooted at this
node. This representation addsO(log n) time to each insertion operation. It is standard
to use this BBST to compute the minimum of any given interval. More sophisticated
solutions to the range minima problem require only constant time per operation [65]. It is
not clear whether these algorithms have any practical utility.
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Inserting types with a single parent into multiple inheritance hierarchies Finally,
we present an optimization for quickly inserting a typet with a singleparentp. Let i
be the slice ofp, i.e., p ∈ T i. Consider the ordered list ofT i, and a list locatioǹ
immediately to the left (or to the right) ofp. We claim that̀ is valid for t. Assume the
contrary, i.e.,̀ is in the interior of some interval defined byDi(t”), and thatt” is not a
supertype oft. Combined with the fact thatp is adjacent tò, we conclude thatp ∈ Di(t”),
and therefore,p¹ t”. Sincet¹ p, it follows thatt¹ t”, which contradicts our assumption.

Incremental subtyping algorithm Recall that each slice is kept in anordered list. In-
stead of associating integer values withidt andDi(t) as in (4.18), we now use pointers
to cells in the ordered list. The test (4.19) can be carried out in constant time using two
ORDER queries. We show next how to update this representation as new types are added.

When a typet is added to the ordered list of sliceT i, only the list intervals of its
ancestors can change. Therefore, for eacht′º t we check ift was added at the boundary
of Di(t

′), and if so update it. Updating all list intervalsDi(t
′) takesO(|ancestors(t)|)

time. Since the insertion time of the heuristic isO(κ|ancestors(t)|), the asymptotic time
bound remains the same.

When a new slice is created, the arrays which storeDi(t), i = 1, . . . , κ, must be
extended. Note that with the cost of a constant factor increase of the space requirement,
the amortized time for extending an array is constant. Using techniques of “background
copying” [42], theworst casetime for an array extension operation becomes constant as
well.



Chapter 5

Incremental Algorithms for Dispatching
in Dynamically Typed Languages

Chapter Summary
A fundamental problem in the implementation of object-oriented languages is that of a frugaldis-
patching data structure, i.e., support for quick response to dispatching queries combined with com-
pact representation of the type hierarchy and the method families. Previous theoretical algorithms
tend to be impractical due to their complexity and large hidden constant. In contrast, successful
practical heuristics, including Vitek and Horspool’scompact dispatch tables(CT) [132] designed
for dynamically typed languages, lack theoretical support. In subjecting CT to theoretical analysis,
we are not only able to improve and generalize it, but also provide the first non-trivial bounds on
the performance of such a heuristic.

Letn,m, ` denote the total number of types, messages, and different method implementations,
respectively. Then, the dispatching matrix, whose size isnm, can be compressed by a factor of at
mostι ≡ (nm)/`. Our main variant to CT achieves a compression factor of1

2

√
ι. More generally,

we describe a sequence of algorithmsCT1, CT2, CT3, . . . , whereCTd achieves compression by
a factor of (at least)1d ι1−1/d, while usingd memory dereferencing operations during dispatch.
This tradeoff represents the first bounds on the compression ratio of constant-time dispatching
algorithms.

A generalization of these algorithms to amultiple inheritancesetting, increases the space by
a factor of(2κ)1−1/d, whereκ is a metric of the complexity of the topology of the inheritance
hierarchy, which (as indicated by our measurements) is typically small.

The most important generalization is anincrementalvariant of theCTd scheme for a single
inheritance setting. This variant uses at most twice the space ofCTd, and its time of inserting a
new type into the hierarchy is optimal. We therefore obtain algorithms for efficient management
of dispatching in dynamic-typing, dynamic-loading languages, such asSMALLTALK and even the
JAVA invokeinterface instruction.

Message dispatchingstands at the heart of object-oriented programs, being the only
way objects communicate with each other. To implement dynamic binding during dis-
patch, the runtime system of object-oriented languages uses adispatching data structure,

87
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in which adispatching queryfinds the appropriate implementation of the message to be
called, according to the dynamic type of the message receiver. A fundamental problem in
the implementation of such languages is then a frugal implementation of this data struc-
ture, i.e., simultaneously satisfying (i) compact representation of the type hierarchy and
the families of different implementations of each method selector, and (ii) quick response
to dispatching queries.

Virtual function tables(VFT) are a simple and well known (see e.g., [123]) incremen-
tal technique which achieves dispatching in constant time (two dereferencing operations),
and very good compaction rates. The VFT of each type is an array of method addresses.
A location in this array represents a message, while its content is the address of an im-
plementing method. The VFT of a subtype is an extension of the VFT of its supertype,
and messages are allocated locations at compile time in sequential order. The static type
of the receiver uniquely determines the location associated with each message. VFTs rely
on single inheritance. Multiple inheritanceimplementations exist [68], but they are not
as elegant or efficient.

The challenge in the dispatching problem is therefore mostly in dealing withdynami-
cally typedand/or multiple inheritance languages. Also very important is theincremental
version of this problem, in which types (together with their accompanying messages and
methods) are added at the bottom of the hierarchy.

Our contribution (described in greater detail in Section 5.3) includes a provable trade-
off between space and dispatching time with extensions to multiple inheritance hierar-
chies. The pinnacle of the results is an incremental algorithm for maintaining a compact
dispatch table in dynamically typed languages.

Outline The remainder of this chapter is organized as follows. The subtyping tests
problem is defined in Section 5.1. Some straightforward solutions for this problem are
described in Section 5.2. Section 5.3 mentions our results in perspective of these solu-
tions. Section 5.4 presents the generalized CT schemes for single inheritance hierarchies.
Section 5.5 shows how these schemes can be made incremental. A (non-incremental)
version of these schemes for multiple inheritance hierarchies is described in Section 5.6.
Section 5.7 presents the experimental results: timing and compression values on a data-
set of 35 hierarchies collected from both single and multiple dispatching languages. Open
problems and directions for future research are the subject of Section 5.8.

5.1 Problem Definition

We define the dispatching problem in a similar fashion to thecolored-ancestorsabstrac-
tion described by Ferragina and Muthukrishnan [60]: ahierarchy is a partially ordered
set (T ,¹) whereT is a set of types and¹ is a reflexive, transitive and anti-symmetric
subtype relation. Themin operator return the set of smallest types in any given set:

min(X) = {t ∈ X | 6 ∃t′ ∈ X : t′ 6= t, t′¹ t}.
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Let F ⊆ T denote thefamily of types which have amethod implementationfor the same
message.1

For example, consider the single inheritance hierarchy in Figure 5.1a. Type names are
uppercase and messages are lowercase, e.g., typeD implements the messagesc, e andf.
Then,{A, D, E} is the family of method implementations ofc.
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Figure 5.1: (a) A small example of a single inheritance hierarchy, and (b) its dispatching
matrix

Given a familyF and a typet, cand(F, t) is the set of candidates inF , i.e., those
ancestors oft in which an implementation of the given message exists:

cand(F, t) ≡ F ∩ ancestors(t). (5.1)

In the figure, we have for examplecand({A, D, E}, G) = {A, D}.
A dispatching querydispatch(F, t) returns eitherthe smallest candidateor null if no

such unique candidate exists. (Anull result represents either themessage not understood
or message ambiguouserror conditions.) Specifically,

dispatch(F, t) ≡
{

t′ if min(cand(F, t)) = {t′},
null otherwise.

Definition 5.1 Given a hierarchy (T ,¹) and a family collectionF ⊆ ℘(T ), thedispatch-
ing problemis to encodethe hierarchy in a data structure supportingdispatch(F, t)
queries for allF ∈ F , t ∈ T .

A solution to the dispatching problem is measured by the following three metrics:
(i) space, (ii) query time, and (iii) encoding creation time. We would like to express
these as a function of the following problem parameters〈n,m, `〉: the number of types,
families, and implementations (or family members). Specifically,

n ≡ |T |,
m ≡ |F|,
` ≡

∑
F∈F

|F |.
(5.2)

1We abstract away from the nomenclature of different languages, and use the termsmessage(also called
selectors or signature) for the unique identifier of a family ofimplementation(also called methods, member
functions, operations, features, etc.)
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In Figure 5.1 for example, we haven = 7, m = 6 and` = 16.

The incremental version of the problem, is to maintain this data structure in the face
of additions of types (with their accompanying methods) to the bottom of the hierarchy,
as done in languages such asJAVA [7].

5.2 Straightforward Solutions

The most obvious solution is ann × m dispatching matrix, storing the outcomes of all
possible dispatching queries. Figure 5.1b shows the dispatching matrix of Figure 5.1a,
where thè grey entries correspond to (non-inherited) family members.

In the dispatching matrix representation, queries are answered by a quick indexing
operation. However, the space consumption is prohibitively large, e.g., 512MB for the
dispatching matrix in the largest hierarchy in our benchmarks (8,793 types and 14,575
families).

Note that an encoding that does not try to compress pointers must use at least` cells for
representing thèdifferent method addresses. We would like to get as close as possible to
this space requirement while preserving a constant and small query time. The dispatching
matrix can be potentially compressed by a factor of

ι ≡ (nm)/`. (5.3)

We shall refer toι as theoptimal compression factor, and to schemes attempting to
reachι asduplicates-elimination schemes. In our data-set of 35 large hierarchies (see
Section 5.7),ι ≈ 725.

Let w denote the number of non-null entries in the dispatching matrix, i.e.,

w ≡ |{〈F, t〉 | dispatch(F, t) 6= null}| . (5.4)

By eliminatingnull memory cells, the dispatching matrix might be compressed by a factor
of (nm)/w, which is around 150 in our data-set. Examples ofnull-elimination schemes
are row displacement[45, 47], selector coloring[44, 118], andvirtual function tables
(VFT) [123]. In single inheritance and static-typing setting of the problem, the VFT
technique uses preciselyw memory cells.

In the more general setting, the matrix can also be compressed intoO(w) cells (with
fairly large constants) by using perfect hashing [64] or one of its variants. Even though
dispatching time is constant in perfect hashing, it is complicated by the finite-field arith-
metic incurred during the computation of the hash function.

With additional increase to the complexity of dispatching, there are variations to the
famous FKS [64] scheme which usew + o(w) cells. There is also a dynamic version of
perfect hashing [42] which can support incremental dispatching. The memory toll is even
larger, with constants in the range of a thousand.

Notice that even complete null-elimination gives suboptimal compression, sincew
might be substantially larger than`. In our benchmark of 35 large hierarchies,w/` is on
average 8.3, and in one hierarchy it is 122.4!
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It is not difficult to come close to complete duplicates-elimination, i.e., a space ofO(`),
with a simple representation of the hierarchy as a graph where types are nodes and im-
mediate inheritance relations are edges. The cost is of course the query time, which
becomesO(n), since we must traverse all the ancestors of a receiver in order to find the
nearest family member. Sophisticated caching algorithms (as employed in the runtime
system ofSMALLTALK [37]) make the typical case more tolerable than what the worst
case indicates.

5.3 Our Result in Perspective

There is a large body of research on the dispatching problem (see e.g., [37,44,45,47,78,
118, 131, 132, 135, 137]). The focus in these was on “practical” algorithms, which were
evaluated empirically, rather than by provable upper bound on memory usage. The main
theoretical research on the topic [60,100] produced algorithms (for the single inheritance
setting) which using minimal space (O(`) cells) supported dispatching in doubly logarith-
mic, O(lg lg n), time. However, the hidden constants are large, and the implementation is
complicated.

In this chapter, we describe a different tradeoff: constant-time dispatching ind steps,
while using at mostd` d

√
ι cells. Stated differently, our results are thatd steps in dis-

patching (provably) achieve a compression rate ofι
d d√ι

. For example, withd = 2 the
compression is by a factor of at least half of the square root ofι, the optimal compression
rate. Also, the compression factor is close to optimal,ι

2 lg m
, when the dispatching time is

logarithmic,lg m.

An important advantage of these results in comparison to previous theoretical algo-
rithms is that they are simple and straightforward to implement, and bear no hidden con-
stants. In fact, our algorithms are based on a successful practical technique, namelycom-
pact dispatch tables(CT), which was invented by Vitek and Horspool [132]. Viewed
differently, the results presented here give the first proof of a non-trivial upper bound on
practical algorithms.

Even though the algorithms carry on to multiple inheritance with the same time bounds
of dispatching, the memory consumption increases by a factor of at most(2κ)1−1/d,
whereκ can be thought of as a metric of the complexity of the topology of the inheritance
hierarchy. (In a benchmark of 19 multiple inheritance hierarchies with 34,810 types, we
found the median value of an upper bound forκ is 5, the average is 6.4, and the maximum
is 18.) Our previous work [137] on dispatching gives an implementation of a dispatching
data structure whose space was onlyO(κ`), but the dispatching time was logarithmic. The
results presented here complete the tradeoff spectrum, giving constant time dispatching
with any number of steps. We give empirical evidence that the algorithms perform well
in practice, in many cases even better than the theoretically obtained upper bounds.

We also describe an incremental version of the algorithms in a single inheritance set-
ting, and prove that updates to the dispatching data structures can be made in optimal
time. The cost is in a small constant factor increase (e.g., 2) to the memory footprint.

Readers may also take interest in some proof techniques, including the representation
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of dispatching as search in a collection of partitionings, the elegant Lemma 5.11, and the
amortization analysis of the incremental algorithm.

5.4 Generalization of Compact Dispatch Tables for Sin-
gle Inheritance Hierarchies

For simplicity, assume w.l.o.g. that the hierarchy is a tree (rather than a forest) rooted at
a special node> ∈ T . There cannot be amessage ambiguousin a single inheritance
setting. To avoid the other error situation, namelymessage not understood, we assume
that> ∈ F for all F ∈ F . With this assumption, every dispatching query returns a single
family member. The cost is in (at most) doubling the number of implementations`. (At
the end of this section we will show that the memory toll can be made much smaller.)

Vitek and Horspool’s CT algorithm [132] partitions the family collectionF into k
disjoint slicesF = F1 ∪ . . . ∪ Fk . These slices break the dispatching matrix intok sub-
matrices, also calledchunks. The authors’ experience was that chunks with 14 columns
each give best results, and this number was hard-coded into their algorithm.

Figure 5.2 shows the three chunks of the dispatching matrix of Figure 5.1b for follow-
ing partitioning:

F1 = {Fa, Fb},
F2 = {Fc, Fd},
F3 = {Fe, Ff}.

(5.5)

As Vitek and Horspool observed, and as can be seen in the figure, there are many
identical rows in each chunk. Significant compression can be achieved by merging these
rows together, and introducing, in each chunk, an auxiliary array of pointers to map each
type to a row specimen.
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Figure 5.2: Three chunks of the dispatching matrix of Figure 5.1b

Why should there be many duplicate rows in each chunk? There are two contributing
factors: (i) since the slices are small, there are not too many columns in a chunk, and (ii)
that the number of distinct values which can occur in any given column is small, since,
as empirical data shows, the number of different implementations of a selector is a small
constant. Hence, there could not be too many distinct rows.
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However, these considerations apply to any random distribution of values in the dis-
patching matrix. The crucial observation we make is that a much stronger bound on the
number of distinct rows can be set relying on the fact that the values in the dispatching
matrix are not arbitrary; they are generated from an underlying structured hierarchy.

Consider for example a chunk with two columns, withn1 andn2 distinct implementa-
tions in these columns. Simple counting considerations show that the number of distinct
rows is at mostn1n2. Relying on the fact that the hierarchy is a tree we can show that the
number of distinct rows is at mostn1 + n2.

To demonstrate this observation, consider Figure 5.3a which focuses on the first chunk,
corresponding to sliceF1 = {Fa, Fb}.
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Figure 5.3: (a) The first chunk of Figure 5.1c, (b) the chunk compressed using an auxiliary
array of pointers, and (c) the chunk compressed using an array of labels

As can be seen in the figure, the rows of typesA, D, andF are identical. Figure 5.3b
shows the compressed chunk and the auxiliary array. We see that this auxiliary array maps
typesA, D, andF to the same row.

We call attention to the (perhaps surprising) fact that it is possible to select from the
elements of each row in Figure 5.3b a distinguishing representative. These representatives
are members of what we call themaster-family

F ′ = Fa ∪ Fb = {A, B, C, G}.

The representatives of the four rows in the first chunk areA, B, C andG, in this order.
The figure highlights these in grey. Also note that each member of the master-family
serves as a representative of some row.

Figure 5.3c gives an alternative representation of the chunk, where each row is labeled
by its representative. The auxiliary array now contains these labels instead of pointers.
For example, the second row is labeledB ∈ Fb; the second and the fifth entry of the
auxiliary array storeB rather than the row specimen address.

Our improvement is based on the observation that the distinguishing representatives
phenomenon is not a coincidence and on the observation that CT applies adivide-and-
conquerapproach to the dispatching problem: The search first determines the relevant
master-family, and then continues to select the appropriate result among its members.

Let Ai denote the compressedith chunk of the dispatching matrix, and letB be the
master dispatching matrix, whose columns are the auxiliary arrays of the chunks. Fig-
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ure 5.4 shows matricesA1, A2, A3 andB, which constitute the complete CT representa-
tion for the hierarchy of Figure 5.1. Note that the first column ofB is the auxiliary array
depicted in Figure 5.3c.
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Figure 5.4: CT representation for the hierarchy of Figure 5.1

For each sliceF i let themaster-familyF ′
i be the union of families in that slice, i.e.,

F ′
i ≡

⋃
F∈Fi

F . Then, answering the querydispatch(F, t) at runtime requires three steps:

1. Determine the slice ofF . That is, the family collectionF s, such thatF ∈ F s. If
the partitioning into slices and the selectorF are known at compile-time, as it is
usually the case in dispatching of static-loading languages, then this stage incurs no
penalty at runtime.

2. Fetch the first dispatching resultt′ = dispatch(F ′
s, t). This value is found at the

row which corresponds to typet and the column which corresponds to the master-
family F ′

s, i.e.,t′ = B[t, s].

3. Fetch the final dispatching resultt′′ = dispatch(F, t). This type is found in the row
of t′ and the column ofF in the compressed chunkAs, i.e.,t” = As[t

′, F ].

The algorithm merges together all the different messages inF s. At step 2, we findt′º t,
which is the smallest candidate in the merged master-family. MatrixB (of sizen× k) is
the dispatching matrix of the typesT and the master-family collection{F ′

1, . . . , F
′
k}.

The search then continues witht′, to find t”º t′, the smallest candidate inF , the
original family. Each matrixAi (of size|F ′

i | × |F i|) is the dispatching matrix of the types
in F ′

i and the family collectionF i.

To understand the space saving, consider just two familiesF1 and F2. The naive
implementation of dispatch is usingtwo arrays, each of sizen = |T |, which map each
type t to two typest”1 ∈ F1 andt2” ∈ F2, such thatti” = dispatch(t, Fi), i = 1, 2. A
more compact representation can be obtained by using asinglearray of sizen, to dispatch
first on the merged master-familyF ′ = F1 ∪F2. Let t′ ∈ F ′ be the result of this dispatch.
The crucial point is that the smallest candidate fort′, in eitherF1 or F2, is the same as
for t. Since there are|F ′| ≤ |F1| + |F2| different values oft′, a continued search fromt′

(for eitherF1 or F2) can be implemented using two arrays, each of size|F ′|. The first
such array mapsF ′ to F1; the second toF2. Total memory used isn + 2|F ′| instead of2n
cells, while the cost is an additional dereferencing operation.
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More generally, given a dispatching problem for a family collectionF , theCT reduc-
tion partitionsF into k disjoint slices

F = F1 ∪ . . . ∪ Fk, (5.6)

and merges together the families in each slice by defining a master-family

F ′
i ≡

⋃
F∈Fi

F, (5.7)

for all i = 1, . . . , k. Let Ai be the matrix whose dimensions are

|F ′
i | × |F i|, (5.8)

corresponding to theith slice. Then, the querydispatch(F, t) is realized by the fetch

As[dispatch(F ′
s, t), F ], (5.9)

whereF ∈ F s.

Since both steps 2 and 3 in the dispatching are in essence a dispatching operation,
better compaction of the dispatching data structure might be achieved by applying the CT
technique recursively to either the matrixB, or all the matricesAi. It is not difficult to
see that each of the recursive applications will yield the same dispatching data structure,
in which the set of selectors is organized in a three-level hierarchy of partitions: families,
master-families, and master-master-families (so to speak). We chose to describe this 3-
level system by applying the CT technique to the matrixB. The (potential) saving in
space comes at a cost of another dereferencing step during dispatch. Clearly, we could
recursively apply the reduction any number of times.

We need the following notation in order to optimize these recursive applications, i.e.,
find the optimal number of slicesk, and the size of each slice. Letmemd(n,m, `) denote
the memory required for solving the dispatching problem ofn types,m families and`
method implementations, usingd dereferencing operations during dispatch. A simple
dispatching matrix representation gives

mem1(n,m, `) = nm. (5.10)

Each application of the CT reduction adds another dereferencing, while reducing a
dispatching problem with parameters〈n,m, `〉 to a new dispatching problem with param-
eters〈n, k, `′〉, where

`′ =
k∑

i=1

|F ′
i | =

k∑
i=1

∣∣∣∣∣
⋃

F∈F i

F

∣∣∣∣∣ .

Note that̀ ′ ≤ `. To see this recall that

` =
∑
F∈F

|F | =
k∑

i=1

∑
F∈Fi

|F |,
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and apply the fact that the cardinality of the union of sets is at most the sum of cardinalities
of these sets

`′ =
k∑

i=1

∣∣∣∣∣
⋃

F∈F i

F

∣∣∣∣∣ ≤
k∑

i=1

∑
F∈Fi

|F | = `. (5.11)

The reduction generates the matricesA1, . . . , Ak. To estimate their size suppose that
all slices are equal in size, i.e., they all havex families. (For simplicity we ignore the case
thatm is not divisible byx, in which slices arealmostequal.) Then, the total memory
generated by the reduction is

k∑
i=1

|F ′
i | × |F i| =

k∑
i=1

|F ′
i | × x = x

k∑
i=1

|F ′
i | = x`′ ≤ x`.

To conclude, the costs of the CT reduction are another dereferencing and an additional
space ofx`. In return, a dispatching problem with parameters〈n,m, `〉 is reduced to a new
dispatching problem with parameters〈n, k, `′〉, wherek = m/x and`′ ≤ `. Formally,

memd+1(n,m, `) ≤ `x + memd(n,m/x, `), (5.12)

wherex is arbitrary.

Let CTd be the dispatching data structure and algorithm obtained by applying the CT
reductiond − 1 times to the original dispatching problem. The recursion is ended by
applying simple dispatching matrix at the last step. Thus, CT1 is simply the dispatch-
ing matrix, while CT2 is similar to Vitek and Horspool’s algorithm (withx = 14). By
makingd− 1 substitutions of (5.12) into itself, and then using (5.10), we obtain

memd(n,m, `) ≤ `x1 + · · ·+ `xd−1 +
nm

x1x2 · · ·xd−1

, (5.13)

wherexi is the slice size used during theith application of the CT reduction. Symmetry
considerations indicate that the bound in (5.13) is minimized when allxi are equal. We
have,

memd(n,m, `) ≤ (d− 1)`x +
nm

xd−1
, (5.14)

which is minimized whenx = (nm/`)1/d.

Table 5.1 summarizes the space and time requirements of algorithms CTd, whereι ≡
(nm)/` is the optimal compression factor.

The last row in the table is obtained by applying the CT reduction a maximal number
of times. In each application the slice size isx (typically, x = 2). The collectionF is
then organized in a hierarchy oflogx m levels, which is also the number of dereferencing
steps during dispatch. The memory used in each level is`x (see (5.12)).

The generalizations (Table 5.1) of CTd over Vitek and Horspool’s algorithm is in the
following directions: (i) a sequence of algorithms which offer a tradeoff between the
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Scheme Slice size Time Space Compression
factor

CT1 N/A 1 `ι 1
CT2

2
√

ι 2 2` 2
√

ι ι
2 2√ι

CT3
3
√

ι 3 3` 3
√

ι ι
3 3√ι

· · · · · · · · · · · · · · ·
CTd

d
√

ι d d` d
√

ι ι
d d√ι

· · · · · · · · · · · · · · ·
CTlogx m x logx m (logx m)`x ι

x logx m

Table 5.1:Generalized CT results for single inheritance hierarchies

size of the representation and the dispatching time, and (ii) precise performance analy-
sis, which dictates an optimal slice size, instead of the arbitrary universal recommenda-
tion, x = 14.

In reflecting on the generalized CT algorithm we see that they are readily adapted to
the case wheremessage not understoodare allowed as is the case in dynamically typed
languages. Whenever the search in a master-familyF ′ returns>, we can be certain that
the search in every constituent ofF ′ will also return>. Therefore, it is possible to check
after each dereferencing operation whether the fetched type is>, and emit the appropriate
error message. A more appealing alternative is to continue the search with>, using an
array which maps> into itself for each constituent ofF ′. Now, since this array does not
depend on the identity ofF ′, we can store only one such copy for each application of the
CT reduction. The memory toll that CTd bears for these arrays is(d− 1)x cells.

Note also that Vitek and Horspool’s idea of using selector coloring [44, 118] in each
chunk is still applicable with a slight variation to our generalization. If certain columns
in a chunk contain many> elements, it might be possible to collapse these columns
together.

5.5 Incremental variants for Single Inheritance Hierar-
chies

This section describes an incremental variant of the CT scheme in the single inheritance
setting, achieving two important properties: (i) thespaceit uses is at most twice that of the
static algorithm, and (ii) its totalruntimeis linear in the final encoding size. (We cannot
expect an asymptotically better runtime since the algorithm must at least output the final
encoding.)

Section 5.5.1 describes ICT2, the incremental variant of CT2. Section 5.5.2 gives the
generalization for CTd.

The main idea is torebuild the entire encodingwhenever the ratio between the current
slice size and the optimal one reaches a high- or low-water mark (for example 2 and 1/2).
Therefore, some insertions will take longer to process than others. We therefore obtain
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bounds on theamortizedtime for an insertion.2 The amortized time of an insertion is
asymptotically optimal since the total runtime is linear in the final encoding size. Using
techniques of “background copying” [42], it is possible to amend the algorithms so that
theworst caseinsertion time is optimal as well.

Note that unlike the static version of the problem, we cannot assume that the families
always include the root>. The reason is that this assumption would require> to include
implementation ofall families, and the initial value of the number of families will jump
to m.

5.5.1 Algorithm ICT 2 in a Single Inheritance Setting

The CT2 scheme applies a single CT reduction and uses a dispatching matrix for the
resulting master-families. This process divides the dispatching problem into independent
sub-problems: one dispatching matrix, and a set of matricesAi, i = 1, . . . , k, which (in a
single inheritance setting) are in fact dispatching matrices as well.

We first describe how to maintain a plain, single-level, dispatching matrix subject to
type insertions. The insertion time will be linear in the encoding size, and the cost in
dispatching time is in an additional comparison to guard against array overflows.

Each family is assigned a unique identifier in increasing order. The mapping of family-
to-identifier is maintained as a hash-table. Consider a newly added typet. The newly
introduced families3 are assigned new identifiers and inserted into the hash-table. Ob-
serve that the dispatching result for such a newly introduced family and every other type
is alwaysnull. However, instead of extending all the other rows withnull entries, we
perform a range-check before accessing any given row. In the case of array-overflow we
returnnull, otherwise we proceed as usual.

The row of t in the dispatching matrix maps each family to its dispatching result.
More precisely, the row oft is an extension of the row of its parent, except for entries
corresponding to families in whicht is a member. Note that the insertion time of a type is
linear in its row size, and the total runtime is therefore linear in the final encoding size.

The space requirement of CT2 in a single inheritance setting is (see Table 5.1)

mem(x) = `x + nm/x, (5.15)

which is minimized when the slice size is

xOPT =
√

nm/`. (5.16)

Algorithm ICT2 will maintain the following invariant

xOPT

2
≤ x ≤ 2xOPT, (5.17)

and will rebuild the encoding whenever this condition is violated. Algorithm 5.1 shows
the procedure to apply whenever a new type is added to the hierarchy.

2We remind the reader that theamortized timeof an operation isc(n), if a sequence ofn such operations
requires at mostnc(n) time. The worst case time of any single operation can however be much greater
thanc(n). For more information on amortized complexity see [121].

3A new typet introducesa familyF , t ∈ F , if and only if no other type was a member ofF .
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Algorithm 5.1 Insertion of a new typet in ICT2

1: Let x be the current slice size.
2: Let 〈n,m, `〉 be the current problem parameters.
3: xOPT ←

√
nm/` // The optimal slice size.

4: If not
(

xOPT
2
≤ x ≤ 2xOPT

)
then

5: x ← xOPT

6: Rebuild the entire CT2 encoding
7: fi
8: Insertt to the CT2 encoding

Substituting (5.16) in (5.15) we find the optimal encoding size

mem(xOPT) = 2
√

nm`.

Let us write this as a function of the problem parameters,

f(n,m, `) ≡ mem(xOPT) = 2
√

nm`.

and study the properties of this function.

Fact 5.2 Functionf is monotonic in all three argumentsn,m, `.

Fact 5.3 There are constantsc1, c2, c3, such that

∞∑
i=0

f
( n

2i
,m, `

)
≤ c1f(n,m, `),

∞∑
i=0

f
(
n,

m

2i
, `

)
≤ c2f(n,m, `),

∞∑
i=0

f

(
n, m,

`

2i

)
≤ c3f(n,m, `).

(5.18)

PROOF. Note that
∞∑
i=0

f
( n

2i
,m, `

)
=

∞∑
i=0

√
n

2i
m`

=
√

nm`

∞∑
i=0

√
1

2i

≤ 2

2−√2

√
nm` ∈ O(f(n,m, `)).

The proof for parametersm and` is identical.

Lemma 5.4 Thespace requirementof ICT2 is at most

2f(n,m, `).
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PROOF. From the algorithm invariant (5.17) it follows that

mem(x) = `x + nm/x

≤ `(2xOPT) + nm/
(xOPT

2

)

= 2(`xOPT + nm/xOPT)

= 2 mem(xOPT) = 2f(n,m, `).

Our next objective is to prove that the totalruntimeof ICT2 is linear inf(n,m, `).
To do so, we will breakdown the sequence of insertions carried out by the algorithm into
phases, according to the points in time where rebuilding took place. No rebuilding occurs
within a phase, and all that is required is to maintain several plain dispatching matrices.
Hence, the total runtime of the insertions in a phase is linear in the encoding size at the
end of this phase.

The main observation is that rebuilding happens only when at least one of the problem
parameters is doubled. We distinguish between threekindsof rebuilds, depending on the
parameter which was doubled. We then show that the total runtime of rebuilds of the same
kind is linear inf(n,m, `).

Formally, phasei begins immediately after phasei−1, and ends after the encoding was
built for theith time (the last phase ends when the program terminates). Let〈ni,mi, `i〉, i =
1, . . . , p, be the problem parameters at the end of phasei. Observe that the problem param-
eters can only increase, i.e.,ni+1 ≥ ni, mi+1 ≥ mi, and`i+1 ≥ `i. Phasei finishes with
an encoding size of at most2f(ni,mi, `i), therefore its runtime is linear inf(ni,mi, `i).
Thus, the total runtime is linear in

p∑
i=1

f(ni,mi, `i). (5.19)

We need to show that this sum is linear inf(np,mp, `p).

Lemma 5.5 Invariant (5.17)is violated only whenat least oneof the problem parameters
is doubled, i.e., one of the following holds

ni+1 ≥ 2ni,

mi+1 ≥ 2mi,

`i+1 ≥ 2`i.

(5.20)

PROOF. Let xj denote the slice size at the beginning of phasej, i.e.,

xj ≡
√

njmj

`j

. (5.21)

At the end of phasei one of the following conditions must hold

xi+1 ≥ 2xi,

xi+1 ≤ 1

2
xi.

(5.22)
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From (5.21) and (5.22), we have

ni+1mi+1

`i+1

≥ 4nimi

`i

,

ni+1mi+1

`i+1

≤ nimi

4`i

.
(5.23)

Since the problem parameters can only increase,

ni+1mi+1 ≥ 4nimi,

`i+1 ≥ 4`i,
(5.24)

which implies that at least one of the parameters was doubled.

Lemma 5.6 The totalruntimeof ICT2 is linear in

f(np,mp, `p).

PROOF. Let {(N1,M1, L1), . . . , (Nq,Mq, Lq)} be the problem parameters of phases
wheren was doubled, i.e.,Ni+1 ≥ 2Ni. Therefore,

Nq ≥ 2Nq−1 ≥ . . . ≥ 2q−1N1. (5.25)

Using Fact 5.3, the total runtime of these phases is linear in

q∑
i=1

f(Ni,Mi, Li) ≤
q∑

i=1

f(Ni,Mq, Lq)

≤
q∑

i=1

f

(
Nq

2q−j
,Mq, Lq

)

∈ O(f(Nq,Mq, Lq)).

(5.26)

The same consideration applies to phases in which the number of methods or the number
of families was doubled. So, the runtime of the entire algorithm is the total runtime of the
three kinds of phases, which is linear inf(np,mp, `p).

5.5.2 Algorithm ICT d in a Single Inheritance Setting

The generalization tod > 2 is mostly technical, as outlined next. Functionmem(x), the
space requirement of CTd as defined in (5.14) is minimized when the slice size is

xOPT = d
√

nm/`.

Let functionfd denote the optimal encoding size

fd(n,m, `) ≡ mem(xOPT) = d` d
√

ι.

Algorithm ICTd will preserve the following invariant

xOPT

21/(d−1)
≤ x ≤ 2xOPT. (5.27)
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Lemma 5.7 The space requirement ofICTd is at most2fd(n,m, `).

PROOF. Similar to that of Lemma 5.4

Fact 5.8 There are constantsc1, c2, c3, such that

∞∑
i=0

fd

( n

2i
,m, `

)
≤ c1fd(n,m, `),

∞∑
i=0

fd

(
n,

m

2i
, `

)
≤ c2fd(n,m, `),

∞∑
i=0

fd

(
n,m,

`

2i

)
≤ c3fd(n,m, `).

(5.28)

Lemma 5.9 Rebuilding only takes place whenat least oneof the problem parameters is
doubled.

PROOF. Similar to that of Lemma 5.5

Lemma 5.10 The total runtime ofICTd is linear infd(np,mp, `p).

PROOF. Similar to Lemma 5.6.

5.6 Generalization of Compact Dispatch Tables for Mul-
tiple Inheritance Hierarchies

This section explains how to generalize the CT reduction as described in Section 5.4 to
the multiple inheritance setting. In a single inheritance hierarchy, there could never be
more than one most specific family member in response to a dispatch query. The fact that
this is no longer true in multiple inheritance hierarchies makes it difficult to apply the CT
reduction to such hierarchies. Even if the original families are appropriately augmented
to remove all such ambiguities, ambiguities may still occur in the master-families as they
are generated by the reduction.

We will therefore use a novel notion of ageneralized dispatching query, denoted
by g-dispatch(F, t), which returnsthe entire setof smallest candidates, rather thannull
in case that this set is not a singleton. Formally,

g-dispatch(F, t) ≡ min(cand(F, t)). (5.29)

Generalized dispatching is a data-structure transaction rather than an actual runtime oper-
ation which must result in a single method to execute.

Consider for example the hierarchy of Figure 5.5.
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Figure 5.5: A small example of a multiple inheritance hierarchy with two families

The figure shows two families of methods,Fa andFb,

Fa = {A, B},
Fb = {A, C}. (5.30)

The dispatching matrix of these two families is depicted in Figure 5.6a. Note that the
results of all dispatching queries on typesD and E (for example) are the same. The
corresponding rows in the table are identical and can be compressed. Figure 5.6b shows
a representation of the dispatching matrix obtained by merging together all identical rows
and an auxiliary array of pointers to all different rows specimens.
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Figure 5.6: (a) The dispatching matrix of Figure 5.5, (b) the matrix compressed using an
auxiliary array of pointers, and (c) the matrix compressed using an array of set-labels

This compressed representation can be understood in terms of the master-family

F ′ ≡ Fa ∪ Fb = {A, B, C}.
The auxiliary array represents all the possible results of ageneralizeddispatch on this
master-family. For example,

g-dispatch(F ′, D) = g-dispatch(F ′, E) = {B, C}.
Therefore, theD andE entries in the auxiliary array point to the same row specimen whose
label is the set{B, C}.

In total there are four different results of generalized dispatching with respect toF ′.
Family F ′ therefore partitions the types in the hierarchy into four sets, as shown in Fig-
ure 5.6c. The figure shows the same compressed representation of the dispatching matrix,
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where the results of generalized dispatch are used to label row specimens instead of point-
ers in the auxiliary array.

In order to derive bounds on the quality of the CT compression in the multiple inher-
itance setting we need to estimate the number of distinct rows in chunks. The difficulty
is that the result of a generalized dispatch is a set rather than a singleton, and hence this
number might be exponential in the family size. To show that this is not the case, we
first define the notion of a partition imposed by a family, and then show the size of this
partition is at most2κ times the size of the family, where1 ≤ κ ≤ n is a (usually small)
metric of the complexity of the hierarchy.

5.6.1 Family Partitionings

Given a partially ordered set of typesT and a family of implementationsF ⊆ T , the
partitioning ofT byF , also called thefamily partitioningdue toF , is

∇F ≡ {T 1, . . . , T n},

such that all types inpartition T i have the same generalized dispatch result. In other
words, typesa, b ∈ T are in the samepartition T i ∈ ∇F if and only if

g-dispatch(F, a) = g-dispatch(F, b). (5.31)

Figure 5.7 shows the family partitioning of the familiesFa, Fb of (5.30) and their
master-familyF ′ ≡ Fa ∪ Fb. ����������������������������������������������������
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Figure 5.7: The family partitionings of the familiesFa, Fb of (5.30) and their master-
family F ′ ≡ Fa ∪ Fb

TypesD andE, for example, are in the same partition in∇F ′ sinceg-dispatch(F ′, D) =
g-dispatch(F ′, E) = {B, C}. The partitionings are

∇Fa ≡ {{A, C, F}, {B, D, E}},
∇Fb ≡ {{A, B}, {C, D, E, F}},
∇F ′ ≡ {{A}, {B}, {C, F}, {D, E}}.

(5.32)



5.6. COMPACT DISPATCH TABLES IN MI HIERARCHIES 105�����������������������������������
Figure 5.8: Theoverlayof ∇Fa and∇Fb of Figure 5.7

Figure 5.8 overlays∇Fa and∇Fb. The dotted lines are the partitions of∇Fa, whereas
the full lines are the partitions of∇Fb.

In comparing Figure 5.7c with Figure 5.8, we see that the partitioning∇F ′ can be
obtained by a simple overlay of the two partitionings∇Fa and∇Fb. We will next prove
that this was no coincidence.

Given two partitioningsπ, π′, theiroverlayπ ·π′ is the coarsest partitioning consistent
with bothπ andπ′. Constructively, the overlay is obtained by intersecting all partitions
of π with all partitions ofπ′:

π ·π′ = {T i ∩T ′
j | T i ∈ π, T ′

j ∈ π′}. (5.33)

For example, the overlay of∇Fa and∇Fb of (5.32) is

∇Fa ·∇Fb = {{A, C, F} ∩ {A, B}, {A, C, F} ∩ {C, D, E, F},
{B, D, E} ∩ {A, B}, {B, D, E} ∩ {C, D, E, F}}

= {{A}, {C, F}, {B}, {D, E}}.
(5.34)

Lemma 5.11∇F1 ·∇F2 = ∇(F1 ∪ F2) for all F1, F2.

PROOF. It is a well known fact that for every partitioningπ there is a binaryequivalence
relation whose set of equivalence classes are the same as the partitioningπ. Instead of
proving that the partitioning∇(F1∪F2) and∇F1 ·∇F2 are equal, we will prove that their
equivalence relations are the same.

On the one hand, typesa, b are in the equivalence relation of

∇(F1 ∪ F2)

if and only if they have the same generalized dispatching results with respect toF1 ∪ F2

(see (5.31)), i.e.,

g-dispatch(F1 ∪ F2, a) = g-dispatch(F1 ∪ F2, b). (5.35)
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On the other hand, the overlay partitioning,∇F1 ·∇F2, is defined by intersecting all par-
titions of∇F1 with those of∇F2 (see (5.33)). Therefore, typesa, b are in the equivalence
relation of∇F1 ·∇F2 iff the following two conditions hold

g-dispatch(F1, a) = g-dispatch(F1, b),

g-dispatch(F2, a) = g-dispatch(F2, b).
(5.36)

We must show that (5.35) holds iff (5.36) holds. Formally, using the definition of gener-
alized dispatch (5.29), we must show that

min(cand(F1 ∪ F2, a)) = min(cand(F1 ∪ F2, b))

⇔
min(cand(F1, a)) = min(cand(F1, b)) ∧
min(cand(F2, a)) = min(cand(F2, b)).

(5.37)

Since two sets of candidates (for the same family) have the same smallest elements if and
only if they are equal, our objective is to prove (see the definition of candidates in (5.1))

(F1 ∪ F2) ∩ ancestors(a) = (F1 ∪ F2) ∩ ancestors(b)

⇔
F1 ∩ ancestors(a) = F1 ∩ ancestors(b) ∧
F2 ∩ ancestors(a) = F2 ∩ ancestors(b).

(5.38)

Given two setsX, Y , theirsymmetric differenceis defined as

X 4 Y ≡ (X ∪ Y ) \ (X ∩ Y ).

Observe that

Z ∩X = Z ∩ Y ⇔ Z ∩ (X 4 Y ) = ∅. (5.39)

By combining (5.38) and (5.39) we find that we need to prove that

(F1 ∪ F2) ∩ (ancestors(a)4 ancestors(b)) = ∅
⇔

F1 ∩ (ancestors(a)4 ancestors(b)) = ∅ ∧
F2 ∩ (ancestors(a)4 ancestors(b)) = ∅.

(5.40)

The above trivially holds since for all setsX, Y, Z,

(X ∪ Y ) ∩ Z = ∅
⇔

X ∩ Z = ∅ ∧
Y ∩ Z = ∅.
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5.6.2 Memory Requirements of the Reduction

As in the single inheritance version, the CT reduction partitions the familiesF into dis-
joint slicesF1, . . . ,Fk, and generates for theith slice the master-familyF ′

i by merging
the families in this slice. To answer thegeneralized dispatchingqueryg-dispatch(F, t),
whereF ∈ F i, we first (recursively) answer the queryg-dispatch(F ′

i , t), in the collection
of master-families,{F ′

1, . . . , F
′
k}. This recursive call returns one of the partitions of∇F ′

i .
The next step is to find the unique containing partition of∇F .

To understand this better, recall thatF ⊆ F ′
i . To apply Lemma 5.11 note that there

exists a setX such thatF ′
i = F ∪X, and hence

∇F ′
i = ∇(F ∪X) = ∇F ·∇X.

Therefore, every partition of∇F ′
i is contained in a partition of∇F . A matrixAi with |∇F ′

i |
rows and|F i| columns is used to map each of the partitions of∇F ′

i to a partition of∇F ,
for all F ∈ F i. MatricesA1, . . . , Ak are nothing other than the dispatching data structure
of the CT reduction. (Clearly, there is an additional data structure which the recursive call
uses.)

To bound the size of these matrices, we need to bound|∇F |. In single inheritance, the
root of each partition correspond to a different family member, and therefore|∇F | ≤ |F |.
An easy, but not so useful bound in multiple inheritance, is|∇F | ≤ 2|F |.

A better bound is given by definingκ, the complexity of a hierarchy, and then showing
that

|∇F | ≤ 2κ|F |. (5.41)

Using slices withx families in each, the total memory of matricesA1, . . . , Ak is

k∑
i=1

|∇F ′
i | × |F i| =

k∑
i=1

|∇F ′
i | × x ≤ x

k∑
i=1

2κ|F ′
i | ≤ 2xκ`.

The recursive equations then become

mem1(n,m, `) = nm,

memd+1(n,m, `) ≤ 2κ` · x + memd(n, m/x, `).
(5.42)

By using2κ` instead of̀ , the analysis of the previous section holds.

Corollary 5.12 Let ϕ ≡ (nm)/(2κ`). In a hierarchy whose complexity isκ, CTd per-
forms dispatching ind dereferencing operations, and reaches a compression factor of at
least 1

d
ϕ1−1/d (when using a slice size ofϕ1/d).

In other words, in a hierarchy whose complexity isκ, the space requirements of CTd

in the multiple inheritance setting is worse than the single inheritance setting by a factor
of at most(2κ)1−1/d.
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5.6.3 Hierarchy Complexity

Definition 5.13 The complexity of a hierarchy is the minimal numberκ such that there
exists partitioning ofT into setsT 1, . . . , T κ, and an orderingπi of T i, i = 1, . . . , κ, such
that for every typet ∈ T , the setdescendants(t) ∩ T i is an interval inπi.

Clearly, the complexity of a hierarchy is 1 if there exists an orderingπ of T in which
descendants of any type define aninterval. All single inheritance hierarchies have com-
plexity 1 since in a simple preorder the descendants of any type are consecutive.

Figure 5.9 is a multiple inheritance hierarchy of complexity 1. Within each type we
write its position inπ.
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Figure 5.9: An example of a multiple inheritance hierarchy of complexity 1

Figure 5.10 shows the family partitioning of the familyF = {A, B, E} in the hierarchy
of Figure 5.9. Observe that|∇F | = 5. ��������������������A
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Figure 5.10: The family partitioning of the familyF = {A, B, E} in the hierarchy of
Figure 5.9

Since the complexity of this hierarchy is 1, the descendants of each type define an
interval. Therefore the familyF defines the three intervals depicted in Figure 5.11.

The intervals in Figure 5.11 partition the types into 5segments. (We will show that
there are at most2|F | segments.) Types in the same segment have the same set of can-
didates and therefore belong to the same partition. So we conclude that the number of
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Figure 5.11: The intervals of the familyF = {A, B, E} in the hierarchy of Figure 5.9

partitions is at most the number of segments, which in turn is at most2|F |. In our exam-
ple,

|∇F | = 5 ≤ 6 = 2|F |.

Lemma 5.14 |∇F | ≤ 2κ|F | for each familyF .

PROOF. We need the following fact, whose proof is elementary.

A set off intervals partition any consecutive set into at most2f +1 segments. Out of
these segments at most2f−1 are contained in one interval or more.(See illustration
in Figure 5.11.)

Let f = |F |. Recall (Definition 5.13) the partitioning ofT into setsT 1, . . . , T κ with
their respective ordering. Leti be fixed. We write the list of members of the setT i,
enumerated in its respective orderπi.

Consider a typet ∈ T i. The result ofg-dispatch(F, t) is uniquely determined by
the subset of all typest′ ∈ F , such that thet is among the descendant oft′. From
Definition 5.13, we have that the descendants are consecutive in the list ofT i. FamilyF
defines thereforef intervals (which may be empty) in this list. These intervals partition
the list into at most2f + 1 segments such that the result ofg-dispatch(F, t) is uniquely
determined by the segment oft. These segments give the restriction of∇F to T i.

We have thus obtained|∇F | ≤ κ(2f + 1). To obtain a tighter bound we need a
more careful counting. Let us remove fromT i all types which are not descendants of
any of the members ofF . The remaining types are divided byF into 2f − 1 segments.
Generalized dispatching on the removed types returns the empty set, irrespective ofi. The
total number of equivalence classes in∇F is thereforeκ(2f − 1) + 1 ≤ 2κf .

We are unaware of any non-exponential method for findingκ. Instead we use the PQ-
trees heuristic [137] which gives anupper-boundonκ. On a benchmark of 19 large mul-
tiple inheritance hierarchies, the median value on that bound was 5, the average was 6.4,
and the maximum was 18.

Remark 5.15 The actual partitioningT 1, . . . , T κ is not required in order to apply the
CT reduction; only the integerκ is needed for determining the slice size. We found that in
practice the single inheritance analysis closely models even hierarchies which use multi-
ple inheritance heavily. (Therefore there is no need even to findκ.)
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5.7 Experimental Results

In this section we compare the theoretical prediction on the algorithms with their em-
pirical performance. Our benchmark comprises 35 hierarchies totaling 63,972 types,
70,680 messages and 418,839 methods. Out of these, there were 16 single inheritance hi-
erarchies with 29,162 types, 12 multiple inheritance hierarchies with 27,728 types, and 7
multiple dispatch hierarchies with 7,082 types.

This data-set includes all hierarchies previously used in the literature in benchmarks
of dispatching algorithms. However, prior to running the experiments, all degenerate
families, i.e., families of size one, were pruned from the input. The reason for doing so
is that sending a message whose family is degenerate requires no dispatching, and is the
same as static procedure call. (In dynamically typed languages there is an earlier step,
which isequivalentto a subtyping test, in which it is made sure that the message is valid
for the receiver type.)

We stress that by eliminating degenerate families, compression becomesmore difficult
for the CT schemes. The reason is that this pruning reduces bothm and` by the same
number. Therefore, the optimal compression factorι ≡ (nm)/`, which we aimed at
reaching, becomes smaller. On the other hand, the compression factor ofnull-elimination
schemes(nm)/w may or may not decrease.

Table 5.2 gives the essential properties of the pruned hierarchies. The first two row
blocks in the table correspond to single inheritance (SI) and multiple inheritance (MI) hi-
erarchies. The last block is for hierarchies drawn from multi-dispatch languages. (We re-
gard each multi-dispatch query as several independent single-dispatch queries on each of
the arguments, as done in the first step of the major algorithms for multi-dispatching [137].)

The first two data columns in the table give the values ofn andm for each of the
hierarchies in the data-set. We see that the hierarchies span a range of sizes: the number of
types is between 107 and 8,793 while the number of messages is between 131 and 14,575.
A more detailed description of the data-set, including the source of the hierarchies and
their respective programming languages is available elsewhere [137].

The column entitlednm
106 gives the memory requirement of the dispatching matrix, mea-

sured in millions of cells. We see that this matrix can be huge. Suppose that each cell uses
four bytes (an assumption we make henceforth), then this matrix consumes about 160MB
of memory in the MI: JDK 1.3.1 hierarchy and about 500MB in the MI: IBM SF hierar-
chy.

The next column in the table, entitledw
103 , gives the number of non-null entries in

the dispatching matrix, measured in thousands. The column indicates that this matrix is
sparse: In most cases, 90% or more of its cells are empty. We shall use this column as a
baselinefor comparison of the CT algorithms, since it shows the memory requirement of
anoptimalnull-elimination scheme such as VFT on single inheritance hierarchies. Note
that in hierarchies such as MI: JDK 1.3.1 and MI: IBM SF the potential compression is
by a factor of 300 or more. But still, the VFTs may consume a lot of space: 1–2MB on
some single inheritance hierarchies.

The column entitled `
103 gives the number of method implementations, which ranges
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Hierarchy n m (nm)
106

w
103

`
103 κ

S
ingle

Inheritance

Visualworks1 774 1,170 0.91 79.14 4.62 1
Visualworks2 1,956 3,196 6.25 289.67 13.58 1
Digitalk2 535 962 0.51 72.27 3.33 1
Digitalk3 1,357 2,402 3.26 362.11 9.44 1
IBM Smalltalk 2 2,320 4,335 10.06 204.97 16.29 1
VisualAge 2 3,241 6,529 21.16 594.98 26.21 1
NextStep 311 499 0.16 16.24 2.12 1
ET++ 371 296 0.11 12.20 1.41 1
SI: JDK 1.3.1 6,681 4,392 29.34 128.26 23.82 1
SI: Corba 1,329 222 0.30 6.94 2.59 1
SI: HotJava 644 690 0.44 23.86 2.91 1
SI: IBM SF 6,626 11,664 77.29 287.38 88.28 1
SI: IBM XML 107 131 0.01 1.30 0.59 1
SI: Orbacus 1,053 980 1.03 18.66 3.82 1
SI: Orbacus Test 579 368 0.21 5.67 2.39 1
SI: Orbix 1,278 535 0.68 10.90 2.90 1

M
ultiple

Inheritance

Self 1,802 2,459 4.43 234.04 21.75 3
Unidraw 614 360 0.22 8.11 2.33 2
LOV 436 663 0.29 14.09 2.84 11
Geode 1,318 1,413 1.86 122.27 9.52 18
MI: JDK 1.3.1 7,401 5,724 42.36 140.91 28.68 9
MI: Corba 1,699 396 0.67 13.58 3.20 7
MI: HotJava 736 829 0.61 24.90 3.40 7
MI: IBM SF 8,793 14,575 128.16 390.35 116.15 12
MI: IBM XML 145 271 0.04 2.33 0.95 3
MI: Orbacus 1,379 1,261 1.74 24.82 5.00 4
MI: Orbacus Test 689 379 0.26 7.49 2.75 4
MI: Orbix 2,716 786 2.13 22.44 3.70 4

M
ultiple

D
ispatching

Cecil 932 1,009 0.94 72.89 4.21 5
Dylan 925 428 0.40 70.38 1.78 3
Cecil- 473 592 0.28 16.06 2.36 5
Cecil2 472 131 0.06 17.17 0.56 5
Harlequin 666 229 0.15 23.11 1.02 8
Vor3 1,660 328 0.54 15.44 1.86 5
Vortex3 1,954 476 0.93 305.50 2.50 7

Table 5.2:Essential parameters of the pruned hierarchies in our data-set

between 562 and 116,152. This column also sets a lower bound on the memory used by
an optimal duplicates-elimination compression scheme. Comparing this column to the
previous one, we learn that duplicates-elimination is potentially much better than null-
elimination. However, it is much more difficult to come close to optimal duplicates-
elimination than to optimal null-elimination. We shall use this column as another com-
parison standard for the performance of the CT algorithms.

The final column entitledκ shows an upper bound onκ which was found by our PQ-
trees4 heuristic [137]. (Recall that we do not have an efficient algorithm for computingκ.)

4We used the slow PQ-trees heuristic instead of the fast order-preserving heuristic in order to obtain a
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In single inheritance hierarchies,κ = κ = 1. The median ofκ in the remaining hierarchies
is 5. The hierarchy whose topology seems to be the most complex is Geode, followed by
MI: IBM SF, LOV and then JDK 1.3.1.

The implementation of the various CT schemes was run on 900Mhz Pentium III com-
puter, equipped with 256MB internal memory and controlled by a Windows 2000 oper-
ating system. On this machine, the runtimes for generating the encoding (without actu-
ally copying the values into matrices) of the first four schemes (CT2 through CT5) were
0.7 Sec, 1.4 Sec, 2.1 Sec and 2.9 Sec. Since our data-set included in total 418,839 meth-
ods we find that the time per implementation is measured in microseconds. For example,
we found that the creation timeper implementationranged between 0.3 and 1.7µSec in
CT2 in single inheritance hierarchies (the median being 0.6µSec). These times increase
in multiple inheritance hierarchies: the range being 1.1 to 6.7µSec; the median being
2.4µSec.

Figure 5.12 shows the memory used by the first four CT schemes relative to thew
baseline in the 35 hierarchies in the data-set. Memory usage of the CT schemes were
obtained using the empirically foundbestslice size (which may be different than the
prescription of column 2 of Table 5.1).

The figure shows that compared to theoptimal null-elimination, CT2 is better in 6
hierarchies, CT3 in 13 hierarchies, CT4 in 15 hierarchies, and CT5 in 16 hierarchies. In a
few cases, the improvement is by an order of magnitude from the baseline. We also see
that CT2 is at most one order of magnitude worse than this idealized baseline.

We can also learn from Figure 5.12 that the incremental improvement by the series of
CT schemes is diminishing. In fact, examining the actual memory requirements, we find
that the median incremental improvements are: CT3 over CT2: 44%, CT4 over CT3: 18%,
and CT5 over CT4: 8%. This finding is consistent with the theoretical prediction.

The figure also plots another idealized algorithm, i.e., the optimal duplicates-elimination
scheme, which uses̀cells. We see that this ideal is about one order of magnitude better
than the various CT schemes. Finally, we see a certain correlation between` and the series
of CT schemes, as predicted by the theoretical analysis. When` ¿ w the CT schemes
outperform even an optimal null-elimination scheme.

We now turn to comparing the actual performance of the various CT schemes with the
theoretically obtained bounds.

In single inheritance hierarchies, the upper bound on the memory requirement are
given by the fourth column of Table 5.1. Figure 5.13a shows the memory requirement
relative to these values. We see that in all schemes and in all hierarchies, the memory re-
quirement is significantly smaller than the upper bounds. Also, the extent of improvement
of CTd over the upper bound increases withd.

Corollary 5.12 provides the upper bounds in multiple inheritance hierarchies depend-
ing on their complexityκ. Figure 5.13b shows the memory, relative to these upper bounds,
of the actual CT performance. Again, we see that the extent of improvement of CTd over
the upper bound increases withd. Interestingly, in comparing Figure 5.13b with Fig-

better upper bound. We will see that, in practice, it is better to useκ = 1 to find the slice size, so the speed
of the heuristic is irrelevant.
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Figure 5.12: Memory used by CT2, CT3, CT4, CT5 and optimal duplicates-elimination
(`) relative to optimal null-elimination (w – marked as the 100%); hierarchies are sorted
in ascending memory used by CT3

ure 5.13a, we see that the improvement of the implementation upon the upper bound is
much greater in multiple inheritance vs. single inheritance hierarchies.

A possible explanation for this seemingly better performance in multiple inheritance
hierarchies is exaggerated upper bounds. Examining Corollary 5.12, we see that the upper
bounds increase withκ. Since our heuristics only finds an upper approximation ofκ, it
could be that the true upper bounds are actually smaller, and hence the improvement upon
the upper bound is not as great.

Figure 5.13c tries to test this hypothesis, by comparing the performance on multiple
inheritance hierarchies with the upper bounds obtained by assumingκ = 1 (as in single
inheritance hierarchies).5 We see that the improvement upon the upper bounds computed
thus is almost the same as in single inheritance hierarchies (Figure 5.13a). Such a simi-
larity could not be explained by an overestimation ofκ.

The reason that the CT algorithms perform better than the theoretically obtained

5In fact, we used the bound for single inheritance in Table 5.1, which is smaller by a factor of(2κ)1−1/d

than the bound for multiple inheritance in Corollary 5.12.
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Figure 5.13: The memory requirement of CT2, CT3, CT4 and CT5 relative to the theo-
retically obtained upper bounds in single inheritance hierarchies (a), multiple inheritance
hierarchies where the upper bound was computed usingκ (b), and multiple inheritance hi-
erarchies, where the upper bound is computed as in single inheritance hierarchies (κ = 1)
(c)
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bounds is that the analysis of the CT reduction bounded the size of a master-family by the
sum of sizes of its constituents, i.e.,

|F ′
i | =

∣∣∣∣∣
⋃

F∈Fi

F

∣∣∣∣∣ ≤
∑
F∈Fi

|F |.

In fact, especially when the families are large, the probability of finding shared elements
may be significant, and the master family is likely to be smaller. As a result,`′, the
number of implementations after the reduction, may be much smaller than the original
value`. For example, withx = 29 for CT2 in Digitalk3, the CT reduction transforms
the problem〈n,m, `〉 = 〈1357, 2402, 9444〉 to 〈1357, 83, 4616〉, i.e., the number of im-
plementations decreased by a factor of more than 2. Our analysis assumed (see (5.11))
however that̀ ′ = `.

This effect increases also with slice size, which is the reason that choosing a slice size
greater than the theoretical prescription may improve the performance of the reduction.
In IBM SF, for example, the theoretical analysis suggested thatxOPT = 30 as optimal slice
size for CT2. However, by using instead a slice sizex = 70, we were able to further
reduce the number of cells from 3.3M to about 2.4M.

Figure 5.14 compares the actual memory used by the CT2 scheme with the theoretical
prediction (5.14) in the Digitalk3 hierarchy. (The graphs of other hierarchies and higher
order schemes are similar.) We see that the extent by which the empirical performance is
superior to the theoretically obtained bound increases with the slice size.
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Figure 5.14: Space requirements vs. slice size in the single inheritance hierarchy of Dig-
italk3 for CT2 and its theoretical upper bound (5.14)
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5.8 Conclusions and Open Problems

The incremental algorithm described in Section 5.5 is in many ways the pinnacle of this
chapter. This algorithm assumes the single inheritance, dynamically typed, and dynamic
loading model, denoted SDTDL. A prime example for the model is theSMALLTALK

programming language. Note that the VFT method is unsuitable in an SDTDL model.

Curiously, even thoughJAVA is in essence a statically typed language, the implemen-
tation of theinvokeinterface bytecode instruction is a very close match of this
model. To see this recall that all implementations of a method defined in aninterface
must reside inclass es, and that these classes take a tree topology. The locations of
these implementations in this tree are however totally unrelated, and additional imple-
mentations can be introduced as a result of dynamic class loading. Even though there is a
possibility of using static information of the interface type, many implementations of the
invokeinterface bytecode instruction assume an SDTDL model.

Incorporating the algorithm into a runtime system requires careful attention to details,
including selecting a heuristic of determining the optimal slice size, which might perform
better than the theoretical value, a wise strategy for background copy to avoid stagna-
tion, tweaking and fine tuning of the partitioning algorithm, etc. We leave this empirical
evaluation to continuing research.

Also, the incremental algorithm can be generalized to the multiple inheritance setting,
but there are subtle issues in the theoretical analysis of the performance of this general-
ization.

Observe that the static algorithm for multiple inheritance hierarchies, achieves2κ` lg m
space whend = lg m. Type slicing [137] however uses onlyO(κ`) cells, while achiev-
ing O(lg lg n) dispatching time. There is therefore a reason to believe that the tradeoff
offered by our technique can be improved, especially for higher values ofd.



Chapter 6

Two-Dimensional Bi-Directional Object
Layout

Chapter Summary
C++ object layout schemes rely on (sometimes numerous) compiler generated fields. We describe
a new language-independent object layout scheme, which is space optimal, i.e., objects are con-
tiguous, and containno compiler generated fieldsother than a single type identifier. As in C++
and other multiple inheritance languages such as Cecil and Dylan, the new scheme sometimes
requires extra levels of indirection to access some of the fields. Using a data set of 28 hierarchies,
totaling almost 50,000 types, we show that the new scheme improves field access efficiency over
standard implementations, and competes favorably with (the non-space optimal) highly optimized
C++ specific implementations. The benchmark includes a new analytical model for computing
the frequency of indirections in a sequence of field access operations. Our layout scheme relies
on whole-program analysis, which requires about 10 micro-seconds per type on a contemporary
architecture (Pentium III, 900Mhz, 256MB machine), even in very large hierarchies.

A common argument raised by proponents of the single inheritance programming
model is that multiple inheritance incurs space and time overheads and inefficiencies on
the runtime system [24,94]. A large body of research was targeted at reducing the multiple
inheritance overhead in operations such as dynamic message dispatch and subtyping tests
(see e.g., [136–138] for recent surveys). Another great concern in the design of runtime
systems for multiple inheritance hierarchies is efficient object layout. To this end, both
general purpose [113] and C++ language specific [53, 68] object layout schemes were
previously proposed in the literature.

The various C++ layout schemes are not space-optimal since they introduce (some-
times many) compiler generated fields into the layout. They are also not time-optimal
since access to certain fields (in particular, those defined in virtual bases) requires sev-
eral memory dereferences. This thesis revisits the object layout problem in the general,
language-independent setting. Our new object layout scheme is space optimal, i.e., ob-
jects are contiguous, and containno compiler generated fields. Hence, in terms of space,
it is superior to C++ layout schemes. It is also superior in terms of field access efficiency

117
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to the space-optimalfield dispatchingtechnique1 employed by many object oriented lan-
guages.

We say that the layout istwo dimensional, bi-directionalsince all objects can be
thought of as being laid out first in a two-dimensional matrix, whose rows (also called
layers) may span both positive and negative indices. The layout algorithm ensures that
the populated portion of each such layer is consecutive, regardless of the object type. The
particular object layout in one-dimensional memory is a cascade of these portions.

A data set of 28 hierarchies, totaling almost 50,000 types, was used in comparing the
field access efficiency of the new scheme with that of different C++ specific layouts. Our
analytical cost model shows that in this data set, the new scheme is superior to the standard
C++ layout and to the simple inlining algorithm [53]. Even though the new layout is not
C++ specific, it competes favorably in this respect with aggressive inlining [53], arguably
the best C++ layout scheme.

To better understand the intricacies of object layout, consider Figure 6.1a, which de-
picts a small single inheritance hierarchy.
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Figure 6.1: A small single inheritance hierarchy (a), a possible object layout for this
hierarchy (b), and a multiple inheritance hierarchy in which there is no contiguous layout
for all objects (c)

A possible object layout of the types defined in this hierarchy is shown in Figure 6.1b.
The fields ofA1 are laid out just afterR. The layout ofB1 adds its own fields in increasing
offsets. All types inheriting fromA1 andB1 will have positive directionality. TypesA2

andB2 are laid out in negative offsets. This should also be the directionality of any of their
descendants. TypesA3 andB3 and all of their descendants have positive directionality.

Figure 6.1b demonstrates a degenerate case of the two-dimensional bi-directional lay-
out scheme, in which there is only one layer. This layer is populated either in negative
or positive offsets. In the general case, there are multiples layers, which may use for the
same object type both positive and negative offsets, or even be empty.

Consider now the multiple inheritance hierarchy of Figure 6.1, obtained by adding
multiple inheritance edges fromB2 to A1 and A3. Here and henceforth, inheritance is

1In the field dispatching technique we encapsulate fields in accessor methods.
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assumed to beshared(virtual in the C++ jargon). Thus, in the figure, typeB2 has a
singleR sub-object. We believe that repeated inheritance, i.e., where typeB2 has twoR
sub-objects, is a rarity, or as one wrote: “repeated inheritance is an abomination”.2

With the addition of multiple inheritance, a layout forB2 becomes difficult, since at
the same positive offsets immediately followingR we expect to find both the fields ofA1

and the fields ofA3. This difficulty is no coincidence, and is in fact a result of the strong
conformance requirement (or fixed offsets [113]) which we implicitly made:

The strong conformance requirement:Every type must be laid out in the
same offset in all of its descendants.

If the layout ofA1, A2 andA3 is required to be contiguous, then the fields of each of these
types must be laid out adjacent toR. Since the layout ofR in memory has only two sides,
then it must be that at least two ofA1, A2 andA3 are laid out at the same side ofR. This
is not a problem as long as these two types are never laid out together, as is the case in
single inheritance. The difficulty is raised in multiple inheritance, specifically, when there
is a common descendant of these two types.

Thus, we see that it is sometimes impossible to maintain the strong conformance re-
quirement and contiguous object layout. Our new scheme resolves the conflict by sacri-
ficing the strong conformance requirement. In particular, each object is laid out in one or
more layers, where each layer uses a bidirectional layout. The above difficulty is removed
by placing (say) typeA3 in a different layer.

We note that separate compilation discovers too late that two base types compete
for the same memory location, i.e., after the layout of these base types was determined.
For this reason, our layout scheme, just as all other optimizing layouts, relies on whole
program analysis.

Outline Pertinent definitions are given in Section 6.1, which also lists some of the stan-
dard simplifications of the object layout problem. Section 6.2 describes the criteria used in
evaluating object layout schemes, using these to place our result in the context of previous
work. The actual layout, which comes in three versions, is described in Section 6.3. Sec-
tion 6.4 presents the algorithm for computing the actual layout. Section 6.5 describes the
data-set used in the benchmark, while Section 6.6 gives the experimental results. Finally,
conclusions and directions for future research are given in Section 6.7.

6.1 Definitions

Leading to a more exact specification of the problem, this section makes precise notions
such as a hierarchy, incomparable types, and introduced and accessible fields in a type.

A hierarchy is specified by a set of typesT , n = |T |, and a partial order,¹, called
thesubtype relationwhich must be reflexive, transitive and anti-symmetric. Leta, b ∈ T
be arbitrary. Then, ifa¹ b holds we say thata is asubtypeof b and thatb is asupertype

2words of an anonymous reviewer to [68]
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of a. If neithera¹ b nor aº b holds, we say that the types areincomparable. Also, if
there does not existc such thata¹ c¹ b andc 6= a, c 6= b, then we say thata is achild
of b and thatb is aparentof a.

A hierarchy issingle inheritanceif eacha ∈ T has at most one parent, andmultiple
inheritanceotherwise.

The set of ancestors of a typea ∈ T is ancestors(a) ≡ {b ∈ T | a¹ b}. We denote
the number of ancestors ofa by θa. Note thata ∈ ancestors(a).

Types in a hierarchy mayintroducefields, which can be thought of as unique names
or selectors. We assume that there is nofield overriding, i.e., that the same field name
can only be used once in each type. Although C++ (and other languages) allow a derived
class to reuse the name of aprivate field defined in a base class, our assumption is
trivially satisfied by simple renaming.

Stated differently, our demand is that no run time dispatching process is required to
select the particular “implementation” of a field name. This is precisely the case in stati-
cally typed languages, where the field name and the static object type uniquely determine
the introducing class.

The problem of object layout in dynamically typed languages is not very interesting
and excluded from the domain of discourse. In languages such asSMALLTALK , fields
access is restricted to the methods of the defining object. With this restriction, the strong
conformance requirement does not need to be satisfied3: The object layout problem then
becomes trivial, even with the face of multiple inheritance. If however a dynamically
typed language supports non-private fields, then there must be a runtime check that the
accessed field is defined in the object. Such checks are related to subtyping tests and
even to a more general dispatching problem which received extensive coverage in the
literature [136–138].

For simplicity, we assume that all fields are of the same size. For a typet ∈ T , let |t|
denote the number of fields introduced int. Theaccessiblefields of a type include all
fields introduced in it and in any of its proper supertypes.

Given a type hierarchy, theobject layout problemis to design alayout schemefor the
objects of each of the types in the hierarchy, and a method for accessing at runtime the
accessible fields of each type. Specifically, given a fieldf and an object addresso of
typet, the runtime system should be able to compute the address ofo.f . The selectorf
is a compile time constant, whileo is supplied only at runtime.

6.2 Previous Work

A layout scheme is evaluated by the following criteria.

1. Dynamic memory overhead.This is extra memory allocated for objects, i.e., mem-
ory beyond what is required for representing the object’s own fields. Ideally, this
overhead is zero. However, holes in a noncontiguous object layout contribute to this

3In fact, even the weak conformance requirement (defined later in Section 6.2) is not satisfied.
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overhead. Another overhead of this kind are compiler generated fields, e.g., virtual
function table pointers (VPTRs) in C++.

Note that the semantics of most object oriented languages dictates that the layout
of each object must include at leastone type identifier. This identifier is used at
runtime to identify the object type, for purposes such as dynamic message dispatch
and subtyping tests. This identifier can be conveniently thought of as a field defined
in a common root type (e.g., typeR in Figure 6.1), and therefore is not counted
as part of the dynamic memory overhead. However, if a scheme allocates multiple
type identifiers, as is the case with the C++ standard layout, then all but the first
identifier contribute to this overhead.

2. Field access efficiency.This is the time required to realize the field access oper-
ation o.f . Ideally, fields can be accessed in a single machine instruction, which
relies on a fixed offset (from the object base) addressing mode. Layout schemes
often rely on several levels of indirection for computing a field location in memory.

It is common that all fields introduced in a certain type are laid out consecutively.
Since f is supplied at compile time, the typet′ in which f was introduced can
be precomputed. The main duty of the runtime system is to find the location in
memory in which the fields oft′ are laid out int, the type ofo.

3. Static memory overhead.These are the tables and other data-structures used by
the layout which are shared between all objects of a certain type. This overhead is
usually less significant than the dynamic memory overhead, and therefore it seems
worthwhile to maximize sharing. On the other hand, retrieving the shared informa-
tion comes at the cost of extra indirections, and may reduce field access efficiency.

4. Time for computing the layout.This is the time required for computing the layout,
which could be exponential in some schemes.

Object layout in a single inheritance hierarchy can simultaneously optimize all the
above metrics. As can be seen in Figure 6.1b, both static and dynamic memory overheads
are zero. Field access efficiency is optimal with no dereferencing. Also, the computation
of the layout is as straightforward as it can be.

A trivial layout scheme for multiple inheritance which maintains the strong confor-
mance requirement is that the layout of each type reserves memory forall fields defined
in the hierarchy. Static memory overhead, time for computing the layout, and field access
efficiency are optimized. However, dynamic memory overhead is huge since each object
uses memory of size

∑
t∈T |t|, regardless of its actual type, which usually has far fewer

accessible fields.

Pugh and Weddell [113] investigated more efficient layout schemes which still ful-
fill the strong conformance requirement. The dynamic memory overhead of their main
bidirectional object layout scheme is in one case study only 6%, compared to 47% in a
unidirectional object layout. The authors also showed that the problem of determining
whether an optimal bidirectional layout exists is NP-complete.

At the other extreme stands what may be calledfield dispatchinglayout scheme, which
is employed by many dynamically typed programming languages including Cecil [26]
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and Dylan [120]. In this scheme, the layout of typet is obtained by iterating (in some
arbitrary order) over the setancestors(t), laying out their fields in order. Since the strong
conformance property is broken, we encapsulate fields in accessor methods. If a field
position changes in a subtype, we override its accessor. The dynamic memory overhead
in this scheme is zero.

Dispatching on accessor methods can be implemented by ann×n field dispatch matrix
which gives the base offset of a type in the layout of any of its descendants. This static
memory overhead can be reduced if the matrix is compressed by e.g., techniques used for
method dispatching (see e.g., [137] for a recent survey). A different implementation is
found in the SmallEiffel compiler [135], in which a static branch code over the dynamic
type of the object finds the required base offset.

The main drawback of field dispatching is in reduced field access efficiency. In the
matrix implementation, field access requires at least three indirections in the simplest
version, and potentially more with a compressed representation of the matrix.

An interesting tradeoff between the two extremes is offered by the memory model of
C++ [93]. C++ distinguishes betweenvirtual andnon-virtual bases.4 For non-
virtual bases, C++ uses a relaxed conformance requirement. Lett1, t2, t3 ∈ T be such
thatt1 is a non-virtual base oft2, andt3 is an arbitrary subtype oft2.

The weak conformance requirement:The offset oft1 with respect tot2 is
fixed in all occurrences oft2 within t3¹ t2.

In other words, although the offset oft1 is not the same in all of its descendants, it is fixed
with respect to any specific descendantt2, regardless of where that descendant is found.
Consequently, to find the location oft1 within t3 it is sufficient to find the address oft2
within t3.

The weak conformance requirement can be maintained together with object contiguity
in many multiple inheritance hierarchies, specifically those with no virtual-bases. How-
ever, since a type is not always located at the same offset, it is necessary to apply a process
called this -adjustment [123] in order to access a field introduced in a supertype. For
example, a method oft2 cannot be invoked on an object of typet3, without first correcting
the pointer to the object, coercing it to typet2.

The this -adjustment model incurs many penalties other than the time required for
the addition. For example, the runtime system must applynull checks before a pointer
can be corrected. Also, a conversion from an array of subtypes to an array of supertypes
cannot be done constant time. Moreover, an object may contain multiple type-identifiers,
(VPTRs in the C++ jargon) contributing to dynamic memory overhead. Also, the point-
ers to the same object may have different values which is a serious hurdle for garbage
collectors (and for efficient identity testing).

In hierarchies with virtual bases, even the weak conformance requirement cannot be
satisfied together with object contiguity. In these cases, C++ usesvirtual base pointers
(VBPTRs) to tie memory segments of the same object. Gil and Sweeney [68] give a

4We are not so interested in the textbook [124] difference between the two. Instead, we say that a type
is a virtual base if two or more of its children have a common descendant.
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detailed description ofVBPTRs. We only mention thatVBPTR can be stored directly in
the objects, as in the “standard” C++ implementation, contributing to dynamic memory
overhead, or moved to the static memory, at the cost of increasing field access time. Also,
in order to be able to access fields at constant time, an implementation must store (a
potentially quadratic number of)inessentialVBPTRs. We note that referencing fields
throughVBPTRs also requiresthis -adjustment, and that a virtual base does have a
VPTR.

Gil and Sweeney [68] proposed several optimizations of the standard C++ layout,
which were then empirically evaluated by Eckel and Gil [53], whose main yardstick was
dynamic and static memory overhead. The main optimization which contributes to field
access efficiency issimple-inlinewhich tries to reduce the number of virtual bases by
conforming transformations of the hierarchy.Aggressive-inlinedoes the same, using
a maximal-independent set heuristic as procedure for finding a close to optimal set of
transformations. Thebidirectional object layoutoptimization reduces dynamic memory
overhead but does not contribute to field access efficiency.

For the purpose of illustration, Figure 6.2 depicts a type hierarchy and its aggressive-
inline C++ layout. The same hierarchy will be used below in Section 6.4 for demon-
strating the new two-dimensional bi-directional layout. A C++ programmer is allowed to
denote some of the inheritance edges asvirtual . In the figure, inheritance edges〈B, A〉
and〈C, A〉 are virtual so thatF has a singleA sub-object. The virtual edges that werein-
lined in the aggressive-inline layout are marked in bold, while the other non-inlined virtual
edges are dashed. The cells with a dot in Figure 6.2b representVPTRs (VBPTRs were
not drawn since they can be either shared in a class or duplicated in all of its instances).
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Figure 6.2: A type hierarchy (a) with its aggressive-inline C++ layout (b)
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Our two-dimensional bi-directional scheme incursno dynamic memory overhead. In
this respect it is at least as good as any other layout scheme, and strictly better than all C++
implementations (which may include more than oneVPTR). The most interesting crite-
rion for comparison with C++ and field dispatching is therefore field access efficiency.
We shall see that the our new scheme competes favorably even with the highly optimized
and language specific aggressive-inline layout scheme.

Our results indicate that the time for computing the new layout is small—about 10
µSec per type (see Section 6.6). We also find that the static memory overhead is small
compared both to field dispatching and various C++ techniques.

The new layout isuniform, in the sense that (unlike C++) the runtime system does not
need any information on the static type of an object pointer in order to access any of its
fields. Consider an objecto and a fieldf . Then, the sequence of machine instructions for
the field access operationo.f depends only on the selectorf , and is the same regardless
of the type ofo. This is in contrast to languages such as C++ in which, depending on the
static type ofo, access to fieldf is either direct, or through indirection.

6.3 Two-Dimensional Bi-Directional Object Layout

In our two-dimensional bi-directional scheme, each field defined in the type hierarchy has
a two-dimensional address〈`, ∆〉. Coordinatè , 1 ≤ ` ≤ L, is the field’slayer, whereL
is the number of layers used by the type hierarchy. (The assignment of types into layers
is the subject of Section 6.4.) Coordinate∆ is an integral offset of the field in its layer.
We say that the layout is bidirectional since this offset may be either positive or negative.

All fields introduced in the same typet are laid out consecutively: Their layer is the
same as̀ t, the type’s layer, while their offset is fixed with respect to∆t, the offset of
the type. This section describes the actual object layout, which has three versions: the
simple and not so efficientcanonicallayout, which is included for purpose of illustration,
the general purposecompactlayout, which we expect to be used in most cases, and the
highly-optimizedinlined layout which is applicable in some special cases.

In the canonicallayout each object is represented as a pointer to aLayers Dispatch
Table (LDT) of size L. Entry i, i = 1, . . . , L, of the LDT points to theith layer of the
object.

The canonical layout is demonstrated in Figure 6.3(a) for the caseL = 5. The object
depicted in the figure represented by a pointerp to its LDT, which stores pointers to
layersL1, L3, andL4. The type of the object is such that it has no fields from the second
and the fifth layers. Hence the corresponding entries of the LDT are null.

In general, layers are two directional, and may store fields with both negative and
positive offsets. Such is layerL1 in the figure, with offsets in the range−6, . . . , +2.
However, the type of the object depicted has no fields with positive offsets in layerL3.
Similarly, layerL4 has no fields with negative offsets.

We can see in the figure that each of the layers is contiguous. More precisely, if
an object has a field at a certain layer in offset∆ > 0, then it also has fields in all
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Figure 6.3: The canonical (a) and the compact (b) two-dimensional bi-directional layout
of an object from a 5-layer hierarchy. LayersL2 andL5 are empty in the depicted object.

offsets0, . . . , ∆ − 1. By placing the layers and the LDT next to each other we obtain a
contiguous object layout. The pointers from the LDT to the layers can then be stored as
relative offsets.

A compiler algorithm for producing the runtime access code in the canonical layout is
presented in Algorithm 6.1. Take note that the typet, the layer̀ t, and the offsets∆t and
∆f are computed at compile time. Asinglememory dereference is required to compute
the fieldaddress.

Algorithm 6.1 An algorithm for generating field access code in the canonical layout
Given f , a name of a field of typeint , and a pointerp to an object which uses the
canonical layout, generate the code sequence (using pseudo-C++ notation) for accessing
field f in p.

1: Let t be the type in whichf was defined
2: Let `t be the unique layer oft // `t is a positive integer
3: Let integer∆t be the offset oft
4: Let ∆f be the offset off within its type //∆f is a non-negative integer
5: Output

int *layer ptr = (( int **)p)[ `t − 1];
int &r = layer ptr[ ∆t + ∆f ];

It is important to notice that the occupied entries in each layer depend only on the
object type. Therefore, an offset-based LDT is identical in all objects of the same type
and can be shared. Thecompactversion of object layout is obtained by employing this
sharing and by letting the object pointers reference the first layer directly, which tends to
be the largest in our algorithm for assigning fields to layers.

Figure 6.3b gives an example of the compact layout of the same object of Figure 6.3a.
In the figure we see the same three non-empty layers:L1, L3 andL4. However, the object
pointerp now points to offset 0 in layerL1. At this offset we find theobject type identifier,
which is a pointer to the shared LDT. Notice that the size of layerL1 was increased by
one to accommodate the object type identifier. Also, there are now only four entries in the
LDT, which correspond to layersL2, . . . , L5.

Algorithm 6.2 is run by the compiler to generate the code sequence for accessing
a field in the compact layout. If the compiler determines that the field is in the first
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Algorithm 6.2 An algorithm for generating field access code in the compact layout
Given f , a name of a field of typeint , and a pointerp to an object which uses the
compact layout, generate the code sequence (using pseudo-C++ notation) for accessing
field f in p.

1: Let t be the type in whichf was defined
2: Let `t be the unique layer oft // `t is a positive integer
3: Let integer∆t be the offset oft
4: Let ∆f be the offset off within its type //∆f is a non-negative integer
5: If `t = 1 then
6: Output

int &r = (( int *)p)[ ∆t + ∆f ];
7: else
8: Output

int *p1 = *(( int **)p);
int layer offset = p1[ `t − 2];
int &r = p[layer offset + ∆t + ∆f ];

9: fi

layer, then the field can be accessed directly—no memory dereferences are required for
computing its address. If the field however falls in any other layer, then memory must be
dererenced once to find the LDT, and then again to find the layer offset. Also, in this case,
the addressing mode for the final field access is slightly more complicated since it must
add compile- and runtime- offsets.

The LDT in the example of Figure 6.3 includes only four entries, all of which are
byte-size integers (assuming of course that the object size is less than 256 bytes). The
entire LDT can be represented as a single 32 bit words. Theinlined layout is obtained
from the compact layout by inlining the LDT into the object’s first layer. At the cost of
increasing object space, inlining saves a level of indirection in fetching LDT entries. Note
that even if the LDT is stored inside the object, each object must include at least one type
identifier for purposes such as subtyping tests and dispatching. Therefore, even in this
simple example, the inlined layout uses more space than the compact layout.

6.4 Computing Type Addresses

This section is dedicated to the algorithm for assigning field addresses. The main con-
straint to maintain is that all layers are contiguous in all types. It is always possible to
find such an assignment, since each field can be allocated its own layer (as done in field
dispatching).

Our objective is an assignment which minimizesL, the number of layers. One reason
for doing so, is that the memory required for LDTs isL × n. LDTs are source for static
memory overhead in the compact layout, and dynamic memory overhead in the inlined
layout.

However, our most important motivation is reducing thelikelihood of LDT fetches,
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or in other words, inefficiency of field access. If the number of layers is one, then all
fields can be retrieved without any dereferences. We note that if the number of layers is
small, then an optimizing compiler might be able to pre-fetch and reuse layer addresses
to accelerate field access.

Note first that each layer has a positive and a negativesemi-layer, and that these semi-
layers are independent for the purpose of allocation. To understand the constraints of
allocation better, consider Figure 6.4a which gives the object layout for our running ex-
ample.
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Figure 6.4: The two-dimensional bi-directional object layout of the running example (a),
the allocation of types in it to semi-layers (b), and the conflict graph with its coloring (c)

We see in the figure that the hierarchy uses a total of two layers and three semi-layers.
The first layer has at offset 0 the object type identifier and a positive and negative semi-
layers. The second layer uses only the positive semi-layer. The arrows in the figure
indicate the place where the semi-layer may continue.

Figure 6.4b shows the allocation of types to semi-layers which generates this layout:
Seven typesA, C, F, H, K, L, andN are in semi-layer 1 (positive side of the first layer).
Semi-layer 2 (negative side of the first layer) includes five types:B, E, G, J, andM.
Only D andI are in semi-layer 3 (positive side of the second layer). The layout of typeN
for example, makes use of all three semi-layers, while the layout ofD uses just semi-
layers 1 and 3.

Notice the following points:(i) Semi-layers 1 and 2 comprising the first layer are
in a fixed offset. Semi-layer 3 occurs at different offsets in different types.(ii) Each
type is always placed in the same location in its layer. For example,E is located in
the first location in semi-layer 2 in the layouts of all of its descendants:E, I, J, L, M,
andN. (iii) The same location in the same semi-layer can be used for different types. For
example, the first location of semi-layer 1 stores also the fields ofB in the layout ofF, and
the fields ofG in the layout ofK. (iv) Types are allocated to semi-layers in descending
subtyping order. For example, we see that typesA, C, H, L andN are placed in this order
in semi-layer 1 in the layout ofN and thatAºCºHº LºN.

The general question is whether two arbitrary typesa, b ∈ T can be allocated to
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the same semi-layer, and what should their relative ordering in that semi-layer should
be. Suppose first, without loss of generality, thata¹ b. Then, whenevera appears, so
doesb. Therefore, with the absence of other constraints, we can allocatea andb into the
same semi-layer, anda must be placed afterb in this semi-layer. If howevera andb are
incomparable, then they could be allocated to the same semi-layer, and even to the same
location in the level, as long as they do not occur together in the layout of any third typec.
In other words, the allocation is allowed as long asa andb have no common descendants.

Figure 6.4c shows theconflict graphof our running example, where two types are
connected by an edge if they are incomparable, yet have a common descendant. We see
in the figure that no edges are incident onA. This is becauseA is the root, and as such is
comparable with all types in the hierarchy. Also, no edges are incident on the leavesF, K
andN. The edge betweenC andE , for example, is due to their common descendantL.

A node coloring of the conflict graph provides a legal allocation. We of course seek a
minimal coloring of this graph. Figure 6.4c gives a coloring of the conflict graph of the
running example. A total of three colors are used: White nodes are allocated to semi-
layer 1, grey to semi-layer 2, and black to semi-layer 3.

Algorithm 6.3 shows the general procedure for address allocation. Using a graph
coloring heuristic, the algorithm computes the number of layers for the layout. Also,
for each typet in the input hierarchy the algorithm returns`t, its layer and∆t, the base
offset in the layer at which its fields are allocated. If∆t ≥ 0, then fields are allocated in
ascending addresses. Otherwise,t is in the negative semi-layer, and field are placed in the
addresses below∆t.

Lines 1–10 compute the edges in the conflict graph. In the main loop, we consider the
ancestors of each candidate. There is a conflict between any two of its ancestors if they
are incomparable. The runtime of the inner loop should (empirically) be close to linear,
since the average number of ancestors in our hierarchies is small.

Next (lines 11–12) we compute the conflict graph and a coloring of it. We use a simple,
greedy heuristic for finding this coloring. (We color nodes with larger degree first, using
the first available color.) A favorable property of this heuristic is that the color groups
tend to come out in descending order, i.e.,|φ−1(i)| ≥ |φ−1(i + 1)| for i = 1, . . . , s − 1.
Since fields in the first layer can be accessed in a single indirection, the first layer should
be as large as possible.

The next command block computes the layer of each typet, and its (positive or nega-
tive) offset within this layer. Lines 14–19 compute the total size of types which precedet
in its semi-layer. After computing the layer number (line 20) we turn to making the nec-
essary corrections to the offset. In general, positive semi-layers use offsets0, +1, +2, . . .,
while negative semi-layers use offsets−1,−2, . . . (lines 21–22). However, layer 1 is
special since it contains the type identifier at offset 0 (lines 23–24).

6.5 Data Set

For the purpose of evaluating the multi-layer object layout scheme, we used an ensemble
of 28 type hierarchies, drawn from eight different programming languages, and spanning
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Algorithm 6.3 Produce the compact two-dimensional bi-directional layout of a hierarchy
Given a hierarchyT and¹, return the number of layersL, and computè t and ∆t for each
typet ∈ T
1: Let E ← ∅ // E is the set of edges in the undirected conflict graph
2: For all t ∈ T do // Consider all possible common descendants
3: For all p1, p2 ∈ ancestors(t) do // p1 andp2 have a common descendantt
4: If p1 6 ¹ p2 andp1 6 º p2 then // p1 andp2 are incomparable
5: If {p1, p2} 6∈ E then // A new conflict edge found
6: E ← E ∪ {{p1, p2}

}
7: fi
8: fi
9: od

10: od

11: Let G ← 〈T , E〉 // G is the graph of conflicts between types
12: Let φ : T 7→ [1, . . . , s] be a coloring of the nodes ofG

13: For all t ∈ T do // Compute the offset and the layer oft
14: ∆t ← 0 // Compute the total size of proper ancestors in the same semi-layer ast
15: For all p ∈ ancestors(t), p 6= t do
16: If φ(p) = φ(t) then // Ancestorp is in the same semi-layer ast
17: ∆t ← ∆t + |p|
18: fi
19: od
20: `t ← dφ(t)/2e // Layerl hosts colors2l − 1 and2l
21: If φ(t) mod 2 = 0 then // Even colored objects are laid out in negative semi-layers
22: ∆t ← −∆t − 1 // Offsets of negative semi-layers start at−1
23: else ifφ(t) = 1 then
24: ∆t ← ∆t + 1 // Offset 0 in layer 1 is reserved for the type-identifier
25: fi
26: od

27: Return ds/2e

almost 50,000 types. The first 27 hierarchies5 were used in our previous benchmarks. A
detailed description of their origin, respective programming language, and many of their
statistical and topological properties can be found elsewhere [136, 137]. (Even though
multiple inheritance of fields is not possible inJAVA , the JAVA hierarchies are still use-
ful in characterizing how programmers tend to use multiple inheritance.) To these we
added Flavors, a 67-type hierarchy representing themulti-inheritance coreof the Flavors
language [98] benchmark used by Pugh and Weddell [113, Fig. 5].

Together, the hierarchies span a range of sizes, from 67 types (in IDL and Flavors) up
to 8,793 types in MI: IBM SF, the median being 930 types. The hierarchies are relatively

5IDL, MI: IBM XML, JDK 1.1, Laure, Ed, LOV, Cecil2, Cecil-, Unidraw, Harlequin, MI: Orbacus
Test, MI: HotJava, Dylan, Cecil, Geode, MI: Orbacus, Vor3, MI: Corba, JDK 1.18, Self, Vortex3, Eiffel4,
MI: Orbix, JDK 1.22, JDK 1.30, MI: JDK 1.3.1, and MI: IBM SF.
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shallow, with heights between 9 and 17. Most types have just one parent, and the overall
average number of parents is 1.2. In these and other respects, the hierarchies are not very
different from balanced binary trees [53].

The number of ancestors is typically small, averaging less than 10 in most hierarchies.
Exceptions are the Geode and the Self hierarchies, which make an extensive use of multi-
ple inheritance. In Geode, there are 14 ancestors in average to each type, and there exists
a type with as many as 50 ancestors. Self has 31 ancestors in average per type. The
topology of Self is quite unique in that almost all types in it inherit from a type with 23
ancestors. Table 6.1 below gives (among other information), the number of types in each
hierarchy, and the maximal and average number of ancestors.

6.6 Experimental Results

This section presents the results of running Algorithm 6.3 on our data set. Since this al-
gorithm depends on a graph-coloring heuristic (Line 12), we would like first to be assured
by the output quality. We remind the reader that if a graph has a clique of sizek, then
it cannot be colored by fewer thank colors. Although it is not easy to find cliques in
general graphs, some cliques can be efficiently found in conflict graphs. Consider a typet
and its set of ancestorsancestors(t). Let Pt ⊆ ancestors(t) be a set of types which are
pair-wise incomparable. Then anyt1, t2 ∈ Pt are in conflict, and the setPt is a clique
in the conflict graph. Finding a maximal set of incomparable nodes in a hierarchy is a
standard procedure of finding a maximal anti-chain in a partial order [126].

Table 6.1 compares the number of colors and layers with the predictions of the lower
bound thus found.

Let ωt = max{|Pt| | Pt ⊆ ancestors(t) is a set of pair-wise incomparable types},
i.e., ωt is the size of the maximal anti-chain among the ancestors oft. Then, ω =
maxt∈T {ωt} is a lower bound on the number of colors (or semi-layers), anddω/2e is
a lower bound on the number of layersL. We see in the table thats > ω only in seven
hierarchies: Flavors, Ed, LOV, MI: Orbacus Test, MI: HotJava, Geode and MI: Corba. In
these seven cases,s = ω + 1, so the number of colors was off by at most one from the
lower bound. Further, as the next two columns indicate, the situation that the number of
layers is greater than the prediction of the lower bound, occurs in only three hierarchies:
Ed, MI: HotJava and MI: Corba.

It is also interesting to compare the number of colors and the number of layers with the
maximal number of ancestors, denotedα = max(θt). As expected, the number of colors
is never greater than the maximal number of ancestors, and is typically much smaller than
it. The number of entries in the LDT is even smaller, since every two colors are mapped
to a single layer.

The maximal number of layers in the field dispatching technique is exactlyα, since
each layer is a singleton. The field dispatch matrix can be compressed using method
dispatching techniques, such as selector coloring [44, 118]. A lower bound on the space
requirement of selector coloring isn × α. We therefore have that the static memory of
our layout schemen× L is superior to that of the field dispatch matrix compressed using
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Hierarchy〈T ,¹〉 n = |T | ω a s b dω/2e ds/2e max(θt)c avg(Lt)d avg(θt)e

Flavors 67 3 4 2 2 13 1.6 4.9
IDL 67 2 2 1 1 9 1.0 4.8
MI: IBM XML 145 5 5 3 3 14 1.5 4.4
JDK 1.1 226 2 2 1 1 8 1.0 4.2
Laure 295 3 3 2 2 16 1.1 8.1
Ed 434 12 13 6 7 23 3.2 8.0
LOV 436 13 14 7 7 24 3.5 8.5
Cecil2 472 8 8 4 4 29 2.0 7.4
Cecil- 473 8 8 4 4 29 2.0 7.4
Unidraw 614 3 3 2 2 10 1.0 4.0
Harlequin 666 14 14 7 7 31 1.9 6.7
MI: Orbacus Test 689 3 4 2 2 12 1.3 3.9
MI: HotJava 736 14 15 7 8 23 2.0 5.1
Dylan 925 3 3 2 2 13 1.1 5.5
Cecil 932 6 6 3 3 23 1.7 6.5
Geode 1,318 21 22 11 11 50 5.1 14.0
MI: Orbacus 1,379 11 11 6 6 19 1.6 4.5
Vor3 1,660 6 6 3 3 27 1.6 7.5
MI: Corba 1,699 6 7 3 4 18 1.3 3.9
JDK 1.18 1,704 12 12 6 6 16 1.2 4.3
Self 1,802 24 24 12 12 41 10.7 30.9
Vortex3 1,954 8 8 4 4 30 1.7 7.2
Eiffel4 1,999 15 15 8 8 39 2.2 8.8
MI: Orbix 2,716 6 6 3 3 13 1.1 2.8
JDK 1.22 4,339 14 14 7 7 17 1.5 4.4
JDK 1.30 5,438 15 15 8 8 19 1.5 4.4
MI: JDK 1.3.1 7,401 21 21 11 11 24 1.5 4.4
MI: IBM SF 8,793 13 13 7 7 30 2.3 9.2

athe maximal size of an anti-chain in the ancestors of any typet ∈ T
bthe number of colors (or semi-layers) used by Algorithm 6.3
cmax{θt | t ∈ T }
d 1

n

∑
t∈T Lt

e 1
n

∑
t∈T θt

Table 6.1:Statistics on the input hierarchies, including the number of colors and layers found by
Algorithm 6.3 compared with the maximal anti-chain lower bound

selector coloring.

The next two columns of Table 6.1 give another comparison of hash-table implemen-
tation of the LDT with a hash table implementation of the field dispatch matrix. We see
that the number of layers which each object uses is typically small. No more than 3.5 in
all but the Self and Geode hierarchies. In all hierarchies, we see that the average number
of ancestors is much greater than the average number layers. This shows that(i) Al-
gorithm 6.3 is successful in compressing multiple types into layers, and consequently
that(ii) the LDT places weaker demands than the field dispatch matrix on static memory.

The theoretical complexity of Algorithm 6.3 isO(n3), since lines 2–3 may iterate in
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certain hierarchies over a fixed fraction of all possible type triplets. The runtime of the
simple greedy graph-coloring heuristic isO(n2). In practice however, the algorithm runs
much faster. By applying some rather straightforward algorithmic optimizations, e.g.,
considering in line 2 only types which have more than one parent, the run times were
reduced even further.

On a Pentium III, 900Mhz machine, equipped with 256MB internal memory and run-
ning a Windows 2000 operating system, Algorithm 6.3 required less than 10 mSec in 19
hierarchies. Seven hierarchies required between 10 mSec and 50 mSec. The worst hi-
erarchy was MI: IBM SF which took 400 mSec. The total runtime for all hierarchies
was 650 mSec, which gives on average 13µSec of CPU time per type. The runtime of
C++ aggressive-inline procedure on the same hardware is much slower. For example, ag-
gressive inline of MI: IBM SF took 3,586 mSec, i.e., about 9 times slower. Simple inline
of MI: IBM SF took 2,294 mSec, which is still much slower.

The most important criterion for evaluating a layout scheme is field access efficiency.

Since the hierarchies were drawn from different languages and were not associated
with any application programs, we were unable to directly measure the actual cost of field
access in the various layout schemes. We can however derive other metrics to compare
the costs of the new layout technique with that of prior art.

For example, the number of layers used by a given type, gives an indication on the
number of different dereferences required to accessall the object fields. The correspond-
ing metric in C++ is the number of virtual bases, which can be accessed only by derefer-
encing aVBPTR.

Figure 6.5 compares the average number of layers of the new scheme with that of
the standard C++ implementation, the simple inlined implementation and the aggressive
inlined implementation. In making the comparison we bear in mind that the new scheme
is both language-independent and space-optimal—properties which the C++ schemes do
not enjoy.

We see in the figure that with the exception of Self hierarchy (which as we men-
tioned above has a very unique topology), the new layout scheme is always superior to
the standard- and simple-inlined implementation of C++. Moreover, the new scheme is
superior or comparable with the aggressive-inline layout scheme, with the exception of
four hierarchies: Ed, LOV, Geode and Self. Comparing themaximal-rather than the
average-number of layers yields similar results.

Table 6.2 shows the extra dynamic memory consumed by the various C++ layout
schemes, specifically forVPTRs.

Curiously, the four hierarchies in which the new scheme does not perform as well, Ed,
LOV, Geode and Self, are exactly the hierarchies in which the C++ schemes, including
the highly optimized aggressive inline waste the most amount of dynamic memory.

We also offer a more sophisticated theoretical model for comparing the performance
of various schemes of object layout which involve indirection to access various fields.
Suppose that a certain field was retrieved from a certain layer. Then, a good optimizing
compiler should be able to reuse the address of this layer in retrieving other fields from
this layer. Even in the standard C++ layout, the compiler may be able to reuse the address
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Figure 6.5: Average no. of layers in different hierarchies

of a virtual base to fetch additional fields from this base.

For a fixed typet, and for a sequence ofk field accesses, we would like to com-
puteAt(k), the expected number of extra dereferences required to access these fields.
Since much empirical data is missing from our ensemble of hierarchies, we were inclined
to make two major simplifying assumptions:

1. Uniform class size.The number of fields introduced in each type is the same. Al-
though evidently inaccurate, this assumption should not be crucial to the results.
We do expect that most classes introduce a small number of fields, with a relatively
small variety.

2. Uniform access probability.The probability of accessing any certain field is fixed,
and is independent of the fields accessed previously, nor of the type in which the
field is defined. This assumption is clearly in contradiction to theprinciple of lo-
cality of reference.

However, as we shall see, locality of reference improves the performance of layout
schemes. It is not clear whether this improvement contribute more to any specific
scheme.

Theθt ancestors oft are laid out inLt different layers or virtual bases, such that layeri
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Hierarchy
Average Median Maximum

C++ S-In A-In C++ S-In A-In C++ S-In A-In
Flavors 3.4 3.2 2.4 3 3 2 9 8 5
IDL 1.9 1.6 1.2 2 2 1 3 2 2
MI: IBM XML 2.8 2.8 2.0 2 2 1 9 9 6
JDK 1.1 2.1 2.0 1.8 2 2 2 4 4 3
Laure 3.9 3.2 2.3 4 3 2 8 7 5
Ed 5.2 5.0 4.2 4 4 4 16 16 12
LOV 5.6 5.5 4.6 5 5 4 17 17 13
Cecil2 4.6 4.4 3.4 3 3 3 17 15 9
Cecil- 4.6 4.3 3.5 3 3 3 17 15 9
Unidraw 1.4 1.4 1.4 1 1 1 4 3 3
Harlequin 3.6 3.2 2.7 2 2 2 21 19 16
MI: Orbacus Test 2.5 2.1 1.7 2 2 1 8 6 5
MI: HotJava 2.9 2.9 2.7 2 2 2 17 17 15
Dylan 2.0 1.9 1.3 2 2 1 7 6 5
Cecil 3.7 3.5 2.7 3 3 2 16 13 8
Geode 9.9 9.5 8.3 9 9 7 32 31 27
MI: Orbacus 2.8 2.6 2.2 2 2 1 13 12 11
Vor3 4.6 4.2 3.5 4 3 3 17 14 11
MI: Corba 2.6 2.3 1.7 2 2 1 14 12 10
JDK 1.18 1.9 1.9 1.7 2 2 1 14 13 12
Self 21.2 21.2 21.1 22 22 22 26 25 25
Vortex3 4.4 3.8 3.4 3 3 3 18 15 11
Eiffel4 3.7 3.4 3.1 2 2 2 20 17 16
MI: Orbix 1.5 1.4 1.3 1 1 1 7 7 6
JDK 1.22 2.4 2.3 2.1 2 2 2 16 15 14
JDK 1.30 2.4 2.3 2.1 2 2 2 17 17 16
MI: JDK 1.3.1 2.3 2.3 2.0 2 2 1 23 22 21
MI: IBM SF 5.8 5.8 3.6 6 6 3 16 16 13

Total 4.2 4.0 3.3 - - 22 32 31 27
Median 3.2 3.0 2.4 2 2 2 16 14.5 11
Minimum 1.4 1.4 1.2 1 1 1 3 2 2
Maximum 21.2 21.2 21.1 22 22 22 32 31 27

Table 6.2:No. of VPTRs using standard C++ layout, simple inline (S-In), and aggressive inline
(A-In)

(virtual basei) hasθt(i) ancestors. The first layer can always be accessed directly. Access
to a field in layeri in stepk requires a dereference operation, if that layer was not accessed
in steps1, . . . , k − 1.

Let Xt(i), i = 2, . . . , Lt be the random binary variable which is 1 if a field of leveli
was not referenced in any of the steps1, . . . , k. Then,

Prob[Xt(i) = 1] = Exp(Xt(i)) =

(
1− θt(i)

θt

)k

.

Additivity of expectation allows us to sum the above overi, obtaining that the expected
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number of levels (other than the first) which were not referenced is

Lt∑
i=2

(
1− θt(i)

θt

)k

.

Using the linearity of expectation, we find that the expected number of referenced levels,
i.e., the number of dereferences is simply

At(k) = (L− 1)−
Lt∑
i=2

(
1− θt(i)

θt

)k

. (6.1)

Averaging over an entire type hierarchy, we define

A(k) =
1

n

∑
t∈T

At(k) (6.2)

Figure 6.6 gives a plot ofA(k) vs.k in four sample hierarchies in the layout schemes
field dispatching, standard C++ layout, simple inline (S-Inline), aggressive inline (A-
Inline), and our two-dimensional bi-directional layout (TDBD). Values ofA(k) were
computed using (6.1) and (6.2) in the respective hierarchy and object layout scheme. For
field dispatching, we setθt(i) = 1.
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Figure 6.6: Average no. of dereferences vs. no. of field accesses in four hierarchies

It is interesting to see that in all hierarchies and in all layout schemes, the expected
number of dereferences is much smaller than the number of actual fields accessed. It is
also not surprising thatA(k) increases quickly at first and slowly later. As expected, the
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new scheme is much better than field dispatching. The graphs give hope of saving about
75% of the dereferences incurred in field dispatching. (Note however that the model
does not take into account any optimizations which runtime systems may apply to field
dispatching.)

The other, C++ specific techniques are also more efficient than field dispatching. We
now turn to comparing these with our scheme. In the Vortex3 hierarchy the new scheme
dramatically improves the expected number of dereferences compared to any of the C++
layout schemes. The new scheme is also the best in smallerk values in the Eiffel4 hier-
archy, and is comparable to aggressive inline with greater values ofk. Another typical
behavior is demonstrated by MI: IBM SF, in which the new scheme is almost the same
as aggressive-inline. In the Geode hierarchy which is one of the two hierarchies in which
the two-dimensional bi-directional scheme cannot find a good partitioning into a small
number of layers, we find that aggressive inline gives the best results in terms of field
access efficiency. Still, even in this hierarchy the new scheme is better than the standard
C++ implementation and the simple-inline outline heuristic.

6.7 Conclusions and Open Problems

The two-dimensional bi-directional object layout scheme enjoys the following proper-
ties: (i) the dynamic memory overhead per object is a single type-identifier,(ii) the static
memory per type is small: at most 11 cells in our data set, but usually only around 5
cells, (iii) small time for computing the layout: an average of 13µSec per type in our
data set, and(iv) good field access efficiency as predicted by our analytical model: the
new scheme always improves upon the field dispatching scheme and on the standard C++
layout model. Even compared to the highly optimized C++ layout, after performing ag-
gressive inline, the new scheme still compares favorably.

We note that the new scheme does not rely onthis -adjustment, and in the few hi-
erarchies where the aggressive-inline of C++ won, it was with the cost of large dynamic
memory overheads, e.g., as much as 21VPTRs on average in the Self hierarchy.

The one-dimensional bi-directional layout of Pugh and Weddell’s [113] realizes field
access in a single indirection, but it may leave holes in some objects. In comparison, our
two-dimensional bi-directional layout has no dynamic memory overheads, but a field ac-
cess might require extra dereferences. In the Flavors hierarchy Pugh and Weddell reported
6% dynamic memory overhead (assuming a single instance per type). Our scheme uses
only two layers for this hierarchy, and the probability that a field access would require
extra dereferences is only 0.19.

Directions for future work include empirical study of frequencies of field accesses,
and further reducing the static memory overheads. In dynamically typed languages where
fields can be overloaded, the layout algorithm must color fields instead of types. Em-
pirical data should be gathered to evaluate the efficiency of the layout algorithm in such
languages.



Chapter 7

Efficient Algorithms for Isomorphisms
of Simple Types

Chapter Summary
The first order isomorphism problemis to decide whether two non-recursive types using product-
and function-type constructors, are isomorphic under the axioms of commutative and associative
products, and currying and distributivity of functions over products. We show that this problem
can be solved inO(n log2 n) time andO(n) space, wheren is the input size. This result improves
upon theO(n2 log n) time andO(n2) space bounds of the best previous algorithm. We also de-
scribe anO(n) time algorithm for thelinear isomorphism problem, which does not include the
distributive axiom, thereby improving upon theO(n log n) time of the best previous algorithm for
this problem.

It is a matter of basic high school algebra to prove the equality

(
(ab)(ab)

)(ba)
= aabba

bbaab
. (7.1)

Yet, as we shall see in this chapter, a systematic and efficient production of such a proof
is non-trivial. With the familiar perspective of viewing multiplication as product-types,
exponentiation as function-types, and variables as primitive-types, (7.1) becomes an in-
stance of a simple, i.e., non-recursive, type isomorphism problem. In its turn, type iso-
morphism has close connections to category theory [19,122] and intuitionistic logic [79].

The isomorphism variant which concerns us here is characterized by commutativity
and associativity of products, and currying and distributivity of functions over products.
This variant has practical interest in the context of the search for compatible functions
in function libraries.1 (A detailed treatise of this application can be found in Di Cosmo’s
book [39], which discusses also extensions to second order types and the ML type theory.)

More formally, we consider the set of first order isomorphisms holding in all models
of the lambda calculus with product-types (surjective pairing), function-types, and unit

1Besides being sufficient for the proof of equations such as (7.1).

137
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types, as defined by the followinggeneral grammar

τ ::= T | x | τ → τ | τ × τ ,

whereT is the unit type,x stands for an arbitrary primitive-type,→ denotes a function-
type, and× denotes a product-type.

In defining the isomorphism relation we shall use the following seven axiom schemas.

(A.1) A×T = A
(A.2) A → T = T
(A.3) T → A = A
(A.4) A×B = B × A (Commutative)
(A.5) A× (B × C) = (A×B)× C (Associative)
(A.6) (A×B) → C = A → (B → C) (Currying)
(A.7) A → (B × C) = (A → B)× (A → C) (Distributive)

(Here and henceforth, the range of variablesA, B andC is any type expression in the
general grammar.)

For a long time, the problem of deciding first order isomorphisms of simple types was
thought to require exponential time [19]. It was recently shown [32] that the variant of
our interest can be decided inO(n2 log n) time andO(n2) space, wheren is the length of
some standard representation of the two input types. The main contribution described in
this chapter is an improvement of this result toO(n log2 n) time andO(n) space. We also
give algorithms usingO(n) time and space for important special cases.

The arithmetic version of these seven axioms (substituting multiplication, exponenti-
ation, and the constant one, for×, → andT) was proved to be complete for the Carte-
sian closed categories [19, 122]. Since the models of the lambda calculus with unit,
product- and function-types are exactly the Cartesian closed categories [19], the set is
also complete for the type isomorphisms we examine. Through the Curry-Howard iso-
morphism [79], these isomorphisms are also equivalent to equational equality in positive
intuitionistic logic so the same axioms apply there too (again, with appropriate notational
changes).

Besides their theoretical connections, type isomorphisms can be used as a means of
searching large program libraries. Specifically, the desired type of a function is used as
a search key and functions with isomorphic types are returned as candidates. A famous
example [116] shows that even the simple function, folding a list, can be implemented
with many different types, varying argument order and the use of “Curried” style. Em-
ploying type isomorphisms in the search will retrieve all compatible function implemen-
tations. Moreover, the isomorphism proof can often automatically generate bridge code
converting the functions found to the desired type. It was even argued [10] that type
isomorphisms can be employed in proof reuse.

Second order isomorphismsaugment first order isomorphisms with universal quanti-
fiers, as in∀A.A → A = ∀B.B → B. Universal quantifiers make second order isomor-
phisms more effective in searching program libraries since they are necessary to capture
parametric polymorphism. While some of the issues of second order isomorphisms are
similar (some of the space sharing techniques are applicable), they are known to be graph
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isomorphism complete [11, 39] and we do not attempt to decide them in this work. A
different system of type isomorphisms is that of the core ML language. It is known [38]
that second order isomorphisms are insufficient to describe these, although the addition
of one more axiom suffices.

Recursivevariants of the type isomorphism problem at our hand were also consid-
ered in the literature. In the Mockingbird project the recursive type system comprised of
product- and function-types [8,9,111]. Gil [67] describes how algorithms for polynomial
equality can be used for deciding isomorphism in the “algebraic type system”, i.e., the
recursive type system comprising of union- and product-types.

The more general isomorphism problem, for a non-recursive type system which in-
cludes product-, union-and function-types is equivalent to Tarski’shigh school algebra
problem[125]. Such a system does not have a finite and complete set of axioms. Nonethe-
less, there exists a (non-polynomial) algorithm for determining isomorphism [73]. There
also exists a (non-polynomial) algorithm for deciding isomorphism in the recursive “al-
gebraic type system” [67]. Finally, we should mention that adding empty and sum types
breaks down the relationship between the equational theory and type isomorphisms [63].

outline The first order isomorphism problem and its variants are defined in Section 7.1.
Section 7.2 gives the intuition for solving this problem. More specifically, this section
describes how previous work used reduction systems in order to obtain normal forms
which are more easily compared. Sections 7.3–7.9 present different stages of our main
algorithm for the first order isomorphism problem. The pieces are then put together in
Section 7.10. Finally, Section 7.11 mentions some open problems and directions for future
research.

7.1 Definitions: The First Order Isomorphism Problem
and Its Variants

Here we concentrate on first order isomorphism and two restricted variants (product and
linear isomorphism). We now make the necessary definitions in order to give a precise
statement of the problem and its variants.

Next we define four successive theories of isomorphism of types.

Definition 7.1 Let Equality be the theory of equality of types defined as the set of propo-
sitions obtained by the deductive closure of the axiom schema

(A.0) A = A (Reflexive)
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and the following four inference rules.

A = B
B = A

symmetry

A = B,B = C
A = C

transitivity

A = B, C = D
A× C = B ×D

congruence of×

A = B, C = D
A → C = B → D

congruence of→

Thus,Equality is the usual theory of equality, sometimes denoted asTh0 [32].

Definition 7.2 Let Product be the theoryEquality augmented with axiom schemasA.1–
A.5. Let Linear be the theoryProduct augmented with axiom schemaA.6. Let First be
the theoryLinear augmented with axiom schemaA.7.

Theory Product adds the unit axioms to the theory of equality as well as the rules
of commutative and associative products. The currying axiom is added in theoryLinear.
Finally, First is the theory of first order isomorphisms, which is often referred to in the
literature asTh1

×T [19,20,39].

WhenT does not occur in the input, it is convenient to use theory variants which do
not include the unit axioms.

Definition 7.3 Let Product− be the theoryEquality augmented with axiom schemasA.4
andA.5. LetLinear− be the theoryProduct− augmented with axiom schemaA.6. LetFirst−

be the theoryLinear− augmented with axiom schemaA.7.

Definition 7.4 (Axiom instance) An instance of an axiomA is the result of a consistent
substitution of all the variables inA by type expressions of the general grammar.

For example,
(
a → (T×b)

)×c = c×(
a → (T×b)

)
is an instance of the commutative

axiomA.4.

Definition 7.5 (Derivation sequence)Let Θ be a theory, e.g.,Θ = Equality, or Θ =
First−. Then, the sequenceτ1 = τ ′1, . . . , τm = τ ′m is called aderivation sequencein Θ if
for i = 1, . . . , m, τi = τ ′i is either an instance of an axiom inΘ or the result of applying
one of the four inference rules on previous equalities. For typesτ, τ ′ we writeΘ ` τ = τ ′

when there exists a derivation sequence ending with the equalityτ = τ ′.

Let τ and τ ′ be two given types. We use the notationτ = τ ′ as an abbreviation
for Equality ` τ = τ ′.

Definition 7.6 Thefirst order isomorphismproblem is to decide whetherFirst ` τ = τ ′.
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The first order isomorphism problem has been known to be decidable for over a decade [19,
122]. Previous to our work, the best known bound wasO(n2 log n) time usingO(n2)
space [32].Our main result is in reducing the time toO(n log2 n) time and the space
to O(n).

One of the difficult issues in obtaining an efficient algorithm for the problem is dealing
with the commutative and associative nature of product (axiomsA.4 andA.5). Concen-
trating on this we define the product isomorphism problem.

Definition 7.7 Theproduct isomorphismproblem is to decide whetherProduct ` τ = τ ′.

We apply the standard abbreviation of using the
∏

symbol to denote (an associated to
the left) product of severalterms, i.e., fork ≥ 2,

k∏
i=1

τi =

(
· · ·

(
(τ1 × τ2)× τ3

)
· · · × τk

)
, (7.2)

When the commutative and associative axioms apply, we shall write products without
parenthesis. Consider, for example, the following product:

abracadabra. (7.3)

(Lower case, sanserif letters denote here and henceforth primitive-types. We shall use the
arithmetical and type notations interchangeably. No confusion will arise.) An instance of
the product isomorphism problem variant is to determine whether the above is isomorphic
to

carrabadaba. (7.4)

One may be tempted to attack the problem by bringing each product into a unique sorted
normal form, which in this case is

aaaaabbcdrr. (7.5)

In this chapter we show that the product isomorphism problem is decidable in linear
time.2 This result is based on the observation that it can be determined that (7.3) and (7.4)
are isomorphic without using a super-linear sorting procedure, but rather by employing
an algorithm formulti-set comparison. More generally, to determine whether

∏k
i=1 Ai is

isomorphic to
∏k

i=1 Bk the multi-set comparison algorithm checks whether there exists a
permutationπ such thatAπ(i) is isomorphic toBi.

This product isomorphism variant was not considered previously as such in the lit-
erature. Palsberg and Zhao [111] gave anO(n2) time algorithm for arecursiveproduct
isomorphism problem, defined by the addition of a grammar ruleτ ::= µα.τ whereα is
a type variable, and a folding/unfolding axiom

(A.8) µα.A = A[(µα.A)/α].

2Jha (personal communication, September 2002) reports on independent discovery of an algorithm for
this sub-problem, with similar complexity bounds, published in [81].
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(As usual, the notationA[B/α] stands for a type expressionA where each occurrence
of α is replaced byB.) This result was later improved toO(n log n) time [80] using a
reduction to the problem of finding size-stable partitions of a directed graph.

We note that the recursive product isomorphism problem is not a simple a general-
ization of our product isomorphism problem. The reason is that isomorphism between
recursive product-types should be defined in terms of their infinite unfoldings which are
regular trees. To reason about these infinite structure, inductive variants of thecongruence
of× andcongruence of→ inference rules must be used. It was found (Palsberg, personal
communication) that the combination of these variants with the folding/unfolding axiom
and the unit axiomsA.1–A.3. gives rise to an inconsistent system. These axioms were
therefore omitted from the recursive product type systems. It remains a challenge to find
a reformulation of the inference rules in Definition 7.1 which is consistent with all ax-
iomsA.1–A.8.

More difficult than the product isomorphism problem is the problem variant defined
by theLinear theory, which adds the currying axiom.

Definition 7.8 The linear isomorphismproblem is to decide whetherLinear ` τ = τ ′.

Polynomial time results for this problem were known before those of the first order
problem. Linear isomorphism can be decided in linear space andO(n log2 n) time [6].
Although not previously mentioned, both algorithms [32, 80] improve the running time
to O(n log n). We advance the state of the art by showing that linear isomorphism is also
decidable in linear time.

Linear isomorphism combined with the folding/unfolding axiom may generate prod-
ucts with an unbounded number of terms, which makes it difficult to apply the standard
algorithms for recursive type isomorphisms. Consider, for example, the type

µα.(a → α). (7.6)

The following equality is an instance of the folding/unfolding axiom

µα.(a → α) = a → (
µα.(a → α)

)
.

Repeated use of the folding/unfolding axiom proves that type (7.6) is isomorphic to

a →
(

a → · · · → (
µα.(a → α)

) · · ·
)

.

Finally, by using the currying axiom we can produce a product with any number of terms.

The final step toward solving the first order isomorphism problem is to deal with
the distributive axiomA.7. As we shall see, the difficulty in doing so is that a naive
application of this axiom may lead to an exponential blowup of the input types.

7.2 Intuition: Reduction Systems and Normal Forms

Isomorphism proofs are usually based uponreduction systemsproducing a normal form
representation of the input, which can be more easily compared. We assume that types



7.2. INTUITION: REDUCTION SYSTEMS AND NORMAL FORMS 143

use a standard expression-tree representation in memory, and that eachrule application
in the reduction system is implemented as a transformation of this data structure.

For example, the reduction system of Rittri [116] has seven rules

R.1 T× A ⇒ A
R.2 A×T ⇒ A
R.3 T → A ⇒ A
R.4 A → T ⇒ T
R.5 A× (B × C) ⇒ (A×B)× C
R.6 A → (B → C) ⇒ (A×B) → C
R.7 A → (B × C) ⇒ (A → B)× (A → C)

(7.7)

Rittri proved that the rulesR.1–R.7 are confluent and terminating. Therefore, by repeated
application of the rules the input types are reduced to anormal form.

In the degenerate case in which one or both of the inputs is reduced toT, the input
types are isomorphic if and only if they both reduce toT. (This intuitive statement is
given a formal proof in Section 7.3.) Otherwise, the normal forms do not contain the
symbolT. Furthermore, these rules can always simplify the structure of the right operand
of →, unless it is a primitive-type.

An algorithm for deciding first order isomorphism is to recursively compare the re-
sulting normal forms: two nodes are isomorphic if they are of the same kind (product or
function) and their operands are isomorphic. In function-nodes the comparison of argu-
ments is straightforward: the left (right) operand of one node must be isomorphic to the
left (right) operand of the other. In comparing product-nodes however we must solve an
instance of the product polymorphism problem to check whether the terms of one node is
pair-wise isomorphic to some permutation of the terms of the other node. If this compar-
ison is not done carefully it adds to the complexity of the problem.

An even more serious inefficiency factor is that the system (7.7) (specifically, the dis-
tributive ruleR.7) may introduce an exponential blowup in the size of the representation.
RulesR.1–R.6 do not increase the representation size. However, each application ofR.7
creates a duplicate copy of the subtree whose root isA. Repeated applications may pro-
duce a very large normal form representation. In the sequence of types{Xi}, defined
by X0 = a andXi = (bici)

Xi−1 for i > 0, we have thatXn ⇒ bXn−1
n cXi−1

i and suc-
cessive applications of this rule to each occurrence ofXi, i = n − 1, . . . , 1, will lead to
exponentially many copies ofa in the normal form ofXn.

If graphs, rather than trees, are used to represent types, then an application ofR.7,
can be implemented bysharingthe node representingA. This sharing can be thought of
as an application of a slightly different transformation

A → (B × C) ⇒
{

(α → B)× (α → C)

α = A
, (7.8)

where a newly introduced symbolic variableα is represented as a pointer to the data-
structure representation of typeA.

Rittri [117] observed that using (7.8) ensures a polynomially sized representation of
the normal form: Each application of transformation (7.8) adds one edge to the graph.
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The application reduces the nesting level of the× node, and this nesting level cannot be
increased by the other rules. We obtain that the space of the graph normal form isO(n2)
by noticing that initially there are at mostn product-nodes, and that even though addi-
tional product-nodes may be created byR.6, these nodes cannot take part in the other two
rules.

To see that the representation can indeed by quadratic, consider the following example
(written using the arithmetical notation):

(
b1

(
b2 · · ·

(
bn−2(bn−1b

an
n )an−1

)an−2 · · ·
)a2

)a1

, (7.9)

whose normal form is

ba1
1 ba2a1

2 · · · ban−1···a1

n−1 ban···a1
n . (7.10)

This normal form consumes quadratic space if derived by applyingR.7 starting at the
inner most parenthesis.

Remark 7.9 Deriving (7.9)starting at the outer-most parenthesis, yields the representa-
tion

bα1
1 · · · bαn

n , (7.11)

whereα1 = a1, andαi = aiαi−1 for i = 2, . . . , n. Note that(7.11)requires only linear
space whereas(7.10)is quadratic.

Having bounded the space explosion, Rittri stopped short of giving a polynomial time
algorithm for the problem. By noticing that the graph representation is acyclic, and by
using a variant of Rittri’s normal form, Considine [32] was able to reduce the runtime
to polynomial. We should note that Considine’s rules were different than Rittri’s in that
ruleR.6 was applied in the opposite direction. The resulting normal form is such that in-

stead ofABCD, it uses the equivalent representation
((

AB
)C

)D

. Thus, strictly speaking,

his normal form did not use product-nodes, other than in the upper most level. How-
ever, the alternative representation must still deal with the difficulties of associativity and
commutativity as in the more familiar representation of products.

Considine’s algorithm partitions all nodes in the directed acyclic graph (DAG) rep-
resentation of the input types into equivalence classes, such that all nodes in the same
equivalence class are isomorphic. This partitioning is built in a bottom-up traversal of the
DAGs, while maintaining a hash table mapping each node into the unique identifier of
its equivalence class. The most difficult task in this traversal was to determine whether
product-nodes are isomorphic. Two key properties made Considine’sO(n2 log n) time
andO(n2) space result possible:

1. Expansion of product-types.Considine showed that his normal form, which in-
cludes complete expansion of product-types, is such that each product consists
of no more thann terms.
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2. Sorting product terms.Since the graph is acyclic, terms in product-types must
have been visited and classified by the bottom up traversal before the product
itself. Each product-node is first normalized by sorting the identifiers of the
equivalence classes of their terms. The fact that the order of terms is completely
determined by this sorting makes it possible to employ ahash-consingtech-
nique to produce a unique identifier for each product-type, thereby partitioning
product-type nodes into equivalence classes.

Our algorithm uses the same bottom-up classification of nodes into equivalence classes.
However, the reduction of space toO(n) and of time toO(n log2 n) are made possible by
breaking away from the above principles. Specifically, the new algorithm is characterized
by:

1. Application of R.7 to “outer-most” functions first. As demonstrated in Re-
mark 7.9 the space is kept linear if the distributive rule is applied starting at
the outer-most parenthesis.

2. Unexpanded product-types.The expansion of product-types leads to quadratic
time and space. Instead, we describe a graph based representation, which keeps
the space linear, and show that unexpanded products can still be efficiently com-
pared.

3. Unsorted product terms.Isomorphism of product-nodes is decided by a proce-
dure which can be thought of as hashing or range compaction, rather than sorting.
A similar procedure is used to partition the multi-sets of products in each stage
of the traversal into their equivalence classes.

Road map Our algorithms employ four successive normal forms, all of which can be
computed in linear time and space. Each normal form stands for a “simpler” isomorphic
representation, obtained by exhaustively applying some of the rules (7.7).

The normal formnfT, described in Section 7.3, is computed by applying rulesR.1–
R.4 to remove (essentially) all occurrences ofT. We further show in this section, thatnfT
makes it possible to completely ignore the unit axioms in the main algorithms.

The normal formnfc, which takes care of thecurrying axiom, is the subject of Sec-
tion 7.4, where we show how linear isomorphism can be reduced to product isomorphism.

To solve the product isomorphism problem, we need a procedure for comparing long
products without sorting their terms. Section 7.5 develops this procedure as part of a
general algorithm for multi-set partitioning. Section 7.6 then gives the concrete algorithm
for the product isomorphism problem. In the algorithm theassociativeruleR.5 is first
applied to produce the normal formnfa. The normalized types are then compared in a
bottom-up traversal, while invoking the multi-set partitioning algorithm at each level.

Section 7.7 then shows how an exhaustive application of thedistributiveruleR.7 pro-
duces the normal formnfd. A linear space encoding fornfd, called theP/F-graph, is also
described in this section. Unexpanded products in theP/F-graph form atree structure,
such that each product inherits the terms of its parent. Section 7.8 employs multi-set par-
titioning in comparing unexpanded products in this tree structure. Section 7.9 fine-tunes
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this procedure to its application in a bottom-up classification of the nodes of theP/F-
graph. Finally, we present our main algorithm for deciding first order isomorphisms of
simple types in Section 7.10. Section 7.11 lists some open questions.

7.3 Eliminating Unit Types

This section describes a linear time and space algorithm for eliminating the unit axioms.
Algorithm EliminateUnits receives as input two types:τ andτ ′, both conforming to
thegeneral grammar, describing arbitrary first order types.

General Grammar

τ ::= T | x | τ → τ | τ × τ.

The output comprises two typesσ andσ′, such that

First ` τ = τ ′ ⇔ First− ` σ = σ′.

(At the end of this section we show that a similar claim can be made for theoriesLinear
andProduct.) The details are in Algorithm 7.1.

Algorithm 7.1 EliminateUnits (τ, τ ′)
Given two typesτ andτ ′ conforming to the general grammar, return either (i) a decision
whetherFirst ` τ = τ ′, or (ii) two typesσ, σ′ conforming to the no-unit grammar such
thatFirst ` τ = τ ′ ⇔ First− ` σ = σ′.

1: σ ← nfT(τ)
2: σ′ ← nfT(τ ′)
3: If σ = T and σ′ = T then
4: return true // Typesτ andτ ′ are isomorphic
5: else ifσ = T or σ′ = T then
6: return false // Typesτ andτ ′ are not isomorphic
7: else
8: return 〈σ, σ′〉
9: fi

If either ofτ or τ ′ is isomorphic toT then the algorithm returns a decision whetherFirst `
τ = τ ′ (lines 4 and 6). Otherwise, i.e., when bothτ andτ ′ are not isomorphic toT, the
algorithm returns two typesσ andσ′ such thatFirst ` τ = τ ′ ⇔ First− ` σ = σ′ (line 8).
Both σ andσ′ conform to the followingno-unit grammar, in which the symbolT never
occurs.

No-Unit Grammar

τ ::= x | τ → τ | τ × τ
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The crux of the algorithm is the transformation of the inputs into their normal form in
lines 1 and 2. For a typeτ , its normal formnfT(τ) is a type isomorphic toτ , i.e.,First `
τ = nfT(τ), wherenfT(τ) is either the typeT or it conforms to the no-unit grammar.

The following is an algorithmic definition of the normalizing functionnfT.3 The func-
tion recursively traverses the tree representing the input type, while applying rulesR.1–
R.4 whenever possible.

nfT(τ) =





T if τ = T

x if τ = x

R1,2(nfT(τa), nfT(τb)) if τ = τa × τb

R3,4(nfT(τa), nfT(τb)) if τ = τa → τb

(7.12)

After the children of a node have been simplified by the recursive calls, functionnfT may
invoke, depending on the node type, one of two auxiliary functions to simplify the node
itself. The first such function applies the product-unit rules (R.1 andR.2).

R1,2(σa, σb) =





σb if σa = T // apply ruleR.1

σa if σb = T // apply ruleR.2

σa × σb otherwise

(7.13)

The other auxiliary function applies the function-unit rules (R.3 andR.4).

R3,4(σa, σb) =





σb if σa = T // apply ruleR.3

T if σb = T // apply ruleR.4

σa → σb otherwise

(7.14)

Let |τ | denote thesizeof a typeτ , defined as the number of nodes in the standard
abstract syntax tree representation ofτ . Many of our proofs employstructural induction
which is essentially induction on the input size. In the inductive step, we shall rely on the
type decomposability property: if |τ | > 1 (i.e., τ 6= x andτ 6= T) thenτ is represented
as a type-operator node with two children representing typesτa andτb, such that|τ | =
|τa|+ |τb|+ 1.

Lemma 7.10 Letτ be a type which conforms to the general grammar, and letσ = nfT(τ).
Then,(i) the invocationnfT(τ) requiresO(|τ |) time, (ii) |σ| ≤ |τ |, (iii) σ = T or σ
conforms to the no-unit grammar, and(iv) Product ` τ = σ.

PROOF. All parts are proved by structural induction. The inductive base,|τ | = 1, is
covered by the first two cases (τ = x andτ = T) in (7.12). Both these cases execute
in constant time, and their output is identical to their input. Moreover, this output either
conforms to the no-unit grammar or isT.

3Here and henceforth, we use the same notation for thenormal form, and for the (algorithmic) function
which given a type, generates and returns its normal form. No confusion should arise as a result of this
overloading.
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In proving the inductive step we use the inductive hypothesis and the decomposability
property. For(i) we note that only a constant amount of work is carried out prior to and
after the recursive calls (i.e., inR1,2 andR3,4). Noting thatR1,2 andR3,4 do not create
new nodes proves the inductive step of(ii) . The inductive step of(iii) is carried out by
checking that the output ofR1,2 andR3,4 satisfies(iii) whenever their input does. Part
(iv) is proved by noting that functionsR1,2 andR3,4 only apply rules conforming to the
axiomsA.1–A.4.

Lemma 7.10 proves the correctness of Algorithm 7.1 in the cases it terminates in
line 4. Next we would like to prove that when the algorithm terminates in line 6 thenτ
andτ ′ are indeed not isomorphic. Note that the algorithm terminates in line 6 if and only
if either σ = T andσ′ 6= T or the reverse. Therefore we must prove thatT cannot
be isomorphic to any typeσ which conforms to the no-unit grammar. We will use the
technique of abstract interpretation [35] for doing so.

For a typeτ define the abstract interpretation functionisT(τ) as follows

isT(τ) =





1 if τ = T

0 if τ = x

isT(τa) · isT(τb) if τ = τa × τb

isT(τb) if τ = τa → τb

(7.15)

Note thatisT(τ) returns either 0 or 1. We next prove thatisT(τ) is 1 precisely whennfT(τ) =
T (hence the nameisT).

Lemma 7.11 nfT(τ) = T ⇔ isT(τ) = 1.

PROOF. By examining the definitions ofnfT, R1,2 andR3,4 we see thatnfT(τ) = T if
and only if one of the following holds

1. τ = T.

2. τ = τa × τb, wherenfT(τa) = T andnfT(τb) = T.

3. τ = τa → τb, wherenfT(τb) = T.

ThereforenfT(τ) = T if and only if isT(τ) = 1.

Lemma 7.12 First ` τ = τ ′ ⇒ isT(τ) = isT(τ ′)

PROOF. By induction on the length of the derivation sequence ofFirst ` τ = τ ′.
Recall that each equality in the derivation sequence is either an instance of an axiom or
an application of one of the inference rules on previous equalities.

The induction base is that there is precisely one such equalityτ = τ ′, which must
be an instance of an axiomA.0, . . . ,A.7. We can easily check in each of the axioms
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that isT(τ) = isT(τ ′). For example, ifτ = τ ′ is an instance ofA.7. thenτ = τa →
(τb × τc) andτ ′ = (τa → τb)× (τa → τc). We have

isT(τ) = isT
(
τa → (τb × τc)

)
= isT(τb × τc) = isT(τb) · isT(τc),

and

isT(τ ′) = isT
(
(τa → τb)× (τa → τc)

)
= isT(τa → τb) · isT(τa → τc) = isT(τb) · isT(τc).

To prove the induction step we examine the last step of the derivation sequence. If
this step is an axiom instance, then the same considerations as in the induction base ap-
ply. Otherwise one of the following inference rules was applied: symmetry, transitivity,
congruence of×, or congruence of→. We can easily check each of inference rules by
using the inductive hypothesis. For instance, suppose that the congruence rule of× was
applied:

τa = τb, τc = τd

τa × τc = τb × τd

.

By the inductive hypothesis, we have thatisT(τa) = isT(τb) andisT(τc) = isT(τd). There-
fore, we can deduce that

isT(τa × τc) = isT(τa) · isT(τc) = isT(τb) · isT(τd) = isT(τb × τd).

Corollary 7.13 Let σ be a type conforming to the no-unit grammar. Thenσ is not iso-
morphic toT, i.e.,First 6` σ = T.

PROOF. Assume by contradiction thatFirst ` σ = T. Then, by Lemma 7.12,isT(σ) =
isT(T). Sinceσ conforms to the no-unit grammar, we have thatisT(σ) = 0, which
contradicts the fact thatisT(T) = 1.

Finally, we will prove the correctness of Algorithm 7.1 in the cases it terminates in
line 8, i.e., we need to show that

First ` τ = τ ′ ⇔ First− ` nfT(τ) = nfT(τ ′).

The⇐ direction follows directly from Lemma 7.10(iv) combined with the facts thatFirst− ⊆
First andProduct ⊆ First.

Lemma 7.14 Let τ andτ ′ be two types conforming to the general grammar. Then,

First ` τ = τ ′ ⇒ First− ` nfT(τ) = nfT(τ ′).

PROOF. By induction on the length of the derivation sequence ofFirst ` τ = τ ′, whose
final step must be the equalityτ = τ ′. In the induction base, this equality must be instance
of one of the axiomsA.0, . . . ,A.7. If τ = τ ′ is an instance ofA.3, thenτ = T → τa
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andτ ′ = τa. We see thatnfT(τ) = nfT(τ ′), and henceFirst− ` nfT(τ) = nfT(τ ′). A
similar consideration and conclusion applies ifτ = τ ′ is an instance of axiomsA.0–A.2

Suppose thatτ = τ ′ is an instance of the commutative axiomA.4, i.e., τ = τa × τb

andτ ′ = τb × τa. We have

nfT(τ) = R1,2(nfT(τa), nfT(τb)),

nfT(τ ′) = R1,2(nfT(τb), nfT(τa)).

If eithernfT(τa) = T ornfT(τb) = T thennfT(τ) = nfT(τ ′), thereforeFirst− ` nfT(τ) =
nfT(τ ′). Otherwise

nfT(τ) = nfT(τa)× nfT(τb),

nfT(τ ′) = nfT(τb)× nfT(τa),

and the commutative axiomA.4 proves thatFirst− ` nfT(τ) = nfT(τ ′). A similar, though
more laborious, consideration proves the same induction base in the case thatτ = τ ′ is an
instance ofA.5–A.7.

In the induction step, we focus on the case that the final equality was obtained by one
of the inference rules: symmetry, transitivity, congruence of×, or congruence of→. (The
case that this equality is an axiom instance is identical to the induction base.)

Consider, for instance, the inference rule for congruence of×. Thenτ = τa × τb

andτ ′ = τc×τd. The inductive hypothesis is thatFirst− ` nfT(τa) = nfT(τc) andFirst− `
nfT(τb) = nfT(τd). We need to show thatFirst− ` nfT(τa × τb) = nfT(τc × τd), or in
other words, that

First− ` R1,2

(
nfT(τa), nfT(τb)

)
= R1,2

(
nfT(τc), nfT(τd)

)
. (7.16)

Examining definition (7.13) ofR1,2 we see that the proof must distinguish between several
cases, depending on whether the arguments to this function areT.

To make this distinction, we apply Lemma 7.12, obtaining thatnfT(τa) = T if and
only if nfT(τc) = T, andnfT(τb) = T if and only if nfT(τd) = T. (The lemma condition
is met by the inductive hypothesis and the fact thatFirst− ⊆ First.)

Consider the case thatnfT(τa) 6= T andnfT(τb) 6= T. Then, (7.16) takes the form

First− ` nfT(τa)× nfT(τb) = nfT(τc)× nfT(τd).

The derivation sequence for this can be obtained by concatenating the derivation se-
quences of the inductive hypothesis and a single application of the congruence of× in-
ference rule. The other cases of (7.16) are simpler, since the desired derivation sequence
is one of those of the inductive hypothesis.

The induction step in the case the final equation is an instance of any of the other
inference rules is carried out similarly.

It is straightforward to check that ifσ conforms to the no-unit grammar, thennfT(σ) =
σ. We therefore have:
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Corollary 7.15 Suppose that bothτ andτ ′ conform to the no-unit grammar. Then,

First ` τ = τ ′ ⇔ First− ` τ = τ ′.

Much in the same fashion we can show

Corollary 7.16 Suppose that bothτ andτ ′ conform to the no-unit grammar. Then,

Linear ` τ = τ ′ ⇔ Linear− ` τ = τ ′,

Product ` τ = τ ′ ⇔ Product− ` τ = τ ′.

7.4 An Algorithm for the Linear Isomorphism Problem

In this section we show a linear time and space reduction of linear isomorphism to product
isomorphism. The inputs are two typesτ andτ ′ conforming to the no-unit grammar. The
algorithm outputs are two typesσ, σ′ such that

Linear− ` τ = τ ′ ⇔ Product− ` σ = σ′.

Noting thatLinear− adds toProduct− the currying axiom (A.6), the algorithm converts
the inputsτ andτ ′ into a normal form in which all curried functions are brought into an
equivalent un-curried representation. This is achieved by recursively applying the anti-
currying ruleR.6 to τ andτ ′. The result then conforms to the un-curried grammar, in
which the patternA → (B → C) is not allowed.

Un-curried Grammar

τ ::= x | τ → x | τ → (τ × τ) | τ × τ

Algorithmically, the normal form is computed using functionnfc.

nfc(τ) =





x if τ = x

nfc(τa)× nfc(τb) if τ = τa × τb

R6(nfc(τa), nfc(τb)) if τ = τa → τb

(7.17)

If a node represents a function-type, then functionR6 checks whether the return type of
this function is another function type, and if so, applies the anti-currying rule.

R6(σa, σb) =

{
(σa × σ1) → σ2 if σb = σ1 → σ2 // apply ruleR.6

σa → σb otherwise
(7.18)

Lemma 7.17 Let τ be a type conforming to the no-unit grammar, and letσ = nfc(τ).
Then,(i) the callnfc(τ) executes inO(|τ |) time; (ii) Linear− ` τ = σ; (iii) |σ| = |τ |; and
(iv) typeσ conforms to the un-curried grammar.
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PROOF. Parts(i), (ii) , and(iii) are proved by structural induction, following the outline
of the proof of Lemma 7.10.

In proving(iv) we note that there are two restrictions in the un-curried grammar. The
first is that there are no occurrences ofT. This follows from the assumption thatτ con-
forms to the no-unit grammar.

The second restriction is that the return type of all function-types is not a function-
type. We show thatnfc(τ) conforms to this restriction by induction on the depth of the
recursive calls ofnfc. The inductive base is the first case of (7.17) and is trivial. In the
inductive step we must show that the return type of a function cannot be a function itself.
A node corresponding to a function-type can be generated bynfc only in the third case
of (7.17). This node itself is generated by the invocationR6(σa, σb). Examining (7.18)
we see that the return type of this node isσb precisely whenσb is not a function-type. If
howeverσb is a function-type, i.e.,σb = σ1 → σ2, then recall thatσb was computed by a
recursive application ofnfc. Therefore, by the inductive hypothesis,σ2, the return type of
the current node is not a function-type.

It follows from Lemma 7.17(ii) that if the normal formsnfc(τ) andnfc(τ
′) are isomor-

phic by applications of the commutative and associative axioms, thenτ andτ ′ are also
isomorphic by application of the commutative, associative and currying axioms, i.e.,

Product− ` nfc(τ) = nfc(τ
′) ⇒ Linear− ` τ = τ ′. (7.19)

The remainder of this section is dedicated to proving the converse, i.e., that after the types
where brought to their un-curried normal form, all that is required in deciding isomor-
phism is to apply the commutative and associative axioms. The proof is similar in spirit
to that of Andreev and Soloviev [6].

Lemma 7.18 Linear− ` τ = τ ′ ⇒ Product− ` nfc(τ) = nfc(τ
′).

PROOF. The proof is by induction on the length of the derivation sequence ofLinear− `
τ = τ ′, and follows the same outline as the proof of Lemma 7.12.

The induction base is thatτ = τ ′ is an instance of an axiomA.0, . . . ,A.6. This
cannot be one of the unit axiomsA.1, . . . ,A.3 since by assumptionT does not occur
in the input. In the case that the reflexive axiom (A.0) was applied, it is trivial to see
thatnfc(τ) = nfc(τ

′).

In the case that this axiom was the commutative axiom (A.4), thenτ = τa×τb andτ ′ =
τb × τa. It is easy to see thatnfc(τ) = nfc(τa) × nfc(τb) andnfc(τ

′) = nfc(τb) × nfc(τa).
Therefore,Product− ` nfc(τ) = nfc(τ

′). Similar consideration apply when this axiom
was the associative axiom (A.5).

The last axiom to consider is the currying axiomA.6. In this caseτ = (τa × τb) → ρ
andτ ′ = τa → (τb → ρ). There are two cases to consider:

1. Typeρ is not a function-type.Examining the definitions (7.17) and (7.18), we
find that

nfc(τ) = nfc(τ
′) =

[
nfc(τa)× nfc(τb)

]
→ nfc(ρ).
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2. Typeρ is a function-type.In this case we find the maximalk such thatρ can be
written as

ρ = ρ1 →
(
ρ2 → · · · (ρk−1 → ρk) · · ·

)
.

Note that, by definition,ρk is not a function-type. Let

% = nfc(ρ1)×
(

nfc(ρ2)× · · · ×
(
nfc(ρk−2)× nfc(ρk−1)

) · · ·
)
.

It is then easy to check that

nfc(τ) =
[(

nfc(τa)× nfc(τb)
)× %

]
→ nfc(ρk),

nfc(τ
′) =

[
nfc(τa)×

(
nfc(τb)× %

)] → nfc(ρk).

In both cases we have thatProduct− ` nfc(τ) = nfc(τ
′).

To prove the induction step we examine the last step of the derivation sequence. If
this step is an axiom instance, then the same considerations as in the induction base ap-
ply. Otherwise one of the following inference rules was applied: symmetry, transitivity,
congruence of×, or congruence of→. The only difficulty is with the congruence rule
of →. Consider an instance of this inference rule:

τa = τb, τc = τd

τa → τc = τb → τd

.

By the inductive hypothesis, we have thatProduct− ` nfc(τa) = nfc(τb) andProduct− `
nfc(τc) = nfc(τd). We would like to prove thatProduct− ` nfc(τa → τc) = nfc(τb → τd).

Note that sinceProduct− ` nfc(τc) = nfc(τd), their root nodes have the same type,
i.e., bothnfc(τc) andnfc(τd) are product-types, function-types, or primitive-types. There
are two cases to consider:

1. Typesnfc(τc) andnfc(τd) are both not function-types.We find that

nfc(τa → τc) = nfc(τa) → nfc(τc),

nfc(τb → τd) = nfc(τb) → nfc(τd).

2. Typesnfc(τc) andnfc(τd) are both function-types.Letnfc(τc) = % → ρ andnfc(τd) =
%′ → ρ′. SinceProduct− ` nfc(τc) = nfc(τd) we have thatProduct− ` % = %′

andProduct− ` ρ = ρ′. It is then easy to check that

nfc(τa → τc) =
[
nfc(τa)× %

]
→ nfc(ρ),

nfc(τb → τd) =
[
nfc(τb)× %′

]
→ nfc(ρ

′).

In both cases we have thatProduct− ` nfc(τa → τc) = nfc(τb → τd).
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7.5 Multi-set Partitioning Algorithms

For the purpose of processing product-nodes in which the terms are unsorted, we need a
linear time procedure for comparing multi-sets. More generally, we develop in this section
an algorithm for partitioning a collection of multi-sets of integers into equivalence classes.
This algorithm runs inO(n) time, wheren is the size of the input representation, while
using temporary (uninitialized) storage whose size is the maximal input value. Cai and
Paige [21] review other linear-time algorithms for partitioning multi-sets.

Definition 7.19 (Compact integer partitioning)
Given integersa1, . . . , an, whereai ∈ [1, n] for i = 1, . . . , n, thecompact integer parti-
tioning problemis to partition the input into its equivalence classes, i.e., all equal integers
will be in the same partition (and only them).

The output partitioning is presented with respect to the input: Each equivalence class
is produced as a list of indices,i1, . . . , im, such thatai1 = · · · = aim. The partitioning
into equivalence classes is thus represented as a list of lists of indices.

Lemma 7.20 Compact integer partitioning can be solved inO(n) time andO(n) space.

PROOF. A standard bucket sort algorithm usingn buckets achieves these bounds.

More general than compact integer partitioning is the case that the input range is not
restricted to the range[1, n].

Definition 7.21 (Broad integer partitioning)
Given integersa1, . . . , an, whereai ∈ [1, U ] for i = 1, . . . , n, thebroad integer partition-
ing problemis to partition the input into its equivalence classes.

To deal with this problem, we first reduce the input range.

Definition 7.22 (Renaming) Let U be an arbitrary domain and letΓ ⊆ U , |Γ| = n.
Then a partial functionΩ : U 7→ [1, n] is a renamingof Γ if Ω is defined onΓ and for
anya, b ∈ Γ,

a 6= b ⇒ Ω(a) 6= Ω(b).

Algorithm 7.2 finds a renaming function for a sequence of integers drawn from the
range[1, U ]. The algorithm uses the standard trick of inverse pointers to maintainO(1)
access time into a sparse uninitialized array of arbitrary size. Note that main loop invari-
ant: After processing indexi, thenΩ[ai] = t andf[t] = ai, for somet ∈ [1, `].

Renaming makes it possible to generalize Lemma 7.20.

Lemma 7.23 Broad integer partitioning can be solved inO(n) time andO(U +n) space.
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Algorithm 7.2 Rename(a1, . . . , an)
Given the sequencea1, . . . , an, where ai ∈ [1, U ], i = 1, . . . , n, return (i) ` =
|{a1, . . . , an}| and (ii) a renaming function represented as an arrayΩ[1, . . . , U ], such
thatΩ[ai] is a unique integer in the range[1, `]. The values of the other entries ofΩ are
arbitrary.

1: Ω ← new int[U] // An uninitialized array of sizeU
2: f← new int[n] // The inverse mapping ofΩ
3: ` ← 0 // ` is the current number of distinct values in the input
4: For i = 1, . . . , n do // ComputeΩ[ai]
5: t ← Ω[ai] // t may be arbitrary if the value ofai is new
6: If 1 ≤ t ≤ ` andalso f[t] = ai then
7: next i // No new mapping sinceai = aj for somej < i
8: else// Create a new mapping entry
9: ` ← ` + 1 // A new distinct input value

10: Ω[ai] ← ` // Store the mapping entry
11: f[`] ← ai // Record the inverse pointer
12: fi
13: od

PROOF. After applying Algorithm 7.2, we apply arenaming process, i.e., the replace-
mentai ← Ω(ai) for i = 1, . . . , n. The problem is then reduced to compact integer
partitioning.

A more general partitioning problem is when the input consists of ordered pairs.

Definition 7.24 (Pair partitioning) Given a collectionΓ of n pairs of integers

〈a1, b1〉, . . . , 〈an, bn〉,
whereai, bi ∈ [1, U ] for i = 1, . . . , n, thepair partitioning problemis to partitionΓ into
its equivalence classes.

Lemma 7.25 The pair partitioning problem can be solved inO(n) time andO(U + n)
space.

PROOF. Apply broad integer partitioning first ona1, . . . , an to obtain an initial parti-
tioning of Γ. Each of the resulting equivalence classes is then refined by broad integer
partitioning with respect to thebi’s.

Renaming with pair partitioning is also easy. Each pair is replaced by the index of
its equivalence class. In fact, every partitioning algorithm gives rise to a corresponding
renaming.

Lemma 7.25 can be generalized further.

Lemma 7.26 (Tuple partitioning) Given a collectionΓ of n tuples ofk integers each,
where each integer is drawn from the range[1, U ], it is possible to partitionΓ into its
equivalence classes, inO(nk) time andO(U + n) extra space.
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PROOF. Similar to Lemma 7.25, however, instead of two passes we now havek passes.
The input to the first pass is the entire collectionΓ, and the output is a partitioning ofΓ
according to the first element of each tuple.

The output of passi is a partitioning ofΓ satisfying the following invariant:all ele-
ments in the same partition have an equali-prefix, i.e., the same firsti integers in their
tuples. Passi refines each partition by applying broad integer partitioning according to
theith element of each tuple. Since broad integer partitioning is performed in linear time,
the running time of a pass is linear in the sum of partition sizes, which is exactlyn = |Γ|.
Thus the total running time isO(nk).

At the end of thekth pass the tuple partitioning problem is solved. Broad integer
partitioning requires (reusable)O(U + n) space. In addition, onlyO(n) space is required
for storing the current partitioning ofΓ in the form of indices to the input array.

Notice that the time requirement in the above is linear in the size of the input, not the
number of tuples. Also, observe that the algorithm for the tuple partitioning problem is
in fact incrementalin the sense that in theith pass we only examine theith integer in each
tuple.

Corollary 7.27 (Incremental tuple partitioning)
Let Γ be a collection ofn tuples ofk integers each, where each integer is drawn from
the range[1, U ]. Then, it is possible to incrementally partitionΓ in k passes where theith

component of each tuple is specified in theith pass, inO(n) time for each pass andO(U +
n) extra space.

A more challenging situation occurs in the case that the input consists of unordered
tuples, rather than tuples. Next we will show that multi-set partitioning can also be solved
in time linear in the size of the input.

Definition 7.28 (Multi-set partitioning) Given a collectionΓ of multi-sets of integers
drawn from the range[1, U ], themulti-set partitioning problemis to partitionΓ into its
equivalence classes.

Lemma 7.29 Multi-set partitioning can be solved inO(n) time andO(U + n) space,
wheren is the sum of sizes of all multi-sets.

PROOF. First, Algorithm 7.2 is invoked to rename all integers in the input to fit the
range[1, n]. The next step is to sort the multi-sets. However, if each of these is sorted
independently the running time would not be linear. Instead, we concatenate the sets
together, prefixing each input integer with the identifier of its multi-set. All the multi-sets
can then be sorted by a single application of a radix sort.

We stress that we sort therenamedintegers, not the initial multi-sets. This process is
known asweak sort[109]. Weak sort is possible in linear time since the renaming process
is not order preserving.

Next, the ordered multi-sets are partitioned according to size. Each such partition is a
collection of ordered multi-sets of equal size; in other words, each partition is a collection
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of tuples of equal size. All that is left is to solve the tuple partitioning problem, employing
Lemma 7.26 in each partition.

7.6 An Algorithm for the Product Isomorphism Problem

After units are eliminated, product isomorphism theory has only the commutative and as-
sociative axioms. These axioms allow products to be reordered until the two types match.
Thus product isomorphism is in essence a series of multi-set partitioning problems. In
this section we use the algorithms described in the previous section for these problems
in developing anO(n) time and space algorithm for product isomorphism. This algo-
rithm receives two types,τ andτ ′, conforming to the no-unit grammar, and determines
whetherProduct− ` τ = τ ′.

The algorithm begins byflattening all productsin the input, so that it conforms to the
following product grammar.

Product Grammar

ρ ::=
k∏

i=1

σ (k ≥ 1)

σ ::= x | ρ → ρ

Note that we have extended the
∏

convention (7.2) to include products with a single term.
Thus, in this grammar

∏
(x) = x. (7.20)

Recall that by assumption the input cannot be isomorphic toT, hence the start symbolρ
denotes products of at least one term. Each of these terms is either a primitive-type or a
function-type.

Consider, for example, the following type, which will serve as a running example,

(
(a× b) → c

) →
((

d× (e× f)
)× (

g → (h× i)
))

. (7.21)

Figure 7.1 shows the expression tree of this type before and after flattening.

Algorithmically, the flattening process is carried out by computing the normal form
defined by the functionnfa. This function receives a typeτ conforming to the no-unit
grammar, and exhaustively applies the associative ruleR.5. The output is a type con-
forming to the product grammar.

nfa(τ) =





∏
(x) if τ = x∏
(nfa(τa) → nfa(τb)) if τ = τa → τb

nfa(τa) ./ nfa(τb) if τ = τa × τb // apply ruleR.5

(7.22)
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Figure 7.1: An abstract syntax tree of type (7.21) before (a) and after (b) flattening

The operation./ denotes the concatenation of the terms of two products, i.e.,

k′∏
i=1

τi ./

k∏

i=k′+1

τi =
k∏

i=1

τi.

Lemma 7.30 Let τ be a type conforming to the no-unit grammar, and letσ = nfa(τ).
Then,(i) the callnfa(τ) executes inO(|τ |) time; (ii) |σ| ≤ 2|τ |; (iii) typeσ conforms to
the products grammar; and(iv) Product− ` τ = σ

PROOF. Trivial by structural induction. Part(iv) is proved by interpreting
∏

nodes with
conventions (7.2) and (7.20) and noting that only the associative ruleR.5 was applied in
the definition ofnfa(τ).

The flattened representation makes it easier to decide product isomorphism. The fol-
lowing lemma shows how this decision might be carried out.

Lemma 7.31 Letτ andτ ′ be two types conforming to the product grammar. Then,Product− `
τ = τ ′ if and only if one of the following three statements holds:

1. Typesτ andτ ′ are equal to the same primitive-typex.

2. Typesτ and τ ′ are function-types, i.e.,τ = ρ1 → ρ2 and τ ′ = ρ′1 → ρ′2,
andProduct− ` ρ1 = ρ′1 andProduct− ` ρ2 = ρ′2.

3. Typesτ and τ ′ are product-types with the same number of terms, i.e.,τ =∏k
i=1 σi andτ ′ =

∏k
i=1 σ′i, and there exists a bijectionπ : [1, k] 7→ [1, k], such

that Product− ` σi = σ′π(i) for all i, 1 ≤ i ≤ k.

PROOF. Direction⇐ is trivial. Direction⇒ is done by induction on the length of the
derivation sequence ofProduct− ` τ = τ ′.
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The product grammar produces abstract syntax trees in which function- and product-
types occur alternately on the path from the root to any leaf. We can thus define a height
for each tree node, so that product (function) types are always represented by nodes of
odd (even) height.

Definition 7.32 (Height) Let τ be a type conforming to the product grammar. Then, the
heightof a type, denotedh(τ), is the length of the longest path fromτ to any leaf, i.e.,

h(τ) =





0 if τ = x

1 + maxk
i=1 h(σi) if τ =

∏k
i=1 σi

1 + max2
i=1 h(ρi) if τ = ρ1 → ρ2

(7.23)

Edges in Figure 7.1b were stretched so that nodes of the same height are drawn at
the same level. Observe that product-types always have odd heights and function-types
always have even heights. This can be easily proved by induction on the product grammar.

Lemma 7.33 Let τ, τ ′ be two types conforming to the product grammar. Then,

Product− ` τ = τ ′ ⇒ h(τ) = h(τ ′).

PROOF. Trivial by structural induction onτ andτ ′ using Lemma 7.31.

Theorem 7.34 Product isomorphism can be decided inO(n) time and space.

PROOF. Consider the types represented by all of the nodes of the tree representations
of τ and τ ′. We will label each of thesen types with an identifier drawn from the
range[1, n], such that two types are isomorphic if and only if they have the same identifier.

Since two types cannot be equivalent unless their heights are the same, identifiers
may be assigned in ascending order of heights. LetTι be the set of all types of heightι.
The setT0 is the set of primitive-types. The algorithm starts by passingT0 to the broad
integer partitioning algorithm. A renaming process then yields unique identifiers for all
primitive-types.

The processing ofTι, ι ≥ 1 depends on whetherι is even or odd. Ifι is even, then
types inTι correspond toσ symbols in the grammar of the normal form, i.e., function-
types. Equivalence among these are discovered using pair partitioning algorithm.

If howeverι is odd, then the types inTι are products, i.e.,ρ symbols. We apply the
multi-set partitioning algorithm to find all equivalence classes among these.

In both even and odd levels, we apply a renaming process that assigns identifiers to
types in the current level, starting at the first unused identifier.

Each node is passed to a partitioning algorithm at most twice, first in the partitioning
of nodes in its height, and then as component of its parent. Therefore the total input size
in all invocations of partitioning algorithms is linear, and hence the total runtime of our
algorithm is linear.

The above algorithm is applicable also in the case that types use a DAG rather than
a tree representation. The runtime in this case is linear in the number of nodesplus the
number ofedgesof the graph.
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7.7 TheP/F-graph

To generalize the linear isomorphism algorithm to deal with the first order isomorphism
problem, we now introduce the normal formnfd in which thedistributive ruleR.7 is not
applicable. As noted in Section 7.2, an exhaustive application of this rule may lead to a
representation of exponential size. TheP/F-graph, described in this section, is a linear
size representation of the normal formnfd.

Let τ andτ ′ be two arbitrary types conforming to the product grammar. The problem
is to determine whetherFirst− ` τ = τ ′. (The assumption that the inputs conform to the
product grammar is safe since the normalizing functionnfa can be applied in linear time
to flatten all products.)

Repeated applications of rulesR.6 andR.7 will bring each of the inputs to the normal
form defined by thefirst order grammar:

First order Grammar

% ::=
k∏

i=1

ς (k ≥ 1)

ς ::= x | % → x

Comparing the first order grammar and the product grammar we see that the deriva-
tion σ ::= ρ → ρ is replaced byς ::= % → x, i.e., all functions must return a primitive-
type.

Algorithmically, this normal form can be generated by applying the normalizing func-
tion nfd, defined by

nfd(τ) =





∏
(x) if τ = x

./k
i=1 nfd(σi) if τ =

∏k
i=1 σi

R6,7

(
nfd(ρ1), ρ2

)
if τ = ρ1 → ρ2

(7.24)

whereR6,7 is an auxiliary function, mutually recursive withnfd, which handles function
types:

R6,7(%, τ) =





∏
(% → x) if τ = x

./k
i=1 R6,7

(
%, σi

)
if τ =

∏k
i=1 σi // apply ruleR.7

R6,7

((
% ./ nfd(ρ1)

)
, ρ2

)
if τ = ρ1 → ρ2 // apply ruleR.6

(7.25)

Functionsnfd andR6,7 musteagerlyevaluate their arguments to ensure that the distribu-
tive rule is applied in outer-first order (Remark 7.9). In other words, given a function
typeρ1 → ρ2, ruleR.7 is first applied toρ1 and only then toρ2. This is the reason that
the call toR6,7 in (7.24) cannot commence beforenfd(ρ1) finishes.

We shall see that the definition ofR6,7 gives rise to a multiple-terms version of the
distributive transformation (7.8). In this version, an input node% → ∏k

i=1 σi is converted
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to
∏k

i=1(α → σi) whereα is represented as a pointer to the node corresponding to the
product%.

We now examine definitions (7.24) and (7.25) more formally. First, we show that the
value returned by these functions is isomorphic to their input. Let% be an arbitrary type.

Lemma 7.35

First ` τ = nfd(τ),

First ` % → τ = R6,7(%, τ).

PROOF. We first note that sinceτ conforms to the product grammar, then exactly one
of the three cases in the definition of eithernfd (7.24) orR6,7 (7.25) must apply. The
lemma is then proved bysimultaneousstructural induction onτ . The induction base is
the first case in both definitions. By examining the second and third cases of (7.24) we see
that it immediately follows from the (simultaneous) inductive hypothesis that functionnfd
returns a type isomorphic toτ . The distributive (currying) axiom and the same inductive
hypothesis show thatR6,7 returns a type isomorphic to% → τ in the second (third) case
of its definition (7.25).

Lemma 7.36 Typenfd(τ) conforms to the first order grammar. Further, if% also con-
forms to this grammar, then so doesR6,7(%, τ).

PROOF. Note that all types conforming to this grammar are products whose terms are
either primitive or function types. The proof is again carried out by simultaneous induc-
tion on the structure ofτ . Again, the induction base is trivially given by the first case
of (7.24) and (7.25). The induction step is also easy: in the second case of both defini-
tion the returned value is simply a product of terms covered by the inductive hypothesis.
In the third case of these definitions the returned value is of a recursive callR6,7(·, ρ2)
where|ρ2| < |τ |. The proof is completed by checking that the first argument in both of
these recursive calls conforms to the first order grammar as required for satisfying the
inductive hypothesis.

We stress thatnfd(τ) may be of sizeO(n2), as indeed happens in example (7.10). The
reason for this blowup is in the third case ofR6,7: the concatenation% ./ nfd(ρ1) creates
a new product node whose list of terms are the concatenation of two lists of terms: that
of % andnfd(ρ1). Note that the terms themselves are not duplicated, but a new list of
terms must be created. The reason that we cannot reuse the two existing lists of terms is
that% can be shared among independent recursive calls due to the second case ofR6,7: we
havek independent calls of the formR6,7

(
%, σi

)
.

In order to give the linear space and time bounds for the normalization process, we
describe asharedrepresentation of types in the first order grammar. Instead of the usual
expression tree, we shall use a special rooted acyclic graph. We use the termP/F-graph
since the nodes in it are eitherP-nodes (representing product-types) orF-nodes (repre-
senting function-types).
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A P-nodev has a fieldϕ(v) storing the non-empty set of pointers to term nodes.
Terms are eitherF-nodes or primitive-types, which are encoded simply by identifiers in
the range[1, n]. In addition,v has a fieldparent (v) pointing to anotherP-node, from
whichv inherits additional terms.

An F-nodeu has a fieldarg (u), which is a pointer to theP-node storing the function
argument type, and a fieldret (u), which is a primitive-type specifying the function
return type.

P/F-graphs are further restricted by the demand thatparent edges define a tree over
theP-nodes called theproduct tree, and denotedT . The treeT is rooted at a dummyP-
node, denotedP⊥, which has no terms, i.e.,ϕ(P⊥) = ∅. P-nodes are therefore initialized
with theirparent field pointing atP⊥.

Definition 7.37 (Expanded terms)The expanded terms of aP-nodev, denotedφ(v), are
the union of terms of its ancestors in the product tree, i.e.,φ(v) = ϕ(v)∪φ(parent (v)),
whereφ(P⊥) = ∅.

Consider, for example, Figure 7.2a which shows type (7.21) in the product grammar.
Figure 7.2b shows the result of applying algorithmNormalizeProduct (described
later) on this type.

Figure 7.2: (a) Type (7.21) in the product grammar, and (b) itsP/F-graph representation.
Theparent edges are depicted in bold.
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TheP-nodes in Figure 7.2b are:

P⊥ =
∏

P1 = P⊥ ./
∏

(a, b)
P3 = P⊥ ./

∏
(F2)

P4 = P3 ./
∏

(g)
P10 = P⊥ ./

∏
(F5,F6,F7,F8,F9)

(7.26)

We see that each term of aP-node is either a primitive type (e.g.,a) or an F-node
(e.g.,F2). In addition to the set of terms, eachP-node (exceptP⊥) inherits additional
terms via theparent edge. For example,parent (P4) = P3, i.e.,P4 inherits the terms
of P3 which recursively inherits the terms ofP⊥. Therefore, the extended terms ofP4

are the union of the terms ofP4, P3, andP⊥:

φ(P4) = ϕ(P4) ∪ ϕ(P3) ∪ ϕ(P⊥).

Algorithm 7.3 and Algorithm 7.4 present two mutually recursive routines, namely
NormalizeProduct and FunctionIntoProduct , respectively. These routines
are storage-minded variants of functionsnfd andR6,7, respectively. Together, the two
describe a single pass traversal of an abstract syntax tree of a type conforming to the
product grammar. The output is a linear sizedP/F-graph of an isomorphic type in the
first order grammar.

Algorithm 7.3 NormalizeProduct (τ)

Given a typeτ conforming to the product grammar, return aP-nodev of an isomorphic
type in the first order grammar.

1: v ← new P-node //Initially parent (v) = P⊥, ϕ(v) = ∅
2: If τ is a primitive-typex then
3: ϕ(v) ← {x}
4: else ifτ is a product-typethen
5: Let k andσi, i = 1, . . . , k, be such thatτ =

∏k
i=1 σi

6: For i = 1, . . . , k do // Normalize all terms in the product
7: ui ← NormalizeProduct (σi)
8: ϕ(v) ← ϕ(v) ∪ ϕ(ui) // Collect terms ofui

9: od
10: else// τ is a function-type
11: Let ρ1 andρ2 be such thatτ = ρ1 → ρ2

12: u ← NormalizeProduct (ρ1)
13: v ← FunctionIntoProduct (u, ρ2)
14: fi
15: Return v

Lines 2–3 of Algorithm 7.3 correspond to the first case of functionnfd, lines 4–9 to
the second case, and lines 10–14 to the third. The union operation in line 8 correspond to
the concatenation operation./ in the second case ofnfd.

Algorithm 7.4 follows the same outline as functionR6,7: lines 2–5 correspond to the
first case ofR6,7, lines 6–11 to the second, and lines 12–17 to the third. Again, the
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Algorithm 7.4 FunctionIntoProduct (u, τ)

Given aP-nodeu and a typeτ (which is a product-type) returnv, a newP-nodedescrib-
ing a type isomorphic to the function-type% → τ , where% is the type represented by the
P-nodeu.

1: v ← new P-node //Initially parent (v) = P⊥, ϕ(v) = ∅
2: If τ is a primitive-typex then
3: w ← newF-node
4: arg (w) ← u; ret (w) ← x // w represents the type% → x
5: ϕ(v) ← {w}
6: else ifτ is a product-typethen
7: Let k andσi, i = 1, . . . , k, be such thatτ =

∏k
i=1 σi

8: For i = 1, . . . , k do // Normalize all terms in the product
9: ui ← FunctionIntoProduct (u, σi)

10: ϕ(v) ← ϕ(v) ∪ ϕ(ui) // Collect terms ofui

11: od
12: else// τ is a function-type
13: Let ρ1 andρ2 be such thatτ = ρ1 → ρ2

14: w ← NormalizeProduct (ρ1)
15: parent (w) ← u // Share the common argument%
16: v ← FunctionIntoProduct (w, ρ2)
17: fi
18: Return v

union operation in line 10 correspond to the concatenation operation./ in the second case
of R6,7. However, the concatenation operation./ in the third case ofR6,7 was translated
into an assignment to theparent field of w in line 15. This line is the crux of the two
routines, making the linear space representation possible.

Let us examine lines 12–17 and the third case ofR6,7. Nodeu represents type%, and
nodew represents the product% ./ nfd(ρ1). In line 14, we assignNormalizeProduct (ρ1)
to w. Then, instead of adding the terms ofu to w (i.e.,ϕ(w) ← ϕ(w) ∪ ϕ(u)) we point
theparent field of w to u in line 15. Therefore the expanded terms ofw are equal to
those of the product% ./ nfd(ρ1).

The next lemma proves that algorithms 7.3 and 7.4 run inO(n) time and space.

Lemma 7.38 Letτ be a type conforming to the product grammar, and letu be aP-node.
Then, the function callsNormalizeProduct (τ) andNormalizeProduct (u, τ) ex-
ecute inO(|τ |) time and space.

PROOF. Proved by mutually-recursive structural-induction onτ . The induction base is
whenτ is a primitive type. It is mundane to check that lines 2–3 of Algorithm 7.3 and
lines 2–5 of Algorithm 7.4 execute in constant time and space. In the induction step,τ is
either a function or a product. The amount of time and space invested in addition to the
recursive calls is either constant ifτ = ρ1 → ρ2 or O(k) if τ =

∏k
i=1 σi. Note that the

union in line 8 of Algorithm 7.3 and line 10 of Algorithm 7.4 can be computed in constant
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time since the terms ofui are not shared (in contrast to the terms ofu which are shared
among other calls).

The following lemma shows that first order isomorphism of two types can be decided
by bringing each of these types into theirP/F representation, and then traversing the two
graphs in tandem, comparing at each stage the expanded terms of the current nodes.

Lemma 7.39 Two nodesu, v in a P/F-graph represent isomorphic types if and only if
one of the following three statements holds:

1. Nodesu andv represent the same primitive-typex.

2. Nodesu andv are bothF-nodes, ret (u) = ret (v) andarg (u) andarg (v)
(recursively) represent isomorphic types.

3. Nodesu andv are bothP-nodes, and there exists a bijectionπ fromφ(u) toφ(v),
such that everyv′ ∈ φ(u) (recursively) represents a type isomorphic toπ(v′).

PROOF. Let τ andτ ′ be the typesu andv represent, respectively. Then, bothτ andτ ′

conform to the first order grammar. Rittri [116] proved that, in such a case (i.e., when
none of the rulesR.1–R.7 can be applied), we have that

First ` τ = τ ′ ⇔ Product− ` τ = τ ′.

Deciding the latter can be done using Lemma 7.31.

If the terms inP-nodes are expanded, then the size of the representation may increase
to O(n2) (as in (7.10)). With this expansion, the problem becomes an instance of prod-
uct isomorphisms, which, as explained in the previous section, can be solved in linear
time. We can thus obtain a simpleO(n2) time and space algorithm for the first order
isomorphism problem, thereby improving upon theO(n2 log n) best previous result. To
obtain a more efficient algorithm, we develop in the next two sections the machinery for
comparing unexpanded products.

7.8 Tree Partitioning

We need to further develop our partitioning algorithms to deal with thenon-expanded
representation of products in the tree ofP-nodes rooted atP⊥. The partitioning of these
nodes is tantamount to finding the type isomorphism relationships betweenP-nodes: Two
P-nodes are in the same equivalence class of the partitioning when theexpandedterms of
the respective nodes are the same, which happens if and only if the types these two nodes
represent are isomorphic.

To understand this need better, consider again our running example type (7.21)

(
(a× b) → c

) →
((

d× (e× f)
)× (

g → (h× i)
))

.
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Algorithm NormalizeProduct generated theP/F-graph representation of this type.
This representation is depicted again in Figure 7.3a below.

By definition, removing allF-nodes and the edges incident on them from aP/F-
graph will result in a tree. Figure 7.3b shows the tree thus obtained from Figure 7.3a.
As explained above, the extended terms of eachP-node are computed by inheriting the
extended terms of its parent (see Definition 7.37). For example, tree nodeP4 in the figure
inherits the terms of tree nodeP3.

Figure 7.3: (a)P/F-graph representation in Figure 7.2b, and (b) its product-tree with the
multi-set of terms of each product.

Let us ignore theF-nodes for now, and concentrate on a variant of the multi-set par-
titioning problem in which the multi-sets are defined by an inheritance tree. We will first
develop an algorithm for this variant. Still, we note that this algorithm does not com-
pletely solve the general problem of sorting the nodes of aP/F-graph into equivalence
classes. The reason is that the terms in the product-tree are not always known in advance.
In Figure 7.3b we see for example that the termF6 in P10 is not available upfront. We
need to process nodeP3 before we can be certain that this term is not isomorphic to, for
example, termF8, which in turn depend uponP4. The next section will take care of this
subtlety by developing an incremental algorithm for the problem.

In this section, our concern lies with the simpler, non-incremental, setting, described
as follows: Given is a treeT of n nodes such that a multi-setϕ(v) of integers is associated
with each nodev ∈ T . Theexpanded multi-setof a nodev is the union of multi-sets of
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the ancestors ofv, i.e.,

φ(v) =
⋃
u¹v

ϕ(u).

These expanded multi-sets will be in our applications the expanded terms (Definition 7.37)
of P-nodes.

Definition 7.40 (Tree partitioning) Given a treeT , the tree partitioningis the partition-
ing defined by the multi-set partitioning of the expanded multi-sets{φ(v) | v ∈ T }.

Let M denote the total number of elements in multi-sets ofT , i.e.,M =
∑

v∈T |ϕ(v)|.
We can assume that the integers in the input to the problem are condensed so that

⋃
v∈T ϕ(v) =

[1,m]. (This condition can be ensured by a simple application of a renaming process.)

Figure 7.4a shows an example of a tree withn = 8 nodes with their associated multi-
sets (only four of which are non-empty). In the example,m = 4 distinct integers take part
in these multi-sets. The total number of elements in these multi-sets isM = 9.����������������������������

A


B
 H


C
 D


E
 F
 G


{1,1}


{1,2,3,4}
 {1,2,3,4,1,3,4}


{1,2,3}


{ }


(a)
 (b)


A


B
 H


C
 D


E
 F
 G


{ }


{1,2,3}
 {1,1}


{4}
{ }


{ }


{1,3,4}


{ }


Figure 7.4: A small multi-set tree (a) and its tree partitioning (b)

We have for nodesE andF, for instance,

ϕ(E) = ∅
ϕ(F) = {1, 3, 4}
φ(E) = {1, 2, 3, 4}
φ(F) = {1, 2, 3, 4, 1, 3, 4}

Figure 7.4b depicts the solution of the tree partitioning problem for the multi-set tree of
Figure 7.4a. We see that there are 5 partitions:

{A}, {H}, {B, C}, {D, E, G}, {F}. (7.27)

The callout attached to each partition shows the expanded multi-set of all nodes in this
partition. For example,{1, 2, 3, 4} is the expanded multi-set of the partition{D, E, G}.
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The näıve solutionto the tree partitioning problem is by directly computing the ex-
panded multi-setsφ(v). In order to do so, we represent an expanded multi-setφ(v) as an
integer arrayCountv[1, . . . , m].

Definition 7.41 Given an expanded multi-setφ(v), itsarray-representation, denotedCountv,
is an array over the indices[1, . . . , m], such thatCountv[i] = k if integeri occursk times
in φ(v).

Array Countv can be easily computed fromϕ(v) andCountu, whereu is v’s parent.
After having obtained the arraysCountv, the tree partitioning problem becomes the par-
titioning problem of these arrays, viewed asm-sized tuples. The total size of thosen
arrays isnm cells, while the time required for computing them isO(nm + M) time since
we also examined all the termsϕ(v). To conclude, the runtime of the naı̈ve solution
is O(nm + M) while usingO(nm) space.

We now present an algorithm for finding the tree partitioning whose total runtime
is O(M log m) usingO(M) space. This algorithm relies on thedual representation in
which, instead of associating a multi-set of integers with each node, a multi-set of nodes is
associated with each integer. (To simplify the complexity analysis we assume thatn ≤ M .
This assumption is true in our application sinceP-nodes have a non-empty set of terms,
i.e., |ϕ(u)| ≥ 1.)

Definition 7.42 A family Fi, i = 1, . . . ,m, is a multi-set of nodes such that ifi occursk
times inϕ(v), thenv occursk times inFi.

In our example, four such families are defined:

F1 = {B, F, H, H},
F2 = {B},
F3 = {B, F},
F4 = {D, F}.

(7.28)

Note that
∑m

i=1|Fi| = M .

Given a treeT and a multi-setF of its nodes, it is easy to define a partitioning of the
nodes ofT where the classification criterion is the number of occurrences of a node inF .
We shall however be interested in a more sophisticated such partitioning, denoted∇F ,
in which the classification criterion is the number of times a node “inherits” membership
in F . More precisely,

Definition 7.43 Letu, v be two nodes ofT , and letancestors(u) (respectively,ancestors(v))
be the set of ancestors ofu. Then,u andv are in the same partition of∇F if and only if

|ancestors(u) ∩ F | = |ancestors(v) ∩ F |.
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In our example, the four family partitionings induced by the families of (7.28) are:

∇F1 = {{A}, {F, H}, {B, C, D, E, G}},
∇F2 = {{A, H}, {B, C, D, E, F, G}},
∇F3 = {{A, H}, {F}, {B, C, D, E, G}},
∇F4 = {{A, B, C, H}, {F}, {D, E, G}}.

(7.29)

Note that all the nodes in a certain partition of∇Fi, 1 ≤ i ≤ 4, have the same number of
occurrences ofi. For example,CountF[1] = CountH[1] = 2. In fact, it is easy to prove
the following:

Lemma 7.44 LetFi be a family, andv be a node ofT , then

|ancestors(v) ∩ Fi| = Countv[i].

The performance gain of the dual representation is due to the fact that the multi-
set of nodes in which a value participates is often a subtree ofT . For example, the
partition{B, C, D, E, F, G} of ∇F2 is a subtree rooted atB.

Next we define theintersectionof two partitioningsP1 andP2, written asP1 × P2,
and show that∇F1 × · · · × ∇Fm is in fact the tree partitioning.

Definition 7.45 LetP1 andP2 be two partitionings. Then, theirintersection, denotedP1×
P2, is defined by

P1 × P2 = {p1 ∩ p2 | p1 ∈ P1, p2 ∈ P2}.

In other wordsP1 × P2 is obtained by intersecting each partition ofP1 with each
partition ofP2. For example, the intersection of∇F1 and∇F2 is

∇F1 ×∇F2 = {{A}, {F, H}, {B, C, D, E, G}} × {{A, H}, {B, C, D, E, F, G}}
= {{A}, {H}, {F}, {B, C, D, E, G}}.

It is mundane to see that× is commutative and associative.

Lemma 7.46 The partitioning∇F1 × · · · × ∇Fm is the tree partitioning.

PROOF. Let P be the tree partitioning. Letu, v ∈ T be arbitrary. For a partitioningX,
we writeu ≡ v mod X to denote thatu, v belong to the same partition ofX. Then we
need to prove thatu ≡ v mod P if and only if

u ≡ v mod ∇F1 × · · · × ∇Fm.

Suppose first that

u ≡ v mod P. (7.30)



170 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Then, from the definition of the tree partitioning (Definition 7.40) we have that

φ(u) = φ(v). (7.31)

It follows by the definition of the array-representationCount[1, . . . , m] (Definition 7.41)
that

∀1 ≤ i ≤ m •Countu[i] = Countv[i]. (7.32)

If Countu[i] = Countv[i] then, by Lemma 7.44,|ancestors(u)∩ Fi| = |ancestors(v)∩
Fi|, so we may write

∀1 ≤ i ≤ m • |ancestors(u) ∩ Fi| = |ancestors(v) ∩ Fi|. (7.33)

From the definition of the∇ operator (Definition 7.43) we have that

∀1 ≤ i ≤ m • u ≡ v mod ∇Fi. (7.34)

Finally, from the definition of the intersection of two partitionings (Definition 7.45)

u ≡ v mod ∇F1 × · · · × ∇Fm. (7.35)

To show that (7.30) follows from (7.35) we trivially follow the above reasoning chain
in the reverse direction.

We now devise an efficient representation of family partitionings and a way to com-
pute their intersection. To this end, we describe below thesegmented-arrayrepresentation
of a family partitioning∇F which requiresO(|F |) space. We also show how to intersect
two segmented-arraysA1 andA2, which results in another segmented-arrayA3 which
representsA1 × A2 where

|A3| ≤ |A1|+ |A2|.

The trick is to consider a pre-order traversal of the tree, in which subtrees can be
simply encoded as intervals. Therefore, members of a familyF define intervals, which in
turn break the pre-order into segments. Thus, the partitioning∇F can be encoded as an
array mapping those segments to their containing partition.

In our example, let the pre-order traversal be

π = (A, B, C, D, E, F, G, H).

As can be seen in Figure 7.5, the descendants of any given node form an interval. This
figure highlights the intervals of the descendants of nodesB andF:

descendants(B) = {B, C, D, E, F, G} = [B, G],

descendants(F) = {F} = [F, F].

Consider now the familyF3 defined by these two nodes,F3 = {B, F}. In Figure 7.5
we see that the two intervals ofF3,

Intervals(F3) = {[B, G], [F, F]},
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Figure 7.5: The intervals and segments defined by familyF3 = {B, F}

breakπ into five segments

Segments(F3) = {[A, A], [B, E], [F, F], [G, G], [H, H]}.

Consider any arbitrary such segment defined byF3, and letv range over the nodes of this
segment. Then, the multiplicity of the value3 in φ(v) is the same, e.g., the multiplicity
of the value3 in the segment[B, E] is 1. Thesegmented-arrayrepresentation associates
a multiplicity to each segment. This multiplicity is called thesegment descriptor. The
segmented-array of familyF3 is therefore

SegmentedArray(F3) = 〈[A, A] 7→ 0, [B, E] 7→ 1, [F, F] 7→ 2, [G, G] 7→ 1, [H, H] 7→ 0〉,

and its family partitioning is

∇F3 = {{A, H}, {F}, {B, C, D, E, G}}.

Observe that each segment is contained in some partition of∇F3, and that two segments
with the same descriptor belong to the same partition. For example, both segments[B, E]
and[G, G] are contained in the partition{B, C, D, E, G} of∇Fi. In fact, the union of those
two segments is exactly this partition. It is easy to check that this is no coincidence, i.e.,
the union of segments with the same descriptor is equal to some partition in∇F3, and
vice versa.

More formally,

Definition 7.47 LetP be a partitioning of the nodes ofT , and letπ be a pre-order traver-
sal ofT . Then, asegmented-arrayrepresentation ofP is an array of segment records,
each record containing the segment starting and ending indices and a descriptor such
that:

1. The segments are distinct and coverπ, i.e., the segments are a partitioning ofπ.
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2. Each segment is contained in some partition ofP . In other words, the segmented
array represents a finer-grained partitioning thanP .

3. Two segments have the same descriptor if and only if they are contained in the
same partition ofP .

4. The segments are sorted in an increasing order.

We will sometimes refer to a family partitioning∇F as a segmented-array. No con-
fusion will arise.

A segmented-array representation of a family partitioning∇F can be created inO(|F |)
time and space since the number of segments is linear in|F |. More precisely, a familyF
defines at most|F | distinct intervals inπ, one for each distinct node inF . These intervals
breakπ into at most2|F |+ 1 segments.

Figure 7.6 depicts the segmented-array representations of the family partitionings
of (7.29).

A B C D E F G H

1 2 1 20

1 00

1 2 1 00

1 2 1 00

∇F2

∇F1

∇F4

∇F3

 

Figure 7.6: The segmented-arrays of the families of Figure 7.4a

The intersectionof two segmented-arraysP1 andP2, whose sizes ares1 ands2, is
carried out by merging their arrays inO(s1+s2) time into a single array of size at mosts1+
s2. The descriptors of the segments inP1×P2 are therenamedpairs of descriptors of the
originating segments fromP1 andP2 (using Lemma 7.25).

Figure 7.7 depicts the intersection of the segmented-arrays of∇F1 and∇F2 from (7.28).

The third row in the figure shows the intermediate stage in which the segments in the
intersection still use pairs of integers as descriptors. For example,〈1, 1〉 is the descriptor
of the segment containing nodesB, C, D, andE. This descriptor was renamed to 1. Note
that the other segment (singleton withG) with the pair descriptor〈1, 1〉 was also renamed
to 1.

We are now ready to state the principal result of this section describing the (non-
incremental) tree partitioning algorithm and its performance.

Theorem 7.48 There is anO(M log m) time andO(M) space algorithm solving the tree
partitioning problem.
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Figure 7.7: Computing the intersection of the two segmented-arrays∇F1 and∇F2 de-
fined by Figure 7.4a.

PROOF. Using Lemma 7.46, we wish to compute∇F1 × · · · × ∇Fm. We therefore
build a balanced binary tree whose leaves are the segmented-arrays∇F1, . . . ,∇Fm. In
each internal node we compute the intersection of the two segmented-arrays of its two
children. The segmented-array at the root of this tree represents the tree partitioning.

Consider the first level of this tree which contains the segmented-arrays∇F1, . . . ,∇Fm.
Recall that the size of the segmented-array∇Fi is 2|Fi| + 1. Therefore, the size of the
entire first level is

m∑
i=1

(2|Fi|+ 1) = O(M).

In calculating the second level of the tree, we intersect pairs of segmented-arrays∇Fi×
∇Fi+1, for odd values ofi. Recall also that the time (and space) for creating∇Fi×∇Fi+1

isO(|Fi|+|Fi+1|). Thus, the time (and space) for creating the second level is againO(M).

In general, since all the segmented-arrays propagate to the root, we have that the total
size of all segmented-arrays at each tree level, and thus the work to generate the next
level, isO(M). Since the number of levels isdlog2 me+1, we have that the total time for
computing∇F1 × · · · × ∇Fm is O(M log m).

For an example, refer to Figure 7.8 which depicts the balanced binary tree of the
families of (7.28). We see in the figure that the segmented-array at the root of this binary
tree, i.e.,∇F1 × ∇F2 × ∇F3 × ∇F4, partitions the orderingπ into 6 segments. The
segment of typesD andE hasid = 2. This is also theid of the segment ofG. Together,
these two segments represent the partition{D, E, G}. We have thus obtained the desired
partitioning (7.27) of the tree in Figure 7.4a.

7.9 Incremental Tree Partitioning

The tree partitioning problem (Definition 7.40) solved in the previous section does not
capture in full the intricacies of the bottom up classification into isomorphism classes of
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A B C D E F G H
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∇F1×∇F2×∇F3×∇F4

∇F3×∇F4

∇F4

∇F3

 

Figure 7.8: The balanced binary tree of the families of Figure 7.4

the nodes of aP/F-graph. The difficulty is that the terms ofP-nodes in any given height
areF-nodes. TheseF-nodes must be classified prior to the classification of theP-nodes
in this height. The algorithm behind Theorem 7.48 however assumes that all multi-sets
members are directly comparable. It is applicable only in the case when all terms are
primitive-types.

In this section, we develop the algorithm which after having classified all theP-nodes
up to heightι, will use this information to classify theF-nodes in heightι + 1. The
identifier found in the classification of theseF-nodes must take part in the classification
of theP-nodes at heightι + 2.

To this end, this section deals with a more general variant of the tree partitioning
problem, in which the multi-sets are supplied in apiecemeal fashion. In this variant, the
different possible values of the multi-sets in the tree nodes are exposed in iterations. The
algorithm for this variant will add another logarithmic factor to the time complexity.

The requirements from a data structure for theincremental tree partitioning problem
are best defined in terms of the dual representation.

Definition 7.49 Given a treeT , an incremental tree partitioning data structuremust sup-
port two kinds of operations, which might be interleaved:

1. Operationinsert (Fj), whereFj is a family, i.e., a multi-set of nodes ofT .

2. Query classify (Tk), whereTk is a subset of the nodes ofT . This query
returns the tree partitioning ofTk according to the families inserted so far. More
formally, let{F1, . . . , Fj} be the set of families inserted so far. Then, the query
returns the restriction of∇F1 × · · · × ∇Fj to the setTk. This restriction is
defined in the obvious manner, i.e., it is the partitioning obtained by intersecting
each partition of∇F1 × · · · × ∇Fj with Tk, and ignoring all thusly obtained
empty partitions.
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To make the complexity analysis easier, we assume that the sets{Tk} are disjoint,
that

⋃
k Tk = T and that the data structure is never required to classify a node before its

parent.

These assumptions hold in our application: the set of nodesTk is exactly the set
of P-nodes whose height is2i, and a familyFj is inserted after having discovered that
a certain collection ofF-nodes belong in the isomorphism class whose identifier isj.
(These identifiers are allocated consecutively.)

Our main objective is to minimize the resources for processing the entire interleaved
sequence of data structure operations. The next theorem states the performance charac-
teristics of our incremental tree partitioning algorithm.

Theorem 7.50 Incremental tree partitioning can be solved inO(M log m+n log n log m)
time andO(M) space.

PROOF. We use a lazy representation of an infinite complete binary tree, similar to
the binary tree of Theorem 7.48, The leaves of this tree are given by the infinite se-
quence∇F1,∇F2, . . .

Figure 7.9 shows (part of) this tree, after families∇F1, . . . ,∇F7 have been inserted.

∇F2

∇F1

∇F4

∇F3

∇F6

∇F5

∇F7

∇F1×∇F2

∇F1×∇F2×∇F3×∇F4

∇F3×∇F4

∇F5×∇F6

...

...

...

...

 

Figure 7.9: An embedding of seven families into an infinite balanced binary tree

This infinite tree is used to guide the computation of the intersection of the partitioning
which were inserted so far: we delay the intersection of partitionings in an internal node
until both its children exist. Atemporary rootis a node in which the partitioning was
computed, but not in its parent.

In the figure the nodes at which partitionings were intersected are drawn with thicker
lines. Specifically, at this stage we have computed∇F1 × ∇F2, ∇F3 × ∇F4, ∇F1 ×
∇F2 × ∇F3 × ∇F4, and∇F5 × ∇F6. There are three temporary roots in figure, which
are the nodes corresponding to∇F1 ×∇F2 ×∇F3 ×∇F4,∇F5 ×∇F6 and∇F7.
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Assume that a new familyF8 is inserted. We first calculate its segmented-array∇F8,
and proceed to compute the following three intersections:

P1 = ∇F8 ×∇F7,

P2 = P1 × (∇F5 ×∇F6),

P3 = P2 × (∇F1 ×∇F2 ×∇F3 ×∇F4).

After this insertion we will have a single temporary root.

The total time for all insert operations, i.e.,insert (F1), . . . , insert (Fm), is the
same as in the non-incremental tree partitioning problem, i.e.,O(M log m) time us-
ing O(M) space.

The algorithm is lazy in the sense that we do not compute the intersection of the
temporary rootsP1, . . . , Pr. Instead, the classification of a setTk, i.e., classify (Tk)
query, is carried out by consulting the segmented-arrays at those temporary roots. Recall
thatPi is represented as a sorted array of segment-identifier pairs (see Definition 7.47).
Since the size of this array is bounded byn, we can support searches inPi in O(log n)
time. For eachv ∈ Tk, we search for the descriptor of the segment which containsv, in Pi

for i = 1, . . . , r.

After obtaining anr-tuple of descriptors for allv ∈ Tk, we apply a tuple partitioning
algorithm to classifyTk. In order to keep the space linear, we cannot actually store|Tk|
tuples of lengthr. Therefore, we will use theincremental tuple partitioning algorithm.
Specifically, we will use|Tk| memory cells to find the first elements of the tuples, pass
them to the tuple partitioning algorithm, and proceed to find the second elements of the
tuples, etc.

Note that afterj families were inserted, there are at mostdlog2 je temporary roots,
so we always have thatr ≤ dlog2 me. Thus, the total time for computing ther-tuple
is O(r log n) ⊆ O(log m log n). The total time for theclassify (Tk) query is there-
foreO(|Tk| log m log n), while usingO(M) space. Since every nodev ∈ T can take part
in a classification query at most once, the total time for all classifications isO(n log n log m).

The total time for all insertion operations and all classification queries isO(M log m+
n log n log m), while the total space used isO(M).

7.10 Conclusion: An Algorithm for the First Order Iso-
morphism Problem

Having developed the algorithms for generating the linear sizeP/F representation, and
for efficiently comparing the multi-setsφ without actually creating them, we are ready
to describe the main result of this paper: an efficient algorithm for deciding first order
isomorphisms. In essence, the algorithm uses Lemma 7.39. A naive recursive application
of the lemma may lead to an exponential running time. To bound the time complexity,
we instead traverse the graphs bottom-up, classifying the nodes into their isomorphisms
equivalence classes as we do so.

The bottom-up traversal is guided by height, where all nodes of the same height are
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processed together. Height is defined as in Definition 7.32. Algorithm 7.5 shows how
heights can be computed in linear time even in the non-expanded,P/F representation.

Algorithm 7.5 Height (v)

Given a nodev in a P/F-graph, ensure thath(v′) stores the height ofv′ for all nodesv′

reachable fromv and returnh(v).
1: If v was visitedthen
2: Return h(v)
3: fi
4: markv as visited
5: If v is a primitive-typeor v = P⊥ then
6: h(v) ← 0; return h(v) // Recursion base
7: fi
8: If v is anF-nodethen
9: h(v) ← 1 + Height (arg (v)); return h(v)

10: fi
// v must be an ordinaryP-node

11: h(v) ← Height (parent (v))
12: For all u ∈ ϕ(v) do // recurse on all (non-expanded) terms
13: h(v) ← max(h(v), 1 + Height (u))
14: od
15: Return h(v)

Given a nodev, the algorithm uses a standard recursive depth first search to visit,
compute and store the height of every nodev′ reachable fromv. Lines 8–9 deal with the
case thatv is anF-node. The recursive call in this case is only onarg (u), sinceret (v)
must be a primitive-type.

Another easy case is thatv is P⊥. Since there are no terms in this product-node,
its height is 0. Lines 11–15 deal with ordinaryP-nodes. The height of such nodes
is one more than the maximum height of all expanded terms. The reason why in line
11 we do not add 1 toHeight (parent (v)) is that the expanded terms include the
termsφ(parent (v)), and notparent (v) as a term.

Once the height of all nodes inP/F-graph is computed, Algorithm 7.6 can be invoked
to partition these nodes into equivalence classes. We assume that unique identifiers, drawn
from the range[1, n], are given to all primitive-types. To process non-primitive-types, the
algorithm relies on the fact that nodes cannot represent isomorphic types unless they are
of the same kind and the same height. Accordingly, the nodes ofG are processed by
height.

The main data-structure used by the algorithm is incremental tree partitioning (see
Theorem 7.50). Nodes at odd height areP-nodes. The classification of these nodes is
carried out by querying this data-structure.

Lines 10–17 in the algorithm take care ofF-nodes. Classification of these nodes
is carried out by a simple pair partitioning algorithm. We then generate identifiers for
each of the isomorphism classes. AllF-nodes take parts as terms ofP-nodes. We must
make sure that twoF-nodes in the same isomorphism class are regarded as equal when
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Algorithm 7.6 NodesPartitioning (G)
Given aP/F-graphG representing a type in the first order grammar, return a partition-
ing Λ of all the nodes ofG into equivalence classes, such that two nodes are in the same
class if and only if they represent isomorphic types.

1: Let Υ be an incremental tree partitioning data-structure for the tree ofP-nodes ofG
2: j ← 0 // The identifier of current isomorphism class
3: Let r be the root ofG
4: l ← Height (r)
5: For ι = 1, . . . , l do // Process the nodes by height
6: Let Tι ← {v ∈ G | h(v) = ι}
7: If ι is oddthen // Tι is a collection ofP-nodes
8: Λ ← Λ ∪Υ.classify (Tι)
9: else// Tι is a collection ofF-nodes

10: PartitionTι using pair partitioning
11: Let the resulting partition beTι = C1 ∪ · · · ∪ Ck

12: Λ ← Λ ∪ {C1, . . . , Ck}
// UpdateΥ

13: For i = 1, . . . , k do // Inserting a new family
14: j ← j + 1 // Process a new isomorphism classj
15: Let Fj be the multi-set ofP-nodes with a term inCi

16: Υ.insert (Fj)
17: od
18: fi
19: od
20: Return Λ

comparingP-nodes in the next iteration. Line 15 defines the multi-setFj of P-nodes in
which isomorphicF-nodes are terms. Note thatFj is a multi-set since aP-node may have
several terms belonging toCi. In line 16 the incremental tree partitioning data structure
is updated.

Lemma 7.51 If G hasn nodes andO(n) edges then, Algorithm 7.6 runs inO(n log2 n)
time and while consumingO(n) space.

PROOF. We first note that computing the height as in Algorithm 7.5 requires linear
time, since every node and every edge is visited at most once.

The algorithm uses linear space, since the two main procedures it invokes: incremental
tree partitioning algorithm (lines 8 and 16) and pair partitioning (line 10) use linear space.

The running time of all the applications of the pair partitioning algorithm isO(n) (see
Lemma 7.25).

The total number of families inserted isO(n). Moreover, the total size of those fami-
lies is alsoO(n), and all the sets of classified nodes are disjoint. Therefore, using Theo-
rem 7.50, the total time of all the operations performed onΥ is

O(M log m + x log x log m)
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while usingO(M) space, wherex is the number of nodes in the product-tree (which is the
number ofP-nodes),m is the number of families, andM is the total size of those families.
Since all the above parameters areO(n), the total runtime isO(n log2 n) using O(n)
space.

The bottom-up node classification of Algorithm 7.6 can be used to solve the first order
isomorphism problem. To do so, we first create theP/F-graphs of the two input types,
and then merge these graphs, by e.g., making their roots descendants of a newP-node.
(TheP⊥ nodes of the respective graphs must be unified.) Algorithm 7.6 is then invoked
on the merged graph. The inputs are isomorphic if and only if these two roots are placed
in the same equivalence class.

Theorem 7.52 First order isomorphism can be decided inO(n log2 n) time andO(n)
space, wheren is the size of the input.

PROOF. As noted above theP/F-graph representation uses linear space. Moreover,
bringing the input to this representation requires linear time.

The complexity of comparing inputs in theP/F-graph representation is given by
Lemma 7.51.

7.11 Open Problems

The only lower bound for the first order type isomorphism problem is the trivial informa-
tion theoretic linear time. An important research direction is to bridge this gap by either
reducing the time complexityof our main algorithm even further, or obtaining betterlower
bounds.

For example,dynamic fractional cascading[95] might be used to decrease the running
time from O(n log2 n) to O(n log n log log n). Recall that in the incremental tree parti-
tioning algorithm (Section 7.9) aclassify query was implemented by conductinginde-
pendentlogarithmic time searches inO(log n) temporary roots. The fractional cascading
data structure makes it possible to use the result of each search in expediting the sub-
sequent search, bringing down the runtime ofclassify (Tk) to O(|Tk| log n log log n).
Unfortunately, this representation makes it difficult to use the incremental tuple partition-
ing algorithm, and increases the space toO(n log n).

Time complexity might be improved also by taking the perspective in which primitive
types are thought of as variables, while compound types are considered expressions over
these. Then, it follows from the fact that axiomsA.1–A.7 are complete [19] that the first
order isomorphism problem is reduced to function identity. This identity might in turn
be checked by an appropriate random assignment to the variables, possibly leading to a
more time efficient, yetrandomizedalgorithm for the problem. For example, if infinite
precision arithmetic is allowed, then, it might be possible to extend the type isomorphism
heuristics of Katzenelson, Pinter and Schenfeld [85], and check identity by assigning into
the variables values drawn at random from, say, the range[0, 1]. We note however that
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such a randomized algorithm does not yield theisomorphism proofas does our determin-
istic algorithm.

Another interesting direction comes from the generalization in which type expression
trees may share nodes, i.e., the input isdirected acyclic graphrather than a tree. This
situation occurs naturally in programming languages in which non-primitive types can be
named, and where these names can be used in the definition of more complex types.

Perhaps the most important problem which this chapter leaves open is efficient algo-
rithms forsubtyping(of products, functions, or both) which include the distributive and
the currying axioms.



Chapter 8

Conclusions

The object-oriented(OO) paradigm, and the OO languages that enable it, such as C++
andJAVA , has become the norm for software development. In this thesis, we have devel-
oped efficient algorithms for the core features of OO languages: subtyping tests, method
dispatching and object layout.These algorithms havethe potentialof reducing the
space and time overhead of any OO application.

The efficiency of these algorithms was demonstrated on a collection of huge hierar-
chies drawn from as many as eight different OO languages, with the purpose of making
our researchlanguage independent. We have used the following threeefficiency metrics:
(i) space, (ii) query time, and (iii) time required for creation the encoding. We showed
significant space savings and fast creation time, usually without compromising the query
time metric [136–139]. Space savings can have a crucial impact on embedded appli-
cations, and can also reduce thetotal runtimedue to cache behavior and reduced page
faults. We could not measure such benefits to the total runtime because we are missing
two things:

1. an implementation inside a compiler for a certain language, and

2. a data-set ofapplicationsdrawn from that specific language. The hierarchies in our
data-set were drawn from various languages, and extracted from hugeproduction
systemsrather thanapplications.

After filling these two gaps we will also be able to gather statistics on other metrics such
ascode space.

Here are three important directions for future research:

Dynamic Benchmarks The presented algorithms could be incorporated into a compiler
such as Jikes RVM. Then it would be possible to gather statistics on dynamic bench-
marks as opposed to our static benchmarks which are missing runtime behavior. It
is also important to fine tune these theoretical algorithms to come close to the prac-
tical optimum rather than the theoretical one, using the gathered statistics.

For example, theincremental type slicing(TS) scheme [137] can be used forJAVA ’s
subtyping tests, and theincremental compact dispatch table(CT) algorithm [138]
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for JAVA ’s invokeinterface instruction. It would also be interesting to con-
sider a batch version ofJAVA , i.e., where the whole program is known at compile
time and dynamic loading is prohibited. Such a close world assumption is reason-
able for embedded systems, and has been made inSYNERJY1, FLEX 2, MARMOT
3, and MANTA 4. For the batch variant,PQ-encoding(PQE) [136] can be used
for subtyping tests, andtype slicing(TS) [137] for dispatching. I am currently in
touch with Dominique Colnet from INRIA Lorraine, for implementing thetwo-
dimensional bi-directional(TDBD) object layout scheme [139] in theSMALL EIF-
FEL environment [135].

New algorithms The ultimate objective of practical research of the implementation of
runtime environment of OO programs is aunified object modelwhich would offer
significant improvements over current implementations. Such a model should sup-
port, in the multiple inheritance setting, subtyping, single- and multiple-dispatching
queries, updates to the hierarchy, and a good object layout. Many examples of open
problems can be found in our papers [136–140], such as incremental dispatching
in the multiple inheritance setting and incremental multiple dispatching even in the
single inheritance setting.

New applications Partial orders are widespread throughout many disciplines. In com-
puter science they have importance in querying data-bases (e.g., finding transitive-
closure), programming languages (e.g., multiple inheritance), operating systems
(e.g., virtual time in distributed systems), computational linguistics, knowledge rep-
resentation, and machine learning. Our techniques for incrementally maintaining
the subtyping relation can therefore have applications in any of these fields.

Surprisingly, we have discovered that our techniques for method dispatch [137,138]
could be used for solving the first order isomorphism problem [140], a problem that
is unrelated to partial orders or OO languages. It would be interesting to find other
applications for techniques described in my thesis.

1a JAVA -like synchronous Language for Embedded Controllers, developed by Fraunhofer Institute for
Autonomous Intelligent Systems

2a compiler infrastructure written inJAVA for Java, developed in MIT
3an optimizing compiler forJAVA , developed by Microsoft
4a native source-to-binaryJAVA compiler, developed in Vrije, Amsterdam
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