EFFICIENT ALGORITHMS FOR THE RUNTIME
ENVIRONMENT OF OBJECT ORIENTED
LANGUAGES

RESEARCH THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

YOAV ZIBIN

SUBMITTED TO THE SENATE OF THE TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY
SHEBAT, 5764 HAIFA FEBRUARY, 2004

THIS RESEARCH THESIS WAS SUPERVISED BY DR. YOSSI GIL UNDER THE
AUSPICES OF THE COMPUTER SCIENCE DEPARTMENT

ACKNOWLEDGMENT

Thank you Eva for keeping me alive

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY
ACKNOWLEDGED

Contents

List of Figures vV
List of Tables IX
List of Algorithms Xi
Abstract 1
List of Abbreviations 3
List of Symbols 5
1 Introduction 9
2 Contributions 13
3 PQ-Encoding 19
3.1 Problem Definition 21
3.2 Straightforward Solutions o o 22
3.3 Definitions. 24
3.4 DataSet 25
3.5 PreviousWork 26
3.5.1 Encoding of Single Inheritance Hierarchies 26
3.5.2 Encodings of Multiple Inheritance Hierarchies 29
3.6 PQ-Encoding e 32
3.6.1 Subtyping Tests inthe PQ-Encoding 33
3.6.2 Slicing 34
3.6.3 PQ-Trees e 36

3.6.4 FindingaPQ-encoding 38

i CONTENTS
3.7 Optimizations e 41
3.7.1 ID-Range Compaction 41
3.7.2 PruningBottomTrees 43
3.7.3 Reordering TypeRecords 44
3.7.4 HeterogeneousEncoding 45
3.7.5 Coalescing ID-Arrays 45
38 Results. e 46
3.8.1 \Variants of the PQ-Encoding Scheme 47
3.8.2 Output of the PQ-Algorithm 47
3.8.3 Encoding LengthintheDataSet 49
3.8.4 EncodingCreationTime 50
3.9 Conclusionsand FutureResearch 50
3.10 A Detailed PQ-TreeExample 52
4 Type-Slicing 55
4.1 ProblemDefinitions 57
4.2 Straightforward Solutions 60
4.3 PreviousWork 61
4.4 Dispatchingusing Type Slicing 64
45 DataSet 67
4.6 ExperimentalResults L 70
4.7 Multiple Dispatching 74
4.7.1 Introduction to Multiple Dispatching 74
4.7.2 Review of Algorithms for Multiple Dispatching 75
4.7.3 Reducing the Space Requirement of the Mono-dispatch Stage
with Type Slicing L 76
4.8 Incremental SubtypingTests 78
4.8.1 Problem Definition L. 78
4.8.2 Previous Work on SubtypingTests 78
4.8.3 Subtyping using Type Slicing Scheme 79
4.8.4 Experimental Results for Type Slicing 80
4.9 OpenProblems 82
4.10 Order-PreservingHeuristic 83

5 Compact Dispatch Tables 87

CONTENTS

5.1 Problem Definition
5.2 Straightforward Solutions
5.3 OurResultinPerspective
5.4 Compact Dispatch Tables in Single Inheritance Hierarchies . . .
5.5 Incremental variants for Single Inheritance Hierarchies
5.5.1 Algorithm ICT, in a Single Inheritance Setting
5.5.2 Algorithm ICT; in a Single Inheritance Setting

5.6 Compact Dispatch Tables in Multiple Inheritance Hierarchies

5.6.1 Family Partitionings,

5.6.2 Memory Requirements of the Reduction.

5.6.3 Hierarchy Complexity
5.7 ExperimentalResults
5.8 Conclusions and Open Problems

6 Two-Dimensional Bi-Directional Object Layout

6.1 Definitions.
6.2 PreviousWork.
6.3 Two-Dimensional Bi-Directional Object Layout
6.4 Computing Type Addresses
6.5 DataSet
6.6 ExperimentalResults
6.7 Conclusionsand OpenProblems

7 Isomorphisms of Simple Types

7.1 The First Order Isomorphism Problem and Its Variants
7.2 Intuition: Reduction Systems and Normal Forms
7.3 EliminatingUnitTypes
7.4 Linearlsomorphism.
7.5 Multi-set Partitioning Algorithms
7.6 Productlsomorphism oL
7.7 TheP/F-graph
7.8 TreePartitioning
7.9 Incremental Tree Partitioning
7.10 FirstOrder Isomorphism
7.11 OpenProblems

iv CONTENTS
8 Conclusions 181
Bibliography 183

Hebrew Abstract i

List of Figures

1.1 Anexampleofasmallhierarchy 9
2.1 The tree structure of the left-hand sideof (2.2) 18
3.1 A small example of a multiple subtyping hierarchy 23
3.2 Relative numberinginatree hierarchy 27
3.3 Cohen’s encoding of the tree hierarchy of Figure 3.2 28
3.4 PErepresentation of the hierarchy of Figure3.1 30
3.5 Bit-vector encoding of the hierarchy of Figure 3.1. (We only write the

genesatypeaddstoitsparents.) 30
3.6 Range-compression encoding of the hierarchy of Figure 3.1. (Edges of

the spanning forestareinbold.) 32
3.7 PQ-encoding of the hierarchy of Figure 3.1 35
3.8 Atwo slices PQ-encoding of the hierarchy of Figure 3.1 augmented with

anewtypeN 35

3.9 A PQ-tree over the universe = {A,B,C, D, E}, with a single P-node
(depicted as a circle), a Q-node (depicted as a rectangle) and five leaves

(depictedas octagons) e 36
3.10 The PQ-tree returned from the agdéinTree on the constraints (3.21). . . 39
3.11 Reducing therange neededforPQE 42
3.12 PQE of the core of the running example (a) and PQE after inserting some

bottom-trees (b) e 44
3.13 Intermediate PQ-trees in the invocatiorgehTree on the constraints of

the hierarchy Figure 3.1 53
3.14 PQ-tree with a new configuration in whidduce will return L 54

4.1 A small example of a hierarchy and the methods implemented in each type 58
4.2 (a) The dispatching matrix, and (b) the sorted dictionary for message 60

4.3 (a) A family F, = {A,B,F} in a tree hierarchy, (b) the intervals and
segmentd, defines, and (c) the representationffas a sorted dictionary 63

Vi

LIST OF FIGURES

4.4 The smallest multiple inheritance hierarchy for which no ordering exists

where all descendants of any type are consecutive 65
4.5 Type slicing for the hierarchy of Figure4.1 65
4.6 (a) The intervals and segments of message the two slices of Fig-

ure 4.5, and (b) the message representationineachslice 66
4.7 Addition of a new type to the first slice of Figure4.5 84

5.1 (a) A small example of a single inheritance hierarchy, and (b) its dispatch-
INgMatriX e e e 89

5.2 Three chunks of the dispatching matrix of Figure5.1b 92

5.3 (a) The first chunk of Figure 5.1c, (b) the chunk compressed using an
auxiliary array of pointers, and (c) the chunk compressed using an array

oflabels 93
5.4 CT representation for the hierarchy of Figure5.12 94
5.5 A small example of a multiple inheritance hierarchy with two families . . 103

5.6 (a) The dispatching matrix of Figure 5.5, (b) the matrix compressed using
an auxiliary array of pointers, and (c) the matrix compressed using an

array ofset-labels 103
5.7 The family partitionings of the families,, F; of (5.30) and their master-

family F/ = F,UF, i e e 104
5.8 Theoverlayof VF, andVF, of Figure5.7 105
5.9 An example of a multiple inheritance hierarchy of complexity 1 108
5.10 The family partitioning of the family" = {A B, E} in the hierarchy of

Figure 5.9 e 108

5.11 The intervals of the family’ = {A, B, E} in the hierarchy of Figure 5.9 . 109

5.12 Memory used by GI CT;, CT,, CT; and optimal duplicates-elimination
(¢) relative to optimal null-eliminatiom — marked as the 100%); hierar-
chies are sorted in ascending memory used by CT. 113

5.13 The memory requirement of ¢TCT;, CT, and CT; relative to the theo-
retically obtained upper bounds in single inheritance hierarchies (a), mul-
tiple inheritance hierarchies where the upper bound was computeddusing
(b), and multiple inheritance hierarchies, where the upper bound is com-
puted as in single inheritance hierarchigs{1)(c). 114

5.14 Space requirements vs. slice size in the single inheritance hierarchy of
Digitalk3 for CT, and its theoretical upper bound (5.14) 115

6.1 A small single inheritance hierarchy (a), a possible object layout for this
hierarchy (b), and a multiple inheritance hierarchy in which there is no
contiguous layout for allobjects(¢) 118

6.2 Atype hierarchy (a) with its aggressive-inline C++ layout (b) 123

LIST OF FIGURES Vi

6.3

6.4

6.5
6.6

7.1
7.2

7.3

7.4
7.5
7.6
7.7

7.8
7.9

The canonical (a) and the compact (b) two-dimensional bi-directional lay-
out of an object from a 5-layer hierarchy. Laydrsand L; are empty in
the depictedobject. L 125

The two-dimensional bi-directional object layout of the running example
(a), the allocation of types in it to semi-layers (b), and the conflict graph
withitscoloring () 127

Average no. of layers in different hierarchies 133
Average no. of dereferences vs. no. of field accesses in four hierarchies . . 135

An abstract syntax tree of type (7.21) before (a) and after (b) flattening . . 158
(@) Type (7.21) in the product grammar, and (bP{&-graph represen-

tation. Theparent edges are depictedinbold. 162
(a)P /F-graph representation in Figure 7.2b, and (b) its product-tree with

the multi-set of terms of each product. 166
A small multi-set tree (a) and its tree partitioning(b) 167
The intervals and segments defined by famjly= {B,F} 171

The segmented-arrays of the familiesof Figure 7.4a 172
Computing the intersection of the two segmented-arkays and V F,

definedby Figure 7.4a. 173
The balanced binary tree of the families of Figure 7.4 174

An embedding of seven families into an infinite balanced binary tree . . . 175

viii LIST OF FIGURES

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4
4.5
4.6

4.7

4.8

5.1
5.2

6.1

6.2

Number of types, messages:, and method implementatios of the

44 hierarchiesused inourdata-set 15
Topological properties of hierarchies inthe dataset 25
Some characteristics of the slice partitioning of the PQ algorithm 48
The encoding length of different algorithms 49
Encoding creation time in milliseconds of different algorithms 51

Statistical and topological properties of the 35 hierarchies used in bench-

marking dispatching algorithms 69
The redundancy factor of different dispatching algorithms and the total
memory requirements of TSin kilo-bytes 71
Encoding creation time in milliseconds, on a 900 Mhz Pentium llI, of
different dispatching algorithms 73
CNT representation for the multi-family of (4.12) 75
SRP representation for the multi-family of (4.22) 76
Average number of bits per family for the mono-dispatch stage and the
resolutionstage e 77
Total time (in mSec) and average time per typ8€c) for generating a
subtypingencoding 81
The encoding lengths of different subtyping algorithms 81
Generalized CT results for single inheritance hierarchies. 97
Essential parameters of the pruned hierarchies in our data-set. 111

Statistics on the input hierarchies, including the number of colors and layers
found by Algorithm 6.3 compared with the maximal anti-chain lower bound 131

No. of VPTRs using standard C++ layout, simple inline (S-In), and aggressive
inline (A-IN) e e 134

LIST OF TABLES

List of Algorithms

3.1
3.2
5.1
6.1
6.2
6.3
7.1
7.2
7.3
7.4
7.5
7.6

Compute the PQ-tree of all orderings which satisfy a set of constilaints38

Compute the PQ-encoding of a hierar¢ly <) 40
InsertionofanewtypeinICT, 99

An algorithm for generating field access code in the canonical layout . . . 125
An algorithm for generating field access code in the compact layout . . . 126
Produce the compact two-dimensional bi-directional layout of a hierarchy 129
EliminateUnits (7)) o 146
Renamegay, ..., a,) « . v v o v i e e e e e 155
NormalizeProduct (7) 163
FunctionintoProduct (U, T) o e 164
Height (v) 177
NodesPartitioning (GQ). . o 178

Xi

Xii LIST OF ALGORITHMS

Abstract

Theobject orientedOO) paradigm has become the norm for software development. OO
languages, such as C++ [124hvA [7], EIFFEL [97], and SMALLTALK [71], are used

in almost every software project. The OO programming style, and the languages that
enable it, have acquired an aura of respectability. OO programming promotes reusability,
extendibility, reliability, and portability. All these blessings come however ebst of
runtime efficiency Better understanding of this cost, and finding ways to reduce it, are
the subject of this thesis.

This thesis presents our contributions to the following three fundamental problems in
the runtime environment of OO languages: subtyping tests [136], message dispatching
(both single and multiple dispatching) [137,138], and object layout [139]. It is important
to note that although the problems take variations in different languages, these variations
are minor in the implementation of these languages. Out results will therefore be of
general interest, and applicable to many different languages.

The thesis also includes an application of the newly developed techniques which en-
abled us to develop the best algorithm for deciding isomorphism of simple types [140],
i.e., whether two non-recursive types using product- and function-type constructors, are
iIsomorphic under the axioms of commutative and associative products, and currying and
distributivity of functions over products. In particular, we show that this problem can be
solved inO(n log® n) time andO(n) space, where is the input size. This resultimproves
upon theO(n?logn) time andO(n?) space bounds of the best previous algorithm. We
also describe aw(n) time algorithm for thdinear isomorphism problemwhich does
not include the distributive axiom, thereby improving upon thg:log n) time of the
best previous algorithm for this problem.

The above contributions were published in five conference papers [136—140], two of
which [136, 140] were accepted to a journal [69, 70].

List of Abbreviations

Acronym Expansion

BPE
BTS
CNT
CPQE
CT
DAG
DFS
DPH
JDK
LDT
MI
NHE
00
PE
PQE
RD
sc
S|
SRP
TDBD
TS
VBPTR
VFT
VPTR

Bit Packed Encoding (subtyping technique)

Bit Type Slicing (subtyping and dispatching technique)
Compressed N-dimensional Tables (multi-dispatching technique)
Coalesced PQ-Encoding (subtyping technique)

Compact dispatch Tables (dispatching technique)

Directed Acyclic Graph

Depth First Search (traversal of a DAG)

Dynamic Perfect Hashing

Java Development Kit

Layers Dispatch Table (used in TDBD layout)
Multiple Inheritance

Near Optimal Hierarchical Encoding (subtyping technique)
Object Oriented

Packed Encoding (subtyping technique)

PQ-Encoding (subtyping technique)

Row Displacement (dispatching technique)

Selector Coloring (dispatching technique)

Single Inheritance

Single-Receiver Projections (multi-dispatching technigue)
Two-Dimensional Bi-Directional (object layout technique)
Type Slicing (subtyping and dispatching technique)

Virtual Base Pointer (in C++)

Virtual Function Tables (dispatching technique)

Virtual Function Pointer (a pointer to a virtual function table in C++)

List of Symbols

The following table explains the meaning of symbols used throughout our papers. The
next tables explain symbols used only in a single paper: PQ-tree symbols used in Chap-
ter 3, Object layout symbols used in Chapter 6, and Isomorphism symbols used in Chap-
ter 7.

Symbol

Denotes

~

The set of familiesF C o(7)

The set of types

Themultiple inheritance coref the hierarchy, i.e., types which
have a descendant with more than one parent

The set of multi-types, i.e., tuples otypes

The set of types in slicé

The number of bits in a bitvector encoding, e.g., NHE

Sum of cardinalities of all families, or the number of different
method implementationg;< w

The maximal compression factor over the dispatching ma-
trix; ¢« = (nm) /¢

The complexity of a hierarchy, or the number of slices used by
the TS technique

The descendants ofin slice7;

A set of types defining the same messaljes F

A slice, i.e., a subset of typeS;C 7

The set of all types which occur in positierin some tuple of
the multi-family F

Type variablesy, b, t,t',t" € T

An arity of a multi-method

The number of slices in CT, SC, (B)PE, (C)PQE

Number of familiesyn = | F|

Number of typesn = |7 |

Some object

The slice of type

Number of non-null entries in the dispatching matiixg w <
nm

Some integers in the range . . ., n]

The position of type in the ordering of its slice

Symbol

Denotes

level(t)

min(X)

pred(z)

vec,

Ad
a,...,m
cand(F,t)
dispatch(F, t)
g-dispatch(F' t)

(t1,...,tc)
[Le, 7]

the length in nodes of the longest directed (upgoing) path start-
ing from typet

The subset of smallest types.ia

The immediate predecessoroin some given set of integers
The bit-vector of type: in NHE

Concrete types

Concrete messages

The ancestors agfwhich are members af’

The result of dispatching typeover family F

The result of a generalized dispatching quethe entire sebf
smallest candidates

A multi-type in7°

The interval of ids of descendantsioh relative numbering (in
Sl hierarchies)

=< The subtype relation (the transitive closure<gj)
<4 The direct subtype relation (the transitive reduction<gf
T The root of a S| hierarchy
PQ-tree symbols used in Chapter 3

Symbol Denotes
P A PQ-tree
PT The universal PQ-tree, which represents all possible orderings
consistent(P) The set of orderings representedBy
il A PQ-tree which represents an empty set of orderings

Object layout symbols used in Chapter 6
Symbol Denotes
D¢ The offset of a field within its type
AW The offset of type
A The layer of type
0,(7) The number of ancestors of typén layeri
0, The number of ancestors of type
Ai(k) The expected number of extra dereferences required to alccess

random fields irt
L The number of layers in TDBDE = [s/2]
L; The number of non-empty layers in type

The number of colors required to color the conflict graph, which
is also the number of semi-layers

Isomorphism symbols used in Chapter 7

Symbol Denotes

P, A dummy P-node without aparent edge and without
termsp(P,) =0

T The product tree: Nodes are tienodes of theP /F-graph,
edges are defined lparent pointers.

o(v) The union of terms of ancestors ofn the product tree

P, 0 Types conforming to the product grammar

0,0 Types conforming to the no-unit grammar

T, 7 Types conforming to the general grammar

o(v) The set of term nodes

P/F-graph A graph whose nodes are eiti@modes orF-nodes, and
thatparent edges make a treé

h(T) The length of the longest path fromto any leaf

u An F-node (a node representing a function type with an
argument- and return-type)

v A P-node (a node representing a product type with a set of term
nodes)

arg (u) A P-node which is the argument type of

parent (v) A P-node, from whichv inherits additional terms

ret (u) A primitive-type specifying the return type af

<1 An operation which concatenates of the terms of two products

Chapter 1

Introduction

Theobject oriented OO) programming paradigm has become the norm for software de-
velopment. OO languages, such as C++ [124}a [7], EIFFEL[97], andSMALLTALK [71],

are used today in almost every software project, since it is widely recognized that the
paradigm promotes reusability, extendibility, reliability, and portability. All these bless-
ings come however at@ost of runtime efficiencyBetter understanding of this cost, and
finding ways to reduce it, are the subject of this thesis.

A unique challenge in the implementation of OO languages is providing support for
runtime operations related to thigpe hierarchy Formally, a hierarchy is a partially
ordered set7,=) where7 is a set oftypesand < is a reflexive, transitive and anti-
symmetricsubtype relationThe distinction between type, class, interface, signature, etc.,
as it may occur in various programming languages does not concern us here. We shall
refer to all these collectively as types.dfandb are types, and < b holds, we say that
is asubtypeof b and thath is asupertypeof a. For example, in Figure 1.Polygon has
three subtypesRectangle, Triangle, andPolygon itself.

Figure 1.1: An example of a small hierarchy

The most important property derived from a type hierarchyyge conformance
meaning that code applicable for typés also applicable for any of its subtypesa < b.
Cook [33] defines type conformance as

“arelation intended to capture the notion of one type being immediately com-

10 CHAPTER 1. INTRODUCTION

patible with another, in a sense that in a context where a value of some type
Is expected, any value of a conforming type can be used”

For example, with the hierarchy of Figure 1.1, code expectiShape can receive
any of its subtypes, e.g.,Rectangle or aCircle. We therefore have a shape entity that
at runtime can refer to any subtype ®hape. Such phenomena are known iaslu-
sion polymorphisni23]. Meyer’s [96, Sect. 10.1.5 Polymorphism] definition of inclusion
polymorphism is:

“ Polymorphismmeans the ability to take several forms. In object-oriented
programming, this refers to the ability of an entity to refer at run-time to
instances of various classes”

The consequences of inclusion polymorphism are that although the exact type of a
certain entitymustbe known atruntime this typecannotbe predicted atompile time
This polymorphism is the major source of inefficiencies in OO programs. For instance,
what happens if we instruct a shapedaw itself? Since different shape entities have
different drawing methods, we need to execute the drawing method corresponding to the
dynamic type of the shape.

In this thesis, | focused on four ensuing algorithmic problems in the implementation
of the runtime environment of OO languages:

1. Subtyping testsGiven an objectb and a typeb, a subtype test is to determine
whethera, the type ofo, is a subtype ob, a < b. Such tests (also known age in-
clusiontests), occur either implicitly in type cast operations, elgnamic _cast
in C++ [124],7= in EIFFEL [97], or explicitly in the execution of dedicated lingual
constructs such aBvA's [7] instanceof , andSMALLTALK ’s [71] isKindOf:
method. Although there are many efficiency metrics to the problem, in general, we
seek an implementation which simultaneously optimizes the space consumption of
the hierarchy representation and the time for executing these tests in runtime. Sub-
typing tests have enjoyed extensive attention (see e.g., [1, 22, 25, 58,59, 74,75, 84,
90,115,127,133)).

A very difficult and interesting (but somewhat language specific) variant of the
subtyping problem occurs IBIFFEL (and to a lesser extent in the arrayslava).

In this variant the type hierarchy is compounded by an interplay with genericity. For
example, if a double ended quewa)(ueue) is a subtype oQueue, then abQueue

of Rectangle is a subtype ®ueue of Polygon.

2. Single dispatchingMessage dispatchinggands at the heart of object-oriented (OO)
programs, being the only way objects communicate with each othdispatching
qgueryfinds the appropriate implementation of the message to be called, according
to the dynamic type of the message receiver.

Driesen and Klzle [48] found C++ programs spend a median of 5.2% of their time
and 3.7% of their instructions in dispatch code. (This is only the direct cost; There
Is also the cost of lost optimizations opportunities, such as inlining.) Furthermore, it
Is customary to see dynamically typed languages spend more than 20% of their time

11

dispatching messages [130]. The dispatching problem has been studied extensively
(see e.g., [31, 37,44-50, 78, 86, 100, 102, 118, 130-132, 135]), the main objective
functions being the space requirement and dispatching time.

3. Multiple dispatching In single dispatching, the method to invoke depends only on
the type of a single argument, namely, the receiver. Sometimes it is necessary to
dispatch over several arguments, which is then catialtiple dispatching

For example, on the right of Figure 1.1, we see a hierarchy of rendering devices,
such as &creen andPSPrinter. A shape can be drawn onto any rendering device,
and the appropriate drawing method will be determined by the dynamic types of
boththe shape and the device. The search can be manually carried out on standard
OO languages by means of the tedidosible dispatchingattern. A more effective
alternative ismulti-methodsvhich are believed to be more expressive, natural and
readable thamono-methods

Multi-methods are found in many new generation OO languages incl&darg99],
PoLYGLOT [2], CLOS[15], CoMMONLoOPS[16], CECIL [26] andDYLAN [120].

The main reason this expressive lingual construct did not find its way into main-
stream OO languages is that solving the multiple dispatching problem is (still)
believed to be extremely space- and time-intensive, even though the OO research
community devoted much effort to find an efficient implementation of multiple dis-
patching [5,27,28,51,52,61,77,87,112].

4. Object layout Type conformance forces us to make the layout of a type compatible
with that of its supertypes. If atype can have several direct supertypes, then a layout
enabling direct field access may not exist. The challenge is in improving the state
of the art [53,68,101,113] in layout schemes which optimize both field access time
and objects’ memory footprint.

The research domain is defined by these four key problems, with the following varia-
tions:

1. Single inheritance vs. Multiple inheritanceln a single inheritance hierarchy each
type has at most one direct supertype, which means that the hierarchy takes a tree or
forest topology, as BMALLTALK , OBJECTIVE-C [36], and other OO languages.
The hierarchy of Figure 1.1 is an example of a single inheritance hierarchy. Algo-
rithms in the single inheritance setting tend to be more efficient than the general
case of multiple inheritance. Some OO languages fall in between these two vari-
ations. For exampleJava has a multiple inheritancgype hierarchy, but a single
inheritanceclasshierarchy.

2. Incremental- vs. batch- algorithms We are also interested incrementalalgo-
rithms where the hierarchy evolves at runtime. The most important kind of change
is the addition of types at the bottom of hierarchy, also catlgdamic loading
(This is the case idavA, where types may be added as leaves at run time.) Previ-
ous research explored addition of methods to existing nodes, as well as deletion of
types and other modifications. We are in a searchrtdy incrementaklgorithms,

l.e., algorithms whose total resource consumption in processipglate operations

12

CHAPTER 1. INTRODUCTION

is the same as the bdsatchalgorithms for processing theseupdates submitted
together.

Statically- vs. dynamically typed languagesStatically typed languages such as
EIFFEL and C++ may provide (partial) type information. The challenge is in uti-
lizing this information at runtime. Conversely, it is often more difficult to find
algorithms for dynamically typed languages (sometimes caljedmic-typing

Outline This thesis is organized as follows. Chapter 2 summarizes the contributions
of our five papers. These papers are then included as Chapters 3—7, each of which is a
self-contained unit and can be read by itself:

a & 0 NP

Chapter 3 describes an efficient algorithm for subtyping test.

A space-efficient dispatching technique is presented in Chapter 4.

An incremental, constant time, dispatching technique is the subject of Chapter 5.
Chapter 6 includes a novel object layout scheme.

The penultimate Chapter 7 presents a surprising application of our dispatching tech-
niques in solving the problem of isomorphism of simple types.

Finally, conclusions and directions for future research are given in Chapter 8.

Chapter 2

Contributions

The algorithms which were developed in this thesispaeetical in the sense that we are
not only interested itheoretical complexitybut also in how these algorithms handle real
data. Therefore, one of our objectives was to colledai-seto evaluate the algorithms

for each of the four problems. The data-sets, drawn from ten different programming
languages, have now become a de facto standard benchmark.

Forty-four hierarchies were assembled from the following sources:

1.

The five multiple inheritance hierarchies (IDL, Laure, JDK 1.1, Ed, Eiffel4) used
by Eckel and Gil [53] in their benchmark of object layout techniques.

. The Flavors hierarchy, representing tinelti-inheritance coreof the Flavors lan-

guage [98], used by Pugh and Weddell [113, Fig. 5] in their benchmark of object
layout techniques.

. Three newer versions of théwva runtime environment (JDK 1.18, JDK 1.22,

JDK 1.30).

The four hierarchies (Self, Unidraw, LOV, Geode) used in benchmark of row-
displacement in multiple inheritance hierarchies [47].

. The eight hierarchies (Visualworks1, Visualworks2, Digitalk2, Digitalk3, NextStep,

ET++, IBM Smalltalk 2, VisualAge 2) used for benchmarking row-displacement
and compact-dispatch-tables [132] in single inheritance hierarchies.

. The ensemble of seveinvA hierarchies (Corba, HotJava, IBM SF IBM XML,

Orbacus, Orbacus Test, Orbix) used in the definition of the “common program-
ming practice” [30], augmented by version 1.3.1 of the Java Development Kit
(JDK 1.3.1). Each of these eight hierarchies, was also used both for benchmark-
ing multiple inheritance dispatching algorithms and, after pruning interfaces, for
benchmarking single inheritance dispatching algorithms.

. The two CecIL [26] and DYLAN [120] hierarchies used in all benchmarking of

multiple dispatching algorithms [51,52,77,112] contributed by Eric Dujardin.

We used these hierarchies for benchmarking single-dispatch algorithms, by project-
ing each multi-method on each of its arguments. (The details are in Section 4.7.)

13

14 CHAPTER 2. CONTRIBUTIONS

8. A collection of five other multiple dispatching hierarchies contributed by Wade
Holst: Cecil- and Cecil2 are two older versions of t6eciL run time library.
Vortex3 is aCEciL compiler written inCeciL, while Vor3 is an old version of this
compiler. Harlequin is a commercial implementatiorDofLAN including its GUI
library.

Table 2.1 shows the number of typesmessages:, and method implementatioris
of the 44 hierarchies used in our data-set. The three blocks in the table correspond to
single inheritance-, multiple inheritance-, and multiple dispatch- hierarchies. The next
column shows that the hierarchies were drawn from ten different OO languages. We see
that the hierarchies span a range of sizes, from about a hundred types up to almost 9,000
types. The number of messagess slightly higher than the number of types, and each
message has around five method implementations on average.

We used the following three metrics for evaluating our algorithms: (i) space, (ii) query
time, and (iii) the time for creating the encoding. All experiments were run on a Pentium
[1l, 900Mhz, the IBM T22 laptop type 2647-4EG, equipped with 256MB internal memory
and running a Windows 2000 operating system.

The publication arising from this thesis are as follows:

Chapter 3 Efficient Subtyping Tests with PQ-Encod[a86], in OOPSLA01 conference
and accepted to the TOPLAS journal [70].

In this paper we presented a new subtyping tests scheme named PQ-Encoding
(PQE). The median improvementspacewith the next best algorithm, NHE [90],

Is by 37%, while the average improvement is 50%. In addition, BQiyping-test
timeis constant using only two comparisons, whereas NHE, which is a bit-vector
encoding, is non-constant. Theeation timeof PQE is always less than half a
millisecond per type.

PQE is called aftePQ-trees a data structure previously used in graph theory for
finding the orderings that satisfy a collection of constraints. The main reason that
our algorithm gives such good results is that PQ-trees use only linear time to pro-
cess a potentially exponential number of permutation. In a sense, our algorithm
chooses an ordering of the types of the hierarchy which satisfies many conflicting
constraints. The failing constraints are then collected together and the algorithm
tries to find another ordering for as many of these as possible. The process is re-
peated until all such constraints are satisfied at least in one ordering.

Chapter 4 Fast Algorithm for Creating Space Efficient Dispatching Tables with Applica-
tion to Multi-Dispatching137], in OOPSLA02 conference.

In this paper we presented thgoe slicing(TS) technique for dispatching (and sub-
typing tests). The average improvemenspaceof TS over row-displacement [45,

47] (considered the best for multiple inheritance hierarchies) is by a factor of 4.6,
while the median improvement is by a factor of 2.6. In one hierarchy row-displacement
uses 1.24MB while TS uses only 40KB! The average improvemesreiation time

Is by a factor of 37.4; in the toughest hierarchy the creation time of TS is 4.8 micro-
seconds per method implementation. The cost is irdtheatching timgwhich is

15

Language Hierarchy n m l
SMALLTALK Visualworks1 7741 1,170 4,624
SMALLTALK Visualworks?2 1,956| 3,196| 13,581
SMALLTALK Digitalk2 535 962 3,330
SMALLTALK Digitalk3 1,357 | 2,402 9,444
SMALLTALK IBM Smalltalk 2 2,320| 4,335| 16,288
I SMALLTALK VisualAge 2 3,241| 6,529| 26,205
= OBJECTIVE-C | NextStep 311 499 2,115
o | C++ ET++ 371 296 1,413
3 | Java SI: JDK 1.3.1 6,681| 4,392| 23,815
‘;_'%. Java Sl: Corba 1,329 222 2,585
§ Java Sl: HotJava 644 690 | 2,908
© | JAVA Sl: IBM SF 6,626 | 11,664| 88,280
Java Sl: IBM XML 107 131 587
JAVA SI: Orbacus 1,053 980 3,821
JAVA Sl: Orbacus Test 579 368 2,387
JAava SlI: Orbix 1,278 535 2,900
SELF Self 1,802| 2,459| 21,753
C++ Unidraw 614 360 2,331
EIFFEL LOV 436 663 2,840
EIFFEL Geode 1,318| 1,413 9,515
Java MI: JDK 1.3.1 7,401| 5,724| 28,683
Java MI: Corba 1,699 396 3,201
Java MI: HotJava 736 829 3,397
JAavA MI: IBM SF 8,793 | 14,575| 116,152
E Java MI: IBM XML 145 271 945
S | JAvA MI: Orbacus 1,379| 1,261 4,996
g JAVA MI: Orbacus Test 689 379| 2,751
2 | Java MI: Orbix 2,716 786 3,704
§' Java JDK 1.18 1,704 - -
§ Java JDK 1.22 4,339 - -
JAVA JDK 1.30 5,438 - -
JAavA JDK 1.1 226 - -
FLAVORS Flavors 67 - -
C++ IDL 67 - -
LAURE Laure 295 - -
EIFFEL Eiffel4 1,999 - -
EIFFEL Ed 434 - -
= | DYLAN Harlequin 666 229 1,016
S | DYLAN Dylan 925 428 | 1,783
S| CeciL Cecil 932 | 1,009 4,208
(70,- CEcCIL Cecil- 473 592 2,359
3 | CeCIL Cecil2 472 131 562
S | CeciL \Vor3 1,660/ 328| 1,864
2 | CeEcIL \ortex3 1,954| 476| 2,496
Total 78,541| 70,680 418,839

Table 2.1: Number of types, messages:, and method implementatiorfs of the 44
hierarchies used in our data-set

16 CHAPTER 2. CONTRIBUTIONS

no longer constant, bimgarithmicin the number of different method implementa-
tions. In our data-set, dispatching uses one indirect branch and, on average, only 2.5
binary branches.

TS generalizes an existing dispatching technique for single inheritance hierarchies [60,
100] to also handle multiple inheritance hierarchies. This generalization comes
with an increase to the space requirement by a small facter ©his factor can be
thought of as a metric of the complexity of the topology of the inheritance hierar-
chy. Surprisingly the same multiple inheritance complexity fagt@ also used in

our constant-time dispatching technique (Chapter 5).

We also described aincrementalsubtyping test scheme which is based on theo-
retical algorithms for range-minima and maintaining order in a list. In the worst
case hierarchy, the average time for inserting a new type is as little as 16 micro-
seconds. Theubtyping-test times a small constant and tlspace requirementre
favorable: always better than the PE scheme [133], and worse than NHE [90] by a
median factor of 2.8.

Finally, the paper also has an application to the more general problem of multi-
dispatching. The best practical techniques for multiple dispatching known today
areCompressed N-dimensional Tab[€NT) [5, 52, 87] andSingle-Receiver Pro-
jections(SRP) [77]. Both techniques begin with the sameno-dispatch stagén

which ¢ independent single-dispatch queries are executed for a multi-method of ar-
ity c. The results of these queries are then used ingb@ution stagevhich is tech-

nigue specific. The mono-dispatch stage in SRP or CNT is currently carried out us-
ing either the technique aklector coloring44, 118] or row-displacement [45, 47]

for single dispatching. We showed that, in practice, the space requirements of the
mono-dispatch stage dominates those of the resolution stage (especially in SRP).
Therefore, our TS scheme for single dispatching can significantly reduce the space
requirements of multiple dispatching.

Chapter 5 Incremental algorithms for dispatching in dynamically typed langu§tyg8],
in POPL'03 conference.

Previous theoretical algorithms tend to be impractical due to their implementation
complexity and large hidden constant. In contrast, successful practical heuristics,
including Vitek and Horspool'sompact dispatch tabledCT) [132] designed for
dynamically typed languages, lack theoretical support. In subjecting CT to theoret-
ical analysis, we are not only able to improve and generalize it, but also provide the
first non-trivial bounds on the performance of such a heuristic.

Letn, m, ¢ denote the total number of types, messages, and different method imple-
mentations, respectively. Then, the dispatching matrix, whose size:ijxan be
compressed by a factor of at mest (nm)/¢. Our main variant to CT achieves a
compression factor of /.. More generally, we describe a sequence of algorithms
CTy, CT,, CT;s, ..., where CT usesd memory dereferencing operations during
dispatch while achieving compression by a factor of (at Ie?ét)l/d. This tradeoff
between dispatching time and space requirements represents the first bounds on the
compression ratio of constant-time dispatching algorithms.

17

Extending these algorithms to a multiple inheritance setting increases the space by
a factor of(2x)'~'/?, wherex is the same complexity factor of hierarchies used in
our logarithmic dispatching scheme (Chapter 4).

The most important generalization is merementalariant of CT; for a single in-
heritance setting. This variant uses at most twice the space ofadd its time of
inserting a new type into the hierarchy is optimal. We therefore obtain algorithms
for efficient management of dispatching in dynamic-typing, dynamic-loading lan-
guages, such aSMALLTALK and evenJavA’s invokeinterface byte-code
instruction.

In our dispatching data-set, thereation timeof CT, is 6.7 micro-seconds per
method implementation. The space requirements of the CT schemes are favor-
able: row-displacement improves, on average, upon IT179% (CT by 41%,

CT,4 by 12%, and CT by 3%). Even though it seems that row-displacement and
CT; gives similar compression rates, in one hierarchy @iiproves upon row-
displacement by a factor of 1,100%, whereas row-displacement improves ugon CT
by at most 91%. We also note that row-displacement is not suited for dynamic-
typing, dynamic-loading languages, and amending row-displacement for dynamic-
typing results in doubling its space requirements.

Chapter 6 Two-Dimensional Bi-Directional Object Layo[i39], in ECOOP’03 confer-
ence.

C++ object layout schemes rely on (sometimes numerous) compiler generated fields.
In this paper we describe a two-dimensional bi-directional object layout scheme.
Our scheme is space optimal, i.e., objects are contiguous, and contaompiler
generated fieldsther than a single type identifier. As in C++ and other multiple
inheritance languages such as Cecil and Dylan, our scheme sometimes requires an
extra level of indirection to access some of the fields. Using the object-layout data
set, we show that our scheme improves field access efficiency over standard imple-
mentations, and competes favorably with (the non-space optimal) highly optimized
C++ specific implementations. However, our scheme relies on whole-program anal-
ysis, which requires only 10 micro-seconds per type, even in very large hierarchies.

After carrying out our research on two-dimensional bi-directional layout, we learnt
that similar results were independently obtained by Pugh and Weddell and described
in a 1993 technical report [114]. Their work suggests a similar layout algorithm,
using fields instead of types, and includes several theoretical bounds on complexity.
Our work takes a more empirical slant. We are now in the process of merging these
independent research efforts and making a unified journal submission.

Chapter 7 Efficient algorithms for isomorphisms of simple tyfi#0], in POPL'03 con-
ference and accepted to a special issue on type isomorphism in the journal “Mathe-
matical Structures in Computer Science” (MSCS) [69].

Surprisingly the techniques developed in our two dispatching papers (Chapters 4-5)
are not limited to the OO arena. Tfiest order isomorphism problens to decide
whether two non-recursive types using product- and function-type constructors, are
iIsomorphic under the axioms of commutative and associative products, and curry-
ing and distributivity of functions over products. We show that this problem can be

18

CHAPTER 2. CONTRIBUTIONS

solved inO(nlog®n) time andO(n) space, where is the input size. This result
improves upon thé(n?logn) time andO(n?) space bounds of the best previous
algorithm. We also describe an(n) time algorithm for thdinear isomorphism
problem which does not include the distributive axiom, thereby improving upon
the O(nlogn) time of the best previous algorithm for this problem.

We now hint on the relationship between type isomorphism and OO implementa-
tion. Note first that when substituting function-types for exponentiation and product-
types for multiplication, the first order isomorphism problem becomes an instance
of the problem of proving aalgebraic equatione.g., whether (2.1) holds

(2" (" 2))" = ()7 e (2.1)

Consider now the left-hand side of (2.1), i.e., the expres@én (yb . zd)c)“. Stan-

dard algebraic rules show that the tedrappears in the exponent of variablesy,

andz. Similarly, termc will appear in the exponent of variablgsand z, but not

of z. We can therefore describe the effect of each of the terms in the exponentin a
tree structure as depicted in Figure 2.1.

Figure 2.1: The tree structure of the left-hand side of (2.1)

We see in the figure that the leafinherits” the terms anda, while leaf: “inher-

its” the termsd, ¢ anda. A similar process oinheritanceof method implementa-
tions occurs in the dispatching problem. Therefore we could successfully borrow
dispatching techniques for single inheritance hierarchies such as switching to a dual
representation, efficient handling of intervals and segments, and incremental over-
laying of segment-partitionings.

Chapter 3

Efficient Subtyping Tests with
PQ-Encoding

Chapter Summary

Given a type hierarchy, aubtyping tesis to determine whether one type is a direct or indirect
descendant of another type. Such tests are a frequent operation during the execution of object-
oriented programs. The implementation challenge is in encoding the hierarchy in a small space,
while simultaneously making sure that the tests have efficient implementation. We present a new
scheme for encoding multiple and single inheritance hierarchies, which, in the standard bench-
mark hierarchies, reduces the footprint of all previously published schemes. Our scheme is called
PQ-encodingPQE) afterPQ-trees a data structure previously used in graph theory for finding

the orderings that satisfy a collection of constraints. In particular, we show that in the traditional
object layout model, the extra memory requirements for single inheritance hierarchies is zero. In
the PQE subtyping tests are constant time, and use only two comparisons. The encoding creation
time of PQE also compares favorably with previous results. It is less than a second on all standard
benchmarks on a contemporary architecture, while the average time for processing a type is less
than one millisecond. Yet, PQE is not an incremental algorithm. Other than PQ-trees, PQE em-
ploys several novel optimization techniques. These techniques are applicable also in improving
the performance of other, previously published, encoding schemes.

One of the basic operations in the run time environment of object-oriented (OO) pro-
grams is asubtyping test Given an objecb and a typeb, a subtype test determines
whethera, the type ofo, is a subtype ob, i.e.,a is a direct or indirect descendant of
in the inheritance hierarchy. The subtyping tests (also knowtgpesinclusionests) we
refer to are carried out at runtime, and are distinct from static subtyping tests done by the
language type checker.

An OO programmer may apply a subtyping test explicitly using dedicated constructs
such aslavA’s [7] instanceof , andSMALLTALK s [71] isKindOf: method. In ad-
dition, several other language constructs are implemented using these tests. For example,
subtyping tests are implicit in the execution of type cast operations?e.gm,the EIFFEL
programming language [97] ardynamic _cast in C++ [124]. InJAavA for example,

19

20 CHAPTER 3. PQ-ENCODING

the lack of parametric polymorphism is a common source of such casts. When extracting
an element from a collection class, e.gvector , the type ofo is Object . Therefore,
it is typically necessary to castto the expected type.

Yet another construct which is implemented using subtyping tests is covariant over-
riding of arguments ifEIFFEL. The compiler is inclined to make subtyping tests in con-
junction with calls to methods that use this feature

Also, the covariant nature of array subtypingJavA renders subtyping tests neces-
sary in assignments to elements of arrays whose dynamic type is unknown. Consider for
example the following code fragment

void f(Object Xx[]) {
X[1] = new A();
}

It may be a bit surprising that the assignmenkfb] inf requires a subtyping test. To
understand why, suppose that functfomwas invoked with a value of typB[] (an array
of elements of typ®) as an actual argumert e.g.,

f(new B[3]);

This invocation is correct since tyf3] is a subtype oDbject[] (an array of objects).
However, the assignment

X[1] = new A();

is legal only if typeA is a subtype of typ®. Otherwise, the runtime environment raises
anArrayStoreException exception.

Finally, we note that subtyping tests may also be part of the implementation of ex-
ception handling inJava, C++, and other languages. The following code excerpt is an
example of d@ry block, followed by acatch clause and block.

ty {f0; ... }
catch (B b) {... }

Suppose that an objeetis throw nfrom thetry block, e.g., from within functior()

Then, the program should execute tach block, but only if typeB is a supertype of
the thrown object’s type. Thus, tloatch clause can be implemented with a subtyping
test. InJavA, the subtyping test is with respect to the dynamic type, athile in C++ it

is with respect to the static type of However, in both cases, this test must be carried out
at run-time.

Outline The remainder of this chapter is organized as follows. The subtyping test
problem is defined in Section 3.1. Some straightforward solutions for this problem are
described in Section 3.2. Section 3.3 makes some pertinent definitions. The data set of
the 13 hierarchies used in our benchmarking is presented in Section 3.4. A survey of prior
research is the subject of Section 3.5. This section also describsicihg technique of
partitioning a hierarchy for the purpose of subtyping tests. The technique is common to

lvarious mechanisms of static analysis have been proposed to eliminate this requirement, but none of
these have been implemented.

3.1. PROBLEM DEFINITION 21

many previous algorithms for the problem; it also stands as the basis of the PQE algorithm
which is described in Section 3.6. Section 3.7 presents our new optimization techniques,
improving instruction count, test time and encoding length. Section 3.8 presents the
results of running these algorithms on our benchmark. Finally, some open problems and
directions for future research are mentioned in Section 3.9. Section 3.10 demonstrates the
inner workings of the PQ-tree data structure.

3.1 Problem Definition

The problem we deal with is defined formally as follows. herarchyis a partially
ordered set7T,<) where7 is a set of types an& is a reflexive, transitive and anti-
symmetricsubtype relation If a,b are types, andi <b holds, we say that they are
comparable that a is a subtypeof b and thatb is a supertypeof a. Given a hierar-
chy (7, <), |7| = n, thesubtyping problens to build a data structure supporting queries
of the sorta < b. This data structure is called @amcodingof the hierarchy.

The subtyping problem has enjoyed considerable attention recently (see e.g., [1, 22,
25,34,58,59,62,74,75,84,90,110,115,127,133]), the challenge being in simultaneously
optimizing its four complexity measures:

1. Space.Encoding methods associate certain data with each type. We measure the
average number of bits per type, also calledgheoding length

Note that we do not include in the measure the space consumed by each object.
Although the space overhead per object depends on the object layout model, it is
usually assumed that each object includes a pointer to a type information record.
Optimizing object space is beyond the scope of this thesis.

2. Instruction count.This is the number of machine instructions in thet codeon a
certain hardware architecture. There are indications [133] that the space consumed
by the test code, which can appear many times in a program, can dominate the en-
coding length. An encoding is said to baiforn? if there exists an implementation
of the test code in which the instruction count does not depend on the size of the
hierarchy. Only uniform encodings will interest us.

3. Test time.The time complexity of the test code is of major interest. Since the test
code might contain loops, the time complexity may not be constant even in uniform
encodings. Our main concern here are constant time encodings (which are always
uniform). To improve timing performance, loops of non-constant time encodings
may be unrolled, giving rise to non-constant instruction count, without violating the
uniformity condition. (Bit-vector encoding, presented in Section 3.5, is an example
of a uniform encoding which is non-constant time.)

In explicit subtyping tests and in type casts, the testb is not entirely arbitrarily
in the sense that the supertypes known at compile time. The test code can then

2The term is borrowed from circuit complexity. A family of circuits for the size dependent incarnations
of a certain problem is called uniform, if this family can be generated by a single Turing machine.

22 CHAPTER 3. PQ-ENCODING

be specializedby precomputing values which depend onlytcaind emitting them
as part of the test code. Specialization thus benefits both instruction count and test
time, and may even reduce the encoding length.

4. Encoding creation time.Another important complexity measure is the time for
generating the actual encoding, which can be large.

It is essential that a compiler will be able to finish its computation in a reasonable
time. In many cases, this is not possible. For example, the problem of finding
an optimal bit-vector encoding was proved to be intractable [75]. Heuristics of bit

vector encoding [25, 62, 74, 84, 90, 115] offer a tradeoff between creation time and
encoding length.

Most of the previous work assumed, as we shall do here, that the entire type hier-
archy is supplied at compile timelava, E [76] and many other languages allow
types to be dynamically loaded at runtime. If the encoding creation time is suffi-
ciently small, then the encoding can lmeomputedvhenever such a load occurs.

An active research topic is to find truly incremental algorithms, which can quickly
updatethe encoding.

3.2 Straightforward Solutions

The most obvious (uniform) representation asirgary matrixgives constant subtyping
tests, but the encoding lengthris This method is useful for small hierarchies and is used
e.g., for encoding théava interfaceshierarchy [88] in CACAO 64-bit JIT compiler [72,

89]. The quadratic space becomes very noticeable in large hierarchies. For example, one
of the hierarchies in our data set has 5500 types which give rise to 3.8MB binary matrix.
The binary matrix encoding can be (non-uniformly) implemented using a zero encoding
length andO(n) instruction count: relying on specialization, the test code:ferb then

checks whethet is among the possiblg(n) descendants df. More generally, a non-
uniform encoding is tantamount to representing the encoding data structure as part of the
test code, and therefore will not interest us.

The observation that stands behind the work on subtyping tests is that the binary ma-
trix representation is in practice very sparse, and therefore susceptible to massive opti-
mization. Nevertheless, the number of partially ordered gmiset$ with n elements
is 29("*) so the representation of some posets requies) bits’. Thus, the encoding
length is€2(n). In other words, for arbitrary hierarchies the performance of the binary
matrix implementation is asymptotically optimal.

Let the relation<4 be thetransitive reductiornof <, i.e., a minimal relation whose
transitive closuras <. More precisely, relatior, is defined by the condition that<4 b
if and only if a < b, a # b, and there is ne € 7 such that <c=<b,a # ¢ # b.

Figure 3.1 depicts a directed acyclic graph (DAG) representation of a hierarchy which
will serve as the running example of this chapter.

3The number of bipartite graphs withelements is cIearI§29<”2>, and every bipartite graph is also a
poset.

3.2. STRAIGHTFORWARD SOLUTIONS 23

Figure 3.1: A small example of a multiple subtyping hierarchy

We employ the usual convention that edges are directed from the subtype to the su-
pertype, and that types drawn higher in the diagram are considered greater in the subtype
relationship. Thus, the figure specifies (for example) that; C andH < A. In total in
this hierarchyp =9, |<q4| = 11, and|=<| = 27.

Another obvious solution to the subtyping problenb&G-encodingwhich is based
on the DAG defined by types as nodes and edges fram In this encoding, a list of
parents is stored with each type, resulting in total spa¢e gfflog] bits* in an idealized
bit-efficient representation. The DAG encoding length is therefore

=
Izl [logn].

The average number of parenisiy|/n, tends to be small; We will see that it is less
than 2 in all the standard benchmark hierarchies. Unfortunately, a subtyping test in DAG-
encoding isD(n) time.

TheClosure-encoding@resents another obvious tradeoff between space and test time.
In this encoding, with each type we store the listadif of its ancestors using a simple
sorted array representation. A subtyping test is then implemented using a binary search
in O(logn) time. Since each entry in this array requifész n| bits, the encoding length
is

- [logn].

Theoretically superior representations of this list incl@éast trieg134], which achieve
deterministicO(y/log n) time, or the randomized stratified trees (also cailtad Emde

Boas data structune[128, 129], which achiev& (loglogn) time. Another alternative

are perfect hash tables [64] which gigg1) lookup time. In moderately sized tables

we expect the simple binary search algorithm to outperform the asymptotically better
competitors. Also, these sophisticated data structures come at a cost of an increase of the
encoding length by factors which can be prohibitively large.

The binary matrix, DAG-, and Closure-encoding are not very appealing techniques.
Previous contributions in this field included many sophisticated encoding schemes which
come close to DAG-encoding in space, while keeping the test time constant or “almost”
constant.

“Here and henceforth, all logarithms are based two.

24 CHAPTER 3. PQ-ENCODING

An important special case of the problem is single inheritance, which occurs when the
hierarchy DAG takes a tree or forest topology as mandated by the rules of languages such
asSMALLTALK [71] andOBJECTIVE-C [36]. The general case of multiple inheritance is
more difficult, and will be our main concern here.

3.3 Definitions

Given a typen € 7, we define the following setstescendants(a) andancestors(a) (the
set of subtypes and supertypesipfespectively), as well ashildren(a) andparents(a)
(the set oimmediatesubtypes and supertypesafrespectively). More precisely,

descendants(a) ={be T |b=<a}

ancestors(a) = {be€ T | a=b}
children(a) ={b €7 | b=<qa}
(a) ={beT |a=qb}

(3.1)

parents(a

Also for a € 7, the valuelevel(a) is the length in nodes of the longest directed
(upgoing) path starting from. The heightof the hierarchy is the maximal level among
alltypes in7 . Thek'-levelof the hierarchy is the set of all typesor whichlevel(a) = k.

level(a) = 1 + max {level(b) | b € parents(a)}

height(7) = max {level(a) | a € T} (3.2)

(In the above definition divel(a), the maximum over an empty set is defined as zero. In
other words, nodes without any parents are defined as being in level 1.)

In Figure 3.1 we have that

descendants(A) = {A,C,D,F, G, H}
ancestors(F) = {A,B,C,F}
children(A) = {C, D}
parents(F) = {C}
level(F) = 3

This hierarchy has three levels: with two, three, and four types, respectively.
The following definitions will also become pertinent:

roots(7) = {a € T | parents(a) = 0}

3.3
leaves(7) = {a € T | children(a) = 0} (33)
In Figure 3.1 we have that

roots(7) = {A,B}
leaves(7') = {F, G, H,1}.

3.4. DATA SET 25

3.4 Data Set

To benchmark the algorithms, we started from the 9 multiple inheritance hierarchies used
by Eckel and Gil [53] in their benchmark of object layout techniques. ThreeJaew
hierarchies (newer versions of tdeva runtime environment), as well as the Cecil com-
piler hierarchy [26] were added to this benchmark. In total, our data set represents an
array of large hierarchies drawn from six different OO languages. In particular, the
set includes all multiple inheritance hierarchies used in previous studies of encoding
schemes [74, 90, 133]. Eckel and Gil [53] gave a detailed description of these hierar-
chies. One of their findings is that many topological properties of typical hierarchies are
similar to those of balanced trees. This makes it possible to find more efficient encodings
for hierarchies used in practice. Comparison of different encoding schemes is done over
these 13 hierarchies which have now become a de facto standard benchmark.

The hierarchies in the data set are enumerated in ascending order of size in Table 3.1.
We see that the number of types ranges between 66 and 5,438. In total the 13 hierarchies
represent over 19,500 types.

Hierarchy| n |<al/n [I=]/n|a®| 8] ~¢] |T'|/n
IDL 66 098] 3.83| 8| 6| 7| 15%
JDK 1.1 225 1.04| 317 7| 6| 8| 15%
Laure 295 1.07| 8.13|16|11| 9| 18%
Ed 434 166 7.99/23/10 9| 61%
LOV 436 171 85024, 9| 9| 62%
Unidraw 613 0.78| 3.02| 9| 8|10 4%
Cecll 932 1.21| 6.47(23/12|10| 33%

Geode 1,318 1.89| 13.99/5013|11| 75%
JDK 1.18 | 1,704 1.10| 4.35|16| 9|11 18%
Self 1,801 1.02| 29.89|40|16| 11 9%
Eiffel4 1,999 1.28| 8.78/39/17|11| 46%
JDK 1.22 | 4,339 1.19| 43717, 9|13, 22%
JDK 1.30 | 5,438 1.17| 437,19 9|13, 21%

gmax{|ancestors(a)| | a € T}
Pheight
“[log n]

Table 3.1: Topological properties of hierarchies in the data set

Table 3.1 gives also some of the topological properties of the hierarchies. Examining
the third column in the table we see that the average number of paregits;, is always
less than 2. On the other hand, the average number of ancgstgfs, can be large.
In the Self hierarchy a type has in average almost 30 ancestors! The maximal number
of ancestors plays an important factor in the complexity of some of the algorithms. We
see that there exists a type in the Geode hierarchy which has 50 ancestors in total. In
comparing the height of the hierarchy wiiky n we see that the hierarchies are shallow;
their height is similar to that of a balanced binary tree.

We can learn a bit more on the topology of inheritance hierarchy by considering the

26 CHAPTER 3. PQ-ENCODING

set7’, which can be thought as timaultiple inheritance coref the hierarchy. Formally,

a type is in the core if it has a descendant with more than one parent. Conversely, the
set7 \ 7" is a collection of maximal subtrees discovered in a bottom-up traversal of the
hierarchy. It was previously noticed [133] that encoding is easier if the core is considered
first, and thebottom treeof 7 \ 7' are added to the encoding later. In Table 3.1 we see
that in most hierarchies the core is rather small, typically less than half the number of
types. Treating the core and the bottom trees separately will reduce the run time of our
encoding algorithm.

3.5 Previous Work

This section gives an overview of various encoding methods proposed in the literature.
We describe the data structure used in each such encoding, and how it is deciphered
to implement subtyping tests. Little if any attention is devoted to describing the actual
generation of the data structure and the theory behind it.

3.5.1 Encoding of Single Inheritance Hierarchies
Relative numbering

Perhaps the most elegant encoding algorithrrelative numbering119] (also called
Schubert's numberigwhich guarantees both optimal encoding lengthlof; n] bits

and constant time subtyping tests. However, these achievements are only possible in a
single inheritance hierarchy. For a type 7, letr, denote its ordinal (i.e., an integer in

the rangel, ..., n) in a postorder traversal af. A basic property of postorder traversal

is that

rp, = max{r, | a < b}. (3.4)
Let [, be defined by
I, = min{r, | a < b}. (3.5)

Combining (3.4) and (3.5) with the fact that in postorder traversal the descendants of any
type are assigned consecutively, we find thatb iff

b < 1o <y (3.6)
Thus, in relative numbering, each types encoded by an intervdl,, r,| as exemplified

by Figure 3.2.

In the figure we have (for example) thitscendants(D) = {D, H, 1}. Ther-descriptor
of each of these descendants, irg.= 8, ry, = 6 andr, = 7, fall within the intervall6, §]
associated with typb. No otherr-descriptor falls in this interval.

Recall that sincé is known at compile time, values which depend onlybozan be
precomputed. Henceforth, such values are marked by a “#” prefix. With this notation, we

3.5. PREVIOUS WORK 27

Legend

Figure 3.2: Relative numbering in a tree hierarchy

write (3.6) as
#ly < 1o < F#14. (3.7)

We note that#l, and #r, are compile-time constants and hence the test (3.7) can be
specialized by eliminating the memory fetch of these. In doing so, we find;tisanhot
part of the encoding, bringing down the encoding length of relative numberifigda].

Relative numbering is used in CACAO [72,89] to representitva class inheritance
hierarchy [88] (Recall that the binary matrix is used in CACAO for the interface hierar-
chy.) Range-compression [1], described below, is a generalization of relative numbering
for multiple inheritance.

Cohen’s encoding

A variant of Dijkstra’s displays [43] is Cohen’s encoding [29]. His encoding is yet another
example of an algorithm initially designed for single inheritance, and later generalized to
multiple inheritance. (The generalized algorithm, known as Packed Encoding [133], will
be described below.) Cohen’s encoding relies on hierarchies being relatively shallow, and
more so, on types having a small number of ancestors. As Table 3.1 shows, this is indeed
the case in some of our multiple inheritance hierarchies. A &yigassociated an array

of size

level(a) < |ancestors(a)|
(in single inheritancdgvel(a) = |ancestors(a)l|), with entries for each
b € ancestors(a).

Specifically, each typé, b= a, is stored in locationevel(b) in arrayr,. Thus, the test
whetherb -« is carried out by checking whethéiindeed occurs in locatiolevel(b) of
arrayr,. The encoding is optimized by storing rioitself in this location, but rather an
id, which is unique among all types in its level.

Since different levels come in different sizes, soiaie may require fewer bits than
others. Typically, and is stored in either a single byte or in a 16 bits word. It is even
possible to pack several’s into a single byte. As a result of this compression the en-
tries ofr,, which are not of equal size, cannot be referenced using ordinary array access
operations.

28 CHAPTER 3. PQ-ENCODING

We say that is apseudo-arrayand use the notatior@ i instead ofr[:] for denoting
pseudo-array access. Pseudo-arrays are only used if theiirelakvays known at com-
pile time. Therefore, a pseudo-array access is the same as record member selection, and
is no slower than a non-pseudo array access. (If several pseudo-array entries are packed
together in a single byte, then the required shift and mask operations may slow down this
operation in comparison to normal array accesses.)

Cohen’s encoding stores with each typis level,l, = level(a), its uniqueid within
this levelid,, as well as the pseudo-array, such that for each € ancestors(a),

T'a@ lb = #ldb . (38)

The testa <b is carried out by checking thdt > #1, and then that (3.8) holds. Note
that/, is known at compile time.

Figure 3.3: Cohen’s encoding of the tree hierarchy of Figure 3.2

Consider for example the 3-level tree hierarchy depicted in Figure 3.3. As shown in
the figure, each type has a (pseudo-) array with at most 3-identifiers. The pseudo array of
typeH in the 3¢ level has three entries; @ 1 = 1 since the ancestor &f at the ! level
is A, andid, = 1. Similarly, the ancestor at thé®level isD, id, = 3. The last entry of
this array stores thel of H.

Also observe that in the figure hoi’s are reused at different levels. For example,
for typesC andF which are at different levels we have thdf = id. = 2.

The array boundary cheék > #I[, in Cohen’s encoding is inelegant. We observe that
it can be eliminated at the price of allocating globally unidgdis. Then, it is possible to
concatenate the arrays, making sure that the largest array is at the end. Even if there is an
overflow in the array access|l;], the location found will not contaiitl,.

Jalapéo [4], the IBM implementation of thdavA virtual machine (JVM), uses Co-
hen’s algorithm for subtyping tests where the supertype is a class. The main reason is that
this encoding is incremental, whereas vanilla relative numbering is not.

3.5. PREVIOUS WORK 29

3.5.2 Encodings of Multiple Inheritance Hierarchies
Packed encoding

Cohen’s algorithm was generalized to the multiple inheritance setting by Vitek et al. [133]
into what is called®?acked Encodin@PE) andBit-Packed Encodin¢gBPE), which are both
constant-time methods. Cohen’s algorithm, PE, BPE and our algorithm share a common
theme: slicing, in which the set7 is partitioned into disjoinslices(sometimes called
buckets)ss, . .., Sy. For each slice; we store the entire information required to answer
queries of the soik < b, a € 7 andb € §;, i.e., queries in which the supertype is drawn
from S;. Typea has a pseudo-array, of lengthk, wherer,@ ¢ holds information for

slice S;. In essence, we store, in a very compressed format, the set of descendants of each
element inS;. The compression is possible since there is a great deal of sharing in the
descendants set of different members$pf

PE associates with each typec 7 a unique integeid, within its slices,, so thata
is identified by the paics,,id,). Also associated with is a byte array-,, such that for
all b € ancestors(a), indexs, storesid,, i.e.,

ralss) = #idy (3.9)

A necessary and sufficient condition o b to hold is then (3.9). It should be clear that

no two ancestors af can be on the same slice. Thus, the number of slices is at least the
size of the largest set of ancestors. Checking the fifth column of Table 3.1 we see that
some hierarchies require 40 slices or more.

Comparing (3.9) with (3.8), we see that slices play a role similar to that of levels in
Cohen’s algorithm. In fact, Cohen’s algorithm partitions the hierarchy liright(7")
anti-chains, while PE partitions the hierarchy into anti-chains where no two elements
in an anti-chain have a common descendant. Fall [58], who observed that this technique
might be used for subtyping tests, noted that itis NP-hard to find a minimal such partition,
and stopped short of finding a constant time subtyping test. The heuristic suggested by
Vitek et al. [133] along with the constant time subtype test made PE viable. Based on this
heuristic, Palacz and Vitek [110] recently gave an incremental implementation of PE.

Vitek, Horspool and Krall's PE algorithm constrains each slice to a maximum of 255
types, so thaid, can always be represented by a single byte. The encoding length is
then8k, wherek is the number of slices. The inventors of PE observedihatusually
the maximal number of ancestors unless multiple inheritance is heavily used. Thus, even
though the general problem is intractable, their heuristics often finds an optimal solution.

Consider Figure 3.4 for an example of PE representation of the hierarchy of Figure 3.1.
The types of the hierarchy are partitioned into five different slices= {A}, 5S> =
{B}, S3 = {D}, Sy = {C,E}, andS5 = {F, G, H, I}. This is the smallest possible number
of slices, since typ& (for example) has five ancestors.

The only difference between BPE and PE is that BPE permits two slices or more to be
represented within a single byte. Thus, in BRHs a pseudo-array, and the array access

5An anti-chainis a set of types where no two types are comparable. Clearly, each level is an anti-chain.

30 CHAPTER 3. PQ-ENCODING

Figure 3.4: PE representation of the hierarchy of Figure 3.1

in (3.9) becomes a pseudo-array access:
Ta@ Sp = # ldb . (310)

Starting from Figure 3.4 we can represent sliSgsS; andS; using a single bits, using
two bits, andSs in three bits, for a total of seven bits, which can fit into a single byte.

Bit-vector encoding

One of the most explored directions in prior arbis-vector encoding25, 62,74, 75, 84,
90, 115]. In this scheme, each typés encoded as a vectoec, of 5 bits. If vec,[i] = 1
then we say that hasgenei. Let ¢(a) be the set of genes af Relationa <b holds
iff ¥(a) 2 ¢(b), which can be easily checked by masking, againstvec,, specifically,
applying the test:

vec, and vec, = vecy, . (3.11)

Figure 3.5 gives an example of a bit-vector encoding of the hierarchy of Figure 3.1
which uses 6 genes.

Legend

Vec

111001

Figure 3.5: Bit-vector encoding of the hierarchy of Figure 3.1. (We only write the genes
a type adds to its parents.)

The set of genes of type (for example) isp(D) = {1, 2,4}, and thusrec, = 110100.
The genes of the ancestors of typere contained i(D), and every other type has at
least one gene not (D).

3.5. PREVIOUS WORK 31

Bit-vector encoding effectively embeds the hierarchy in the lattice of subsets of the
set{l,...,3}. Itis always possible to do so by settisg= n and in lettingvec, be
the row of the binary matrix which correspondsatoA simple counting argument shows
that 3 must depend on the size of the hierarchy. Hence, bit-vector encoding is non-
constant time, but it is uniform. For efficiency reasons, the implicit loop in (3.11) can be
unrolled, giving rise to a non-constant instruction count.

The challenge is in finding the minimg&lfor which such an embedding of the hierar-
chy in a lattice is possible. Although the problem is NP-hard [75], several good heuristics
were proposed, including Kaci et al. [84] work, CasedLsmpact Hierarchical Encod-
ing [25], later improved by Habib et al. [74]. Currentear Optimal Hierarchical En-
coding (NHE), due to Krall et al. [90], is the best general bit vector encoding. Better
results can be obtained for the special case of single inheritandé&chgtomic encod-
ing [115] and itspolychotomic encodingeneralization [62].

Range compression

It is only natural to ask then whether it is possible to pronzigestant encoding length
while maintaining uniformity and “almost constant” time. An affirmative answer to this
question was given by Agrawal et al. [1] in theange-compressioencoding which
generalizes relative numbering. Range compression encodes eaélatyae integeid,,

with its ordinal in a postorder scan of a certain spanning forest of the hierarchy. Then, the
set®(b) of id’s of the descendants o6f

®(b) = {id, | a € descendants(b)}, (3.12)
Is represented by an array of consecutive disjoint intervals

@ 1,r,@ 1], [[,@ 2,r,@ 2], ..., [[,@ (), r,@ v(b)].
Thus,a < b iff

H1,@ < id, < #r,@ i (3.13)

holds forsomei, 1 < i < ~(b). In single inheritance, all descendants of a type are as-
signed consecutive numbering in a postorder traversal, and therefore the set (3.12) can be
represented using a single interval. The encoding then degenerates to relative numbering.

Figure 3.6 gives a range-compression encoding of the hierarchy of Figure 3.1. We
have for example

(b(B) = {17 27 37 57 67 77 87 9}7

which can be represented as two interjalsg}] and|[5,9]. Thus,lg = (1,5),7s = (3,9)
andvy(B) = 2.

Examining (3.13) we see that onily, has to be stored for a type since everything
else is specialized into the subtyping test site. The specialization reduces the encoding
length to[log n|, but at a price of increasing the instruction count from constantn
which can be in the order of. In all of our hierarchies however, the averagey¢b)

32 CHAPTER 3. PQ-ENCODING

Legend

[l1,r1],[12,r2],...

Figure 3.6: Range-compression encoding of the hierarchy of Figure 3.1. (Edges of the
spanning forest are in bold.)

over allb € 7 was always less than 2. The maximab) = 55 was found in the Geode
hierarchy.

The usual straightforward implementation of range compression reqlife®))
time. If v(b) is large then a binary search on (3.13) reduces the tim@e(tog~(b)).
Note that this faster implementation does nothing to improve the instruction count in the
specialized implementation which remaingy(b)).

Other non-constant encoding techniques were used in large data- and knowledge-
bases, e.g., modulation techniques [58,84], sparse terms encoding [59], and representation
using union of interval orders [22]. The common objective is a small average, rather than
worst-case, time for testing, which may be considered unsuitable for an implementation
of the runtime environment of OO languages.

3.6 PQ-Encoding

This section describes PQ-encoding (PQE), our new encoding scheme, which achieves
the smallest space requirements among all previously published encodings. In a nut-shell,
PQE combines the ideas @lative numberingvith slicing as used in PE and BPE.

The essence of relative numbering is in the (glolzaliisecutiveness propertye.,

the requirement that the descendants of any given type are numbered consecutively; this
property makes it possible to represent the entire set of descendants as a pair of two in-
tegers: the end points of the interval. In single inheritance, the consecutiveness property
is satisfied by the numbering of a simple postorder visit. For multiple inheritance hierar-
chies, itis only natural to try to generalize relative-numbering by replacing the postorder
visit by a DFS of the inheritance graph. Two issues must be addressed in order to make
such a generalization work.

1. The encoding must chose one DFS visit of the inheritance hierarchy from many
different such visits, which may lead &ssentiallydifferent orderings of the nodes.
(Note that different DFS visits of a single inheritance hierarchy give rise to essen-
tially the same relative numbering encoding.)

3.6. PQ-ENCODING 33

2. Ingeneral, it is not guaranteed that there exists any single numbering which satisfies
the consecutiveness property. Therefore, the generalization must handle hierarchies
in which the consecutiveness property cannot be satisfied.

As explained in the previous section, the range-compression technique of Agrawal et
al. [1] addresses these issues by applying a heuristic for choosing a DFS. Also, if this
heuristic fails, i.e., in case the set of descendants of a certain type does not fill up a single
range, then this set is represented as a collection of ranges.

PQE uses two techniques in the generalization of relative numbering:

1. Employing a sophisticated algorithmic tool, nam@&@-trees for efficiently con-
sidering together even an exponential number of orderings. In particular, if there
existsany orderingof the hierarchy which satisfies the global consecutiveness prop-
erty, then the PQ-trees technique is guaranteed to find of¢| i) time.

2. Using the slicing technique to make sure that subtyping tests require constant time,
even if no ordering which satisfies the consecutiveness property exists.

We first (Section 3.6.1) explain data structure used by the encoding and the imple-
mentation of constant time subtyping tests. Section 3.6.2 explains the slicing technique
in greater detail. In Section 3.6.3 we describe the PQ-trees data structure. Section 3.6.4
shows how it is used to find a PQ-encoding.

3.6.1 Subtyping Tests in the PQ-Encoding

The set of types is partitioned into disjoislices and each type has a distinct with
respect tceachof the slices. Specifically, let denote the number of slices. Then, for
each type three pieces of data are stored:

1. aninteger,, 1 < s, < k, which is the number of the slice to whiahbelongs,

2. a pseudo-arrayd, of lengthk, such thaid,@ i is theid of type a with respect to
sliced, 1 <id,@ ¢ < n and

3. anintervall,, r,], represented as a pair of integelrss [, < r, < n, which are the
smallest and the largest (with respect to slice,) of the descendants af

In total k£ + 3 integers are stored for each type. Our main effort, for which we will harness
PQ-trees, is to minimize the number of slices Fine tuning of the representation as
discussed below in Section 3.7 may make the encoding length les§tha®) [log n].

The selection ofd’s and intervals is such that subtyping tests can be made using two
comparisons. Specifically, =< b iff
#l, < id,Q s, < #1y. (3.14)

Thus, subtyping tests begins with the pseudo-array aédg8ss; which finds thed of a
with respect to the slice éf Then we check if thigl is in the rangél,,] of descendants
of b.

34 CHAPTER 3. PQ-ENCODING

Sinceb is known at compile time, testing (3.14) requires exactly the same number of
RISC instructions as relative numbering (3.7). Note that the two comparisons in (3.14)
are between integers of fixed size, which needs not to be longeidfan bits. In each
of the hierarchies in our data set, 16 bits comparisons are sufficient, and it is extremely
unlikely that hierarchies will ever contain more thatt types. In contrast, subtyping
tests in a bit vector encoding scheme may be implemented in only one comparison of bit
vectors, but since the length of these vectors is not fixed (e.g., 95 bits for Geode in the
NHE scheme), this comparison must be repeated several times.

Also note that the test (3.14) is similar to array bounds checking. Therefore, it may be
possible to optimize the implementation on an architecture with dedicated instructions for
this kind of check. Such architectures include the Intel 80186+ sdx@es)l mnemonic)
and the Motorola 680x0 series as well as Motorola 6830BZ mnemonic).

Palacz and Vitek [110] explain that for reasonably sized hierarchies, including all
hierarchies in standard benchmarks, it is possible to implement the check (3.14) using a
single jump instruction instead of two. We now give a slightly improved version of the
technique they describe. Consider the predicate

(71> y1) A (T2 > 12) (3.15)

wherex; andy;, « = 1,2 are 15-bit integers. Then we pagk andz, (respectively,
y1 andy,) together in a single 32-bit integer (respectivelyy). Letz = 2%z + x5,
andy = 2%y, + y, + M, whereM = 232 + 26, Then, the expression

(y—x) and M (3.16)

is zero if and only if (3.15) holds. Checking whether (3.16) is zero requires a subtraction,
a bit mask operation and a jump.

3.6.2 Slicing

The essence of slicing is that when the global consecutiveness property cannot be satisfied,
we maintain a weaker, local property. More specifically, given a flice 7, let o(S) C
©(7) be the set of sets of descendants of types in this slice, i.e.,

©(S) = {descendants(t) | t € S}.

Definition 3.1 A sliceS satisfies théocal consecutiveness propeityhere is an ordering
of 7 in which all members ofp(S) are consecutive.

A partitioning of 7 into slices which satisfies the local consecutiveness property always
exists, since this property trivially hold for singletons. The local consecutiveness property
makes it possible to represent the set of all descendants of any type using merely two
integers, and implement every type check as interval inclusion test, as done in (3.14).

Figure 3.7 describes a PQE representation of the running example. The global con-
secutiveness property holds in this case— only one slice is used—and each type has a sin-
gleid. To check whethe@ is a descendant &, we only need to check whethel, = 4
falls in the rangél,, r,] = [1, 6].

3.6. PQ-ENCODING 35

Legend

[Lr]

Figure 3.7: PQ-encoding of the hierarchy of Figure 3.1

The numbering of Figure 3.7 was found using a PQ-tree, a data structure that main-
tains a set obrderings(permutations) of someniverse Initially, the PQ-tree represents
the set of ald! orderings of type4\, ..., I. The tree is updated progressively, narrowing
down this set, to reflect the constraints that the descendants of all types are consecutive.
For each of the types, we try to update the PQ-tree so that it represents only the orderings
in which the descendants of this type are consecutive.

In the running example, this update process never fails; we therefore ended in a PQ-
tree representation of all orderings which satisfy the global consecutiveness property. The
ordering depicted in Figure 3.7 was obtained by picking one of these orderings.

If an ordering which satisfies the global consecutiveness property exists, then our
algorithm is guaranteed to find it. In the general case, we use a greedy heuristic for
minimizing the total number of slices, and hence the encoding length: “try to make the
current slice as large as possible without violating the local consecutiveness property”.

Figure 3.8 shows our running example hierarchy augmented with a newygueled
as an additional ancestor Bf

Legend

[LSF]

Figure 3.8: A two slices PQ-encoding of the hierarchy of Figure 3.1 augmented with a
new typeN

There is no ordering of the types in this hierarchy which satisfies the global consecu-
tiveness property. Therefore, PQ-encoding is inclined to use two slices:

Sl = {Aa 87 C: D7 E7 F, Ga H7 I}a

o — (N, (3.17)

36 CHAPTER 3. PQ-ENCODING

We see that the greedy heuristic assigns all typesitiatthe first slice. In Figure 3.8 the
slice of each type is written to its left.

Comparing Figure 3.8 with Figure 3.7 we also see that each type has now’'svo
instead of one. To check wheth@ris a descendant o, we first surmise that the slice
of N is 2. We therefore use thsecondd of G, id;@ 2 = 6 and check whether it falls in
the rangely, ry] = [7, 10].

3.6.3 PQ-Trees

PQ-trees were invented by Booth and Leuker [A&ho used them to test for tl@nsec-

utive Is property in binary matrices of sizex s, in O(k + r + s) time, wherek is the
number of 1’s in the matrix. Booth and Leuker’s result gave rise to the first linear-time
algorithm for recognizing interval graphs. Later, PQ-trees were used for other graph-
theoretical problems, such as on-line planarity testing [12, 13] and maximum planar em-
beddings [14, 82, 83].

Definition 3.2 A PQ-tree over a universeg is either a speciall. symbol, or an ordered
tree data-structure with a leaf for every membef7gfand such that each internal node is
labelled as either &-nodeor a P-node

A PQ-tree represents a set of orderinggofThe L. symbol represents an empty set
of orderings. Otherwise, each Q-node in the data-structure represents the requirement that
all children of the node must occur in the order they occur in the tree or in reverse order.
A P-node represents the requirement that these children must occur together, but in no
specific order.

The universal PQ-treedenotedP ' represents the set of all orderings; it has a P-
node as a root and a leaf for every membefZof A more interesting example is given
by Figure 3.9 which depicts a PQ-tree over the univérse {A,B,C,D,E}. This tree
represents the requirement tihatB, andC must occur together, either in this order or in
the reverse orde[C, B, A).

Figure 3.9: A PQ-tree over the univerde= {A, B, C, D, E}, with a single P-node (de-
picted as a circle), a Q-node (depicted as a rectangle) and five leaves (depicted as oc-
tagons)

Let consistent(P) denote the subset of orderings of the univefsevhich is repre-
sented by a PQ-treB. The specific ordering df obtained by a DFS traversal &f, P #
1, is denotedrontier(P).

8In fact, Lempel et al. [92] were the first to coin the teR®-expressionsPQ-trees are nothing more
than an efficient representation of PQ-expressions.

3.6. PQ-ENCODING 37

In Figure 3.9 we have
frontier(P) =(A,B,C,D, E), (3.18)
and
consistent(P) ={(A,B,C,D,E), (C,B,A,D,E), (A,B,C,E,D), (C,B,A,E,D),
(E,A,B,C,D), (E,C,B,A,D),(D,A B,C,E),(D,C,B,AE), (3.19)
(D,E,A,B,C),(D,E,C,B,A), (E,D,A,B,C), (E,D,C,B,A)}.
There are two transformations of a PQ-tf@avhich preserveonsistent(P): swap-
ping any two children of a P-node, and reversing the order of the children of a Q-node.

PQ-treesP; andP, are equivalent®; = P,) if P, can be reached fromR; by a series of
these transformations. Thussistent(?) can be more formally defined as

consistent(P) = {frontier(P’') | P' = P}, (3.20)
andconsistent (L) = 0.

A constraint(on orderings) is the requirement that certain elements of the universe
occur together. A constraint is represented simply as a subset of the elements of the
universe. (In our application, each constraint will be the set of descendants of a given
type.) We denote the set of all orderings that satisfy constfaastil(/).

Consider the special casés= 0, |I| = 1, orI = 7. Then, itis easy to see that alll
orderings satisfy. Thus, in all these cases,

T1(I) = consistent(P).
More generally,

Fact 3.3 For every constraint there exists a PQ-tre®, P # L, such that
II(I) = consistent(P).

PROOF The root of P is a P-node whose children are the leaZe§/ and another
P-node whose children are the leaves

LetI C ©(7) be a collection of constraints. TheH(I) is the set (which may be
empty) of orderings that satisll constraints i, i.e.,

II(T) = ()1I(]).
Iel
(In our application, each slic& generates a collection of constraintss).)

For example, the requirement that type®ndB are consecutive, and that typBs
andC are consecutive, is represented by

I={{AB}.{B.C}}.

It is easy to check thafI(I) is the set (3.19) of orderings consistent with the PQ-tree
of Figure 3.9. Another example is the empty set of constraints which is satisfied by all
orderings, i.e.JI(()) = consistent(P"). More generally,

38 CHAPTER 3. PQ-ENCODING

Theorem 3.4 (BoOTH-LEUKER (1976)) Suppose thatZ7| > 2. Then, for every col-
lection of constraintd there exists a PQ-tre®, and for every PQ-tre@® there exists a
collection of constraintd such thaflI(I) = consistent(P).

Algorithm 3.1 Compute the PQ-tree of all orderings which satisfy a set of constrhints

Given a universd, and a set of constrainIsC ¢(7), return a PQ-tree of all orderings
of 7 which satisfyl.

ProceduregenTree(I)
P — P [l PT is the universal PQ-tree.
Forall I eIdo
P — reduce(P,I)
od
return P

Constructively, the tre® is generated fronl using the iterative process described
in Algorithm 3.1. The heart of the algorithm is the procedteduce which “adds” a
constraint to a PQ-tree in a time proportional to the size of the constraint. We here use
Booth and Leuker [17] clever implementationrefluce as a black box.Formally,

Theorem 3.5 (BOOTH-LEUKER (1976)) Given a PQ-treeP and a constraint/, the
call reduce(P, I) runs inO(|1|) time, while the value it returns satisfies

consistent(reduce(P, I)) = consistent(P) ﬂ II(1).

Note that the setonsistent(P) () II(/) may be empty, in which caseduce returns.L.

3.6.4 Finding a PQ-encoding

There are hierarchies for which Algorithm 3.1 can be used to find a PQ-encoding. A
case in point is our running example (see Figure 3.7): Each of the nine types in this
example imposes a constraint on the permissible orderings. Singleton constraints are not
interesting since they are satisfied by any ordering. The remaining constraints are

I. = {C,F,G},
I, = {G, D, H},
I = {H,E, 1}, (3.21)

I, ={C,F,G,D,H,A},
I = {C,F,G,D,H,E,I,B}.
The constraint,, is that the descendants of tygemust occur consecutively, etc. The

callgenTree({ I, I, I¢, I, Iy }) returns the PQ-tree of Figure 3.10. (Section 3.10 shows
and explains the intermediate trees generated in the computation process.)

"The curious reader may care to know tihetluce conducts a bottom-up traversal of the input tree,
applying one of eleven PQ-tree transformations at each step.

3.6. PQ-ENCODING 39

Figure 3.10: The PQ-tree returned from the gahTree on the constraints (3.21)

The PQ-tree of the figure has one Q-node and two P-nodes with two children each.
Therefore, this tree represents 8 different orderings, each satisfying the global consecu-
tiveness property. The encoding of Figure 3.7 uses the ordering represented by the tree’s
frontier (A,C,F,G,D,H, E, |, B).

In the general case, a PQ-encoding may require more than one slice. In such cases,
the application ofenTree to the set of all constraints(7) returnsL. (An example can
be found in Section 3.10.)

Algorithm 3.2 generates a PQ-encoding &my given hierarchy(7, <).

The main data structure used by the algorithm is theéSsethich is an internal rep-
resentation of the set of slices. Egele S is a recordP, id), wherep.P is the PQ-tree
of the slice, andu.id is theid of the slice. The se$ is discarded after the algorithm
computes the encoding.

After a simple initialization (line 1), the algorithm comprises of three stages. The first
outer loop (lines 2—15) finds the slices. In this loop we try to find an existing slice for
each type, by trying to incorporate (line 4) the constraints that its descendants must lie
consecutively, into each of the PQ-trees of the existing slices. If this should fail then we
create a new slice (lines 11-14).

The second stage is the loop of lines 16—22, which assigns a unidaesach type
with respect to each slice. The last stage (lines 23-26) is to find the interval af'the
of the descendants of each types 7, i.e., theid’s, with respect to the slice af, of the
right-most and left-most type among the descendants of

Lemma 3.6 Algorithm 3.2 runs irO (|S| - |%|) time.

PROOF The first stage is the slowest. At this stagduce is invoked at mosiS| times
for each of the types in the input. Using Theorem 3.5 the total time of all such invocations
is

o(ysy : Z|descendants(a)y) - o(|S| : |j|>.

a€T

The second stage runs in time
o(1sl-171) co(Is|-|=1),
while the third stage time complexity is

O<Z|descendants(a)|) - O(!j|> c o(ysy : \5|). 0

a€T

40 CHAPTER 3. PQ-ENCODING

Algorithm 3.2 Compute the PQ-encoding of a hierardhy, <)

1: S — (0 // Sis a set of the slices created so far. Each slice S is represented as a
Il record (P, id), wherew.P is the PQ-tree of the slice, and id is theid of the slice.

2. For all a € 7 do// Find a PQ-tree consistent with tyjpe

3: Forall x € Sdo// Try to find a sliceu into whicha could be inserted

4 P’ — reduce(u.P, descendants(a))

5 If P’ £ 1 then// Typea can be inserted into slice

6: w.P — P" Il In the updated PQ-tre@escendants(a) are consecutive

7

8

9

Sq < p.1id Il Typea belongs to slice:
next a // Finished handling type
; fi
10: od
/] Typea could not be inserted into any of the existing slices

11: u < new Slice //Generate a new slicg
12: P « reduce(P', descendants(a)) // By Fact 3.3u.P # L.
13: p.id « |S| + 1 // Sliceid’s are allocated in orded, 2,
14: S« Su{u}
15: od
16: For all ;1 € S do// Assign uniqued’s to types
17: id < 1 // The first unusedt in the slicepu.
18: For all a € frontier(u.P) do // Assignid’s to all types with respect to slige

19: id,@ (p.1d) « id
20: id «— id +1

21: od

22: od

23: Forall « € 7 do// Assign an interval to each type
24: D« {idy@ s, | b € descendants(a)};

25: [l4, 7] < [min(D), max(D)]

26: od

We do not know of any efficient algorithm for finding the optimal PQ-encoding, i.e.,
the encoding which achieves the minimal number of slices. This is the reason why Algo-
rithm 3.2 is non-deterministic in the following sense: The order at which types are inserted
into PQ-trees (line 2) is unspecified. After having tried several traversal orders, including
arandom one, we concluded that the differences in the encoding length is small. Our em-
pirical findings indicate that the best results are obtained by a reverse topological-order in
which the leaves with the largest number of ancestors are visited first.

Similarly, the order at which we try to find the slices (line 3) is not specified by the
algorithm. We found empirically that the best encoding is obtained by trying the slices
in the order of decreasing size, i.e., trying the largest slice first, and the smallest one last.
A heuristic which gives almost identical results is to try the slices at the order of their
creation, with the oldest slice first.

3.7. OPTIMIZATIONS 41
3.7 Optimizations

In this section we describe how Algorithm 3.2 can be further optimized. We have five dif-
ferent, non-language specific, optimization techniques targeted at improving the various
complexity measures.

1. ID Range Compactio(Bection 3.7.1) reduces the space complexity measure, specif-
ically by decreasing the memory footprint of the pseudo-aridysWwith this opti-
mization, borrowed from ideas originated by Vitek et al. [133], it is possible to use
byte-sized entries for all but the first entry of these arrays.

2. Pruning Bottom Tree§Section 3.7.2) targets the encoding creation time measure.
We show that the heavy-weight PQ-trees algorithm needs to be run only on the
smaller core portion of the input hierarchy.

3. Reordering Type RecordSection 3.7.3) is a novel technique which simultaneously
Improves three complexity measures: space, instruction count and test time. In this
optimization, the type records of the runtime environment are pre-sorted in linear
time by the first entry of théd pseudo-array. This makes it possible to eliminate
this first entry which is (in a sense) encoded by the pointer stored in each object
to its type record. A comparison ad’s stored in the first entry is replaced by a
comparison of these pointers. (The main cost is in the requirement that type records
occur in a fixed order, which may be a burden to other parts of the computing
environment.)

4. Heterogeneous Encodirf§ection 3.7.4) also reduces space complexity, by switch-
ing to binary matrix encoding in slices which contain no more than 8 types. This
optimization which is similar to the one suggested by Vitek et al. [133] may in-
crease the instruction count and the test time complexity measures in subtyping
tests involving these slices.

5. Coalescing ID-ArraygSection 3.7.5) is another novel technique which targets the
space complexity while increasing the instruction count and the test time. The idea
here is that if suffixes of th&él pseudo-arrays are identical, they can be shared at
the cost of an extra indirection.

3.7.1 ID-Range Compaction

ID-range compaction reduces the encoding length as generated by Algorithm 312. Let
be the set of descendants of a slite

D= U descendants(a).

a€sS

Clearly, |S| < |D|. However, it is often the case, especially with the smaller slices,
that|S| < |D|, and that D| is close ton. ID-range compaction relies on the observation
that in these casead’s can be reused while numbering the typeginThis reuse makes

it possible to use fewer bits for the representation of edch

42 CHAPTER 3. PQ-ENCODING

The critical point to note is that two typés, b, € D need to be assigned distinct
identifiers only if there is a type € S, such thath; € descendants(a), while by ¢
descendants(a). Phrased differentlys’ partitions7 into equivalence classes, such that
typesb, andb, are in the same equivalence class iff

ancestors(by) N .S = ancestors(b) N S. (3.22)

These equivalence classes are calledstpartitioning of 7.

The number of differenid’s needed to encode a sliceis exactly the number of
equivalence classes in thiepartitioning of 7. We argue that this number is less than
twice the slice size, specifically that there are at most

min(2|5],[77)

equivalence classes in tlsepartitioning of7. The reason is that the local consecutiveness
property ensures that for evetyc S there is an interval,, which consists thed’s of
descendants ai. These|S| intervals partition the types i into at most2|S| — 1
segments, such that all types in the same segment can receive thelsdime setF, =

7 \ D defines an additional equivalence class, which is not contained in any interval.

Consider, for example, Figure 3.11, in which the typesiinwere initially num-
bered3, ..., 15.

| | | | | | |
| | | | | | | | | |
13 4 5 6 7 9 ﬁo 11j(|2 13 14j 15 ‘?16
j%zj Gs G4 Gs/ /

Figure 3.11: Reducing the range needed for PQE

Intervals/,, I, and 3 drawn in the figure partitiorD into 5 = 2 - 3 — 1 segments.
This is the maximal possible number of segments, since every typenmust belong to
at least one interval. The equivalence classes in this examplgare{1, 2,16}, F; =
G, By = Gy, F5 = G3 U Gs, andE4 = Gy4.

In all hierarchies in the data set, we found that all slices, except the first, were of
size 128 or less. Thus the integral range required for numbering is at most 265 aad
be represented as a byte array, with each slice adding a single byte to the encoding length.
The first slice receives some special handling as will be described below in Section 3.7.3.

It is possible to modify Algorithm 3.2 to ensure that all but one (the first) slice has
their range bounded by 256. Specifically, line 5, must not only cligckhe PQ-tree
returned by theeduce routine, but also make sure that the range required for numbering

3.7. OPTIMIZATIONS 43

does not exceed 256 Storing the current required numbering range of a PQ-tree, and
updating it with eachreduce is straightforward. One can also manage the equivalence
classes of all slices incrementally @(|<|) total time.

3.7.2 Pruning Bottom Trees

Recall that in Section 3.4 we defined the core of a multiple inheritance hier@rcay7,

such thatt € 7' if t has a descendant with more than one parent. Th& &¢I’ is a
collection of bottom-trees discovered in a bottom-up traversal of the hierarchy. Intuitively,
the core is where the intricacies of multiple inheritance occur. The bottom-trees are a
forest of single inheritance hierarchies, hanging at the bottom of the core.

By pruning in a preprocessing stage all bottom-trees, we reduce the run time of Algo-
rithm 3.2. A lighter machinery is then used to produce the encoding of the bottom-trees.
Let Si,...,S; be the slices off” found in the PQ-encoding of the pruned hierarchy,
andri, ..., be the orderings of’ with respect to each slice. Thus, i = 1,...,kis
the ordering defined by thd’s of all types with respect to slicg;. Formally, =’ satisfies
the constraints(.S;).

Next we describe how to extend of 7" into an orderingr; of 7 in such a way that
it will satisfy the constraints(S; U (7 \ 7")). Consider an arbitrary bottom-tree whose
root ist¢. Sincet is not in the core, it has a single parenti.e., parents(t) = {t'}.
Typet’ must be in the core, otherwigevould not be the root of the bottom tree. (Note
thatt might have several other children which are roots of other bottom trees.) When
extending the ordering] of 7', we insert the relative numbering ordering of this bottom-
tree immediately after (or before}(t').

Figure 3.12 gives an example of the insertion of relative-numbering orderings into the
ordering of the core. Figure 3.12a shows the core of the hierarchy of the running example,
whereas the bottom-trees are highlighted in bold in Figure 3.12b.

Figure 3.12a shows an orderingof the coreZ” which satisfies the constraintg7”),
' = (A,C,G,D,H,E,B).
Figure 3.12b shows the extended orderingf 7" which satisfy the constraints(7):

7 = (A,N1,C,N2,N5,N6, N3, G, D, H,N7, E, N4, B).

Note that the resulting ordering of 7 satisfies the old constraints in(S;) (since
descendants in a bottom-tree are adjacent to their parent in the core) and the new constraint
in (7 \ 7") (since relative-numbering ordering satisfies these constraints).

In order to complete the process of incorporating the bottom-trees into a PQ-encoding
of the core, we must also assign each of the types in the bottom-trees into a slice. The fact
that we inserted the relative numbering ordering of each bottom-tree makes it possible to
chose any slice we want for each type in a bottom-tree. We chose to use the first slice for
all these types since ID-range compaction works best when the first slice is much larger

8Note that this does not necessarily happen when the slice size hits 128.

44 CHAPTER 3. PQ-ENCODING

Figure 3.12: PQE of the core of the running example (a) and PQE after inserting some
bottom-trees (b)

than the others. Another motivation for this choice is the “reordering of type records”
optimization which, as we shall see below, makes it possible to eliminate all bits used for
the first slice.

3.7.3 Reordering Type Records

Consider again the subtyping tesk b. So far it was assumed that the typés givenat

run time. In reality, however, an objeeis given and the runtime system must first infer

its typea. Typically o stores a pointey,, to itstype recorgd a memory block with run time
representation of. The various encoding schemes store their auxiliary information in
this area. Many object-oriented language implementations mandate other uses to the type
records, including dispatching, downcasting, serialization, and garbage collection.

Thereordering type recordsptimization technique makes use of the degree of free-
dom the compiler has in placing type records in menfoihe simplest application of
this technique is to relative numbering (Section 3.5): Type records are placed in memory
in the same order as postorder traversal of the type hierarchy. In doing so, the pginter
plays the role as the ordinal in the postorgderAs a result, the encoding length is reduced

%We make the natural assumption that the location of the encoding tables is in a protected location of
memory which is not subject to garbage collection. The reason is that these tables are generated as part of
the compilation process and are not changed at runtime.

3.7. OPTIMIZATIONS 45

to zero and one load instruction in the subtyping test is saved.

Similarly, in range-compression (3.13), replaces the globadl,. If specialization is
used then we obtain an encoding scheme with zero encoding length, but non-constant test
time and instruction count.

We do not know whether the technique is applicable to either bit-vector encodings or
to Cohen’s algorithm and its generalizations, PE and BPE. However, in PQE, the ability to
reorder type records makes it possible to eliminate entirelydkeof types with respect
to the first slice. Specificallyd,@ 1 of a typea is encoded in the pointer,. The saving
Is significant since the first slice occupies the largest number of bits. This technique also
saves one load instruction when typdelongs in the first slice. Since the first slice
constitutes around 90% of the types, we expect this saving to lead to a noticeable saving
in the average test time.

We finally note that this technique is applicable even with the unique C++ object
layout. In this layout [68] an object may contain several pointers to sedetahcttype
records (VTBLs in the C++ jargon).

The reason that we can encode integers in pointers even though there is no unique
value p, for a typea is that the subtype tests of relative numbering (3.7), range com-
pression (3.13), and PQE (3.14), all checkiferqualityrather than equality. We simply
allocate a range of memory addresses to all type records of a given type, rather than a
single address, as the valyg(as in (3.7)) or thed (as in (3.13) and (3.14)).

3.7.4 Heterogeneous Encoding

Heterogeneous encoding is yet another optimization targeted at reducing the encoding
length. Recall that in the binary matrix each type adds exactly one bit to the encoding
of all other types. The PQ-encoding of a small slice witk: 8 types adds a byte to the
arrayid, of each other type, which is less efficient than using the binary matrix for types

in this slice. In heterogeneous encoding, subtyping test$, whereb belongs in such a

small slice, are implemented using the binary matrix. Sihiseknown at compile time,

the compiler can choose the appropriate code to plant at the subtyping test. We found that
heterogeneous encoding may give rise to significant improvement to the encoding length.
On the other hand, the total number of types in small slices is negligible, and therefore
we do not expect a noticeable impact on the instruction count and test time.

3.7.5 Coalescing ID-Arrays

We now turn to describin@oalesced PQ-EncodingCPQE). This memory optimization
is based on the observation that the contents of the pseudo-airagsnd to be similar.
We rely on the fact that the first entry of these arrays is represented implicitlyl/Lee-
note the array obtained froid, by truncating its first entry. Then, many of the array/s
are identical, and need to be stored only once.

More specifically, we claim that the number of distinct arralyss exactly the number
of equivalence classes {f-partitioning of 7, whereG = 7 \S;. In other words, two

46 CHAPTER 3. PQ-ENCODING

typesa, b are in the same equivalence clasddff = id;. Formally,

Lemma 3.7 Leta, b be two types, and’ = 7 \S;. Then

ancestors(a) N G = ancestors(b) N G < id,@Q ¢ = id,@ ¢ for2 <i < k.

PROOF We previously showed (3.22) that two types can have the same identifiers if
and only if they are in the same equivalence class, i.e.,

id,@ ¢ = id,@ i < ancestors(a) N S; = ancestors(b) N S;.
Sinces; . .. S, partition G we have that

ancestors(a) N G = ancestors(b) N G <
ancestors(a) N.S; = ancestors(b) N S; for2 <i <k < (3.23)
id,@¢=1id,@ ¢ for2<i<k. O

Furthermore, the number of distinct arraysis always smaller or equal to the size of
the core. (The core is the set of types not belonging to a bottom tree; See Section 3.4.)
Recall that the bottom trees were added to the first slice after they were pruned (see
Section 3.7.2). Since each type in a bottom tree has the same ancestors set as the root of
that tree, they are in the same equivalence class, and therefore can be coalesced together.

CPQE uses a bucket sort to find the distinct values of aridyi® linear time, and
then represents each typas a pointep/, to one of these distinct values. The cost of the
coalesced representation is in another level of indirection for subtyping tests involving the
second or higher slice.

The pointerp!, is not stored as an absolute memory address but rather as an index of
an arrayZ, whose entries are the distiridf arrays. Also the degree of freedom in placing
entries inZ, is employed to encodel,@ 2 (id’s of the second slice) ip/, in the same
fashion thaid,@ 1 was encoded gs,.

In the testu < b, if it is found thatb belongs in slices,, then instead of usingl,@ 2 in
the test (3.14), the compiler emits code for compagipgvith the valued, andr,, which
are, as usual, specialized into the test code. The entries in Araag then the arrayig”
produced by truncating the first two entries of the arriays

A strong incentive to use CPQE is raised by languages such as C++, in which ob-
jects may contaimultiple pointers to severalistincttype records [68]. Since these type
records are similar, but not identical, the implementer must choose betwesplifating
the subtyping encoding data in each such record, asl{ayingat the cost of another level
of indirection during subtyping tests. Coalescing optimization may tip the scale towards
the sharing alternative.

3.8 Results

Having described different optimization techniques we would like to appreciate the trade-
offs offered by these. To do so, we define (Section 3.8.1) variants of the main encoding

3.8. RESULTS 47

scheme. We then show (Section 3.8.2) how the encoding length of these variants depends
on the output of our main algorithm (Algorithm 3.2), and in particular the number of slices
and the distribution of their size. Section 3.8.3 compares the encoding length achieved
by the different variants with the achievements of previous work. Section 3.8.4 gives the
results of our timing of the algorithm for computing the encoding length.

3.8.1 Variants of the PQ-Encoding Scheme

There are many variants of PQ-encoding, depending on which of the optimizations de-
scribed in the previous section are applied. The first two optimizations: ID range com-
paction and bottom tree elimination, which do not add to the main complexity measures
are in fact incorporated to the main algorithm. We next define three encoding variants
which successively apply the three other optimizations:

1. Regular PQ-encoding, or RPQE for short is the variant in which reordering the type
records is used to eliminate the representation of the first slice froid treays.

2. The principal acronym PQE is reserved to the variant which also applies the het-
erogenous encoding optimization. As explained above, the cost is in longer subtyp-
ing tests in the rare cases involving the smaller slices.

Thus, in PQE, there are three kinds of slices: The first slice, whose representation
is eliminated thanks to reordering of type-records. Heterogeneous encoding based
on the binary matrix representation is used for slices whose size is smaller than 8.
Each of the remaining slices occupies a single byte in the atrayhich is used in

the basic subtyping tests of PQE (3.14).

3. CPQE is the encoding variant obtained from PQE by applying in addition the re-
maining fifth optimization: coalescing of ID-arrays, which adds to the cost of sub-
typing tests involving the third or higher slice.

3.8.2 Output of the PQ-Algorithm

Algorithm 3.2, the main algorithm behind the PQ-encoding, returns a partitioning of the
hierarchy into slices. It was mentioned before that the size of slices vary widely. Using
the hierarchies in our data set we now turn to studying this variety in detail.

Table 3.2 displays some of the essential parameters of the slice size distribution. These
parameters will become useful in appreciating the algorithm performance and the trade-
offs offered by the different optimizations. We can also use these to calculate the encoding
length of the three encoding schemes described above.

Even though we do not have a non-trivial upper bound on the number of slices, the
second column of the table shows that in actual hierarchiethe number of slices, is
often small, and it does not increase as quickly:as'hus, we have reasons to believe
that O(kn), the asymptotic space complexity of algorithm Algorithm 3.2, is closer to
linear than quadratic. Similar conclusions can be draw @i <|), the time complexity
of the algorithm.

48 CHAPTER 3. PQ-ENCODING

Hierarchy| &2 [ni/nP [ko | no9 | no/n | mé
IDL 1| 100.0% 0 0| 0.0% 0
JDK 1.1 2| 99.6% 1 1] 0.4% 1
Laure 2| 98.0% 1 6| 2.0% 7
Ed 10| 87.8% 7|1 20| 4.6% | 145
LOV 12| 86.2% 9| 26| 6.0%| 164
Unidraw 2 99.7% 1 2| 0.3% 2
Cecil 5| 94.1% 2 6| 0.6% | 101
Geode 16| 86.0% 8| 24| 1.8%| 419
JDK1.18| 6| 97.5% 3 9| 0.5%| 74
Self 13| 97.2%| 11 31| 1.7%| 63
Eiffel4 11| 89.1% 3 9| 0.5% | 376
JDK1.22| 8| 97.6% 4| 12| 0.3%| 235
JDK1.30| 8| 97.7% 4| 17| 0.3% | 286

anumber of slices

bfraction of types in the first slice
®number of small slices

dtotal number of types in small slices
enumber of distincid’ arrays

Table 3.2: Some characteristics of the slice partitioning of the PQ algorithm

Integerk is also useful in computing the encoding length of RPQE. Recall that with
the exception of the first slice, thd’'s with respect to each slice can be represented in
a single byte. Therefore, the encoding length of RPQE(ks— 1). (Also, consider a
variant of RPQE in which type records are not reordered. Then, the encoding length in
this variant isl6 + 8(k — 1) = 8(k + 1).)

The next column in the table gives the ratig/n, wheren, is the number of types in
the first slice (which is also the largest slice). We see that in all hierarchiest@%eof
the types fall in this slice. In fact, in more than half the hierarchies, this slice occupies at
leasto7.5% of all types. Thus, we expect that an overwhelming portion of the actual sub-
typing tests will use this slice. The test time of these will greatly benefit from reordering
of type records.

Small slices, i.e., slices with no more than 8 types, receive special handling by PQE.
The heterogeneous encoding optimization specifies that types in these slices use a binary
matrix representation. The subtyping test then involves bit operations, and is not as simple
as the range testing used for the other slices.

The fourth column of Table 3.2 shows, the number of small slices. We see that
most of the slices generated by the PQ-algorithm are small. However, examining the next
column (the total number of types in the small sliegsk, < ny, < 8k,), we see that,

Is small. The penultimate column of the table shows that the fraction of types in small
slices is tiny, typically less that’%. We are lead to hope that the frequency of the more
complex tests will be equally negligible.

Interestingly, the values shown in Table 3.2 can be used to compute the encoding
length of PQE. Since all slices except the first and small slices occupy a single lxj4e in

3.8. RESULTS 49

array, we have that this length is

8(]41— kQ - 1) + Na.

To compute the encoding length of CPQE we need the final column of the table which
showsm, the number of distinatl’ arrays. We see that this number is much smaller than
the number of types. In factp < 256 in all hierarchies except for Eiffel4, Geode, and
JDK 1.30. The pointep/, can thus often be represented as a single byte. More generally,
the precise encoding length of CPQE is

. Fog8m_‘ LBl —ky—2) +) xm

n

3.8.3 Encoding Length in the Data Set

Table 3.3 compares the encoding length in bits of the three encoding variants with that of
other encoding schemes.

Hierarchy| CPQE | PQE | RPQE | NHE | BPE| PE| DAG? | Closure? | Binary matrix
IDL 8 0 0 17| 32| 96 7 27 66
JDK 1.1 8 1 8 19| 32| 64 9 26 225
Laure 8 6 8| 23| 63128 10 74 295
Ed 17| 36 72| 54| 94216 15 72 434
LOV 21| 42 88| 57| 94216 16 77 436
Unidraw 8 2 8| 30| 63| 96 8 31 613
Cecil 10| 22 32| 58| 94|192 13 65 932
Geode 39| 80 120| 95| 157|408 21 154 1,318
JDK 1.18 9| 25 40| 39| 94128 13 48 1,704
Self 9| 39 96| 53| 126|344 12 329 1,801
Eiffel4 27| 65 80| 72| 157|312 15 97 1,999
JDK 1.22 10| 36 56| 62| 157|184 16 57 4,339
JDK 1.30 18| 41 56| 65| 188|216 16 57 5,438

&Computed idealistically a§—<g4| - [logn])/n.
bComputed idealistically a§=| - [logn])/n

Table 3.3: The encoding length of different algorithms

The most important conclusion to draw from the table is that in all hierarchies in the
data set, the encoding length achieved by PQE is better than that of all other encoding
schemes. The only exception to these is an idealistic DAG representation, in which, as
mentioned above, test time can®@én).

We stress again that the memory requirements of PQE is zero for all single inheritance
hierarchies. As can be seen in the table, zero memory footprint occurs even in IDL, which
is multiple inheritance. The median improvement over the next best algorithm, NHE, is
by 37%, while the average improvement is 50%.

PQE remains the shortest encoding even if it is not optimized by reordering type
records (in which case the encoding length increases by 16): Without this optimization,

50 CHAPTER 3. PQ-ENCODING

PQE is better than NHE in 9 out of the 13 hierarchies. In one hierarchy (LOV), the
encoding length of NHE is 1 bit shorter than PQE, in two hierarchy (Self and JDK 1.18)
it is 2 bits shorter, and in one hierarchy (Eiffel4) it is 9 bits shorter.

In comparing PQE with NHE we must also recall that the test time in the bit vector
based NHE is non-constant. Thus, even if the two schemes use the same number of bits,
subtyping tests in PQE are likely to be more efficient since they do not need to access all
bits in the representation of the compared types.

The space reduction of PQE over BPE, the best prewonstant time encodings
even more impressive: In the Eiffel4 hierarchy BPE total space requirement is 39KB,
compared with 16KB in PQE. These differences are significant since subtyping tests are
very frequent. Vitek [110] benchmarks give 320,000 tests in a second. Smaller encoding
makes it possible to fit the entire representation in the cache.

Examining the second and third columns of Table 3.3 we see that coalescitg of
records, employed by CPQE, shortens the encoding length of PQE, by factors ranging
between 2 and 4.3. In fact, CPQE competes favorably even with the idealized DAG
encoding!

Hierarchies IDL, Laure, Unidraw and JDK 1.1 are anomalous in the sense CPQE gives
a longer encoding than PQE. This phenomenon is explained by the fact that the two-level
structure employed by CPQE requires at least 8 bitg/for

We finally note that even RPQE competes favorably with NHE, winning in 7 out of
the 13 hierarchies in the data set.

3.8.4 Encoding Creation Time

Table 3.4 compares the encoding creation time of PQE with that of NHE and PE. The
creation time of RQPE and CPQE is the same as PQE, and the creation time of BPE is
the same as PE.

The comparison is not easy, since the algorithms were run on different machines.
Algorithm 3.2 was written in C++ based on the PQ-tree implementation of Leipert [91].
More experimentation is required before a faithful and fair comparison is possible. It
appears as if PQE, which is based on a linear algorithm, outperforms the quadratic NHE
algorithm. PE, which use a fast implementation of set unions and intersections using bit-
vector operations, seems to be the fastest. The Geode hierarchy is toughest for PQE and
NHE. In this hierarchy, the average time for processing a type is less than one millisecond
in PQE. In all benchmarks the time for computing PQE is less than a second.

3.9 Conclusions and Future Research

The PQE algorithm improves the encoding length, creation time, test time and instruction
count of NHE, the most space-efficient previously published encoding algorithm. The
CPQE variant reduces the encoding length even further at the cost of an extra indirection
in some, typically infrequent, subtyping tests.

3.9. CONCLUSIONS AND FUTURE RESEARCH 51

Hierarchy| (R] C)PQE? | NHEP® | (B)PE®
IDL 1 - 5
JDK 1.1 1 19 10
Laure 4 21 9
Ed 77 136 12
LOV 95 168 10
Unidraw 1 93 10
Cecil 50 - 13
Geode 668 | 1,902 28
JDK 1.18 29 - 26
Self 122 | 1,367 22
Eiffel4 299 - 29
JDK 1.22 140 - 77
JDK 1.30 187 - 90

4266 Mhz Pentium Il
b500 Mhz 21164 Alpha
€750 Mhz Pentium Ill, user time in Linux

Table 3.4: Encoding creation time in milliseconds of different algorithms

The main problem which this chapter leaves open is an incremental algorithm for
the subtyping problem, as required by languages suchas, in which types may be
added as leaves at run time. (Section 4.8 in the next chapter presents such an incremental
algorithm.) It turns out that the PQ-data structure is not susceptible to efficient updates of
this sort.

On the theoretical side, it would be very interesting to see any non-trivial lower bound
for the encoding length.

An interesting instance of the subtyping problem occurs when the ordinary type hier-
archy is compounded by an interplay wigbnericity as inEIFFEL and in the proposed ad-
dition of generics tdAvA. In EIFFEL, a double ended queue of rectangles is a subtype of a
gueue of polygoniQueue[Rectangle] < Queue[Polygon|) since (i)Rectangle < Polygon,
and (ii) the generic clasdQueue|T] inherited fromQueue|T"]. EIFFEL has a default sub-
typing rule which can be written as

Va,b, Aea=b= Ala] < Alb],

and the definition of generic classes which inherit from others adds other rules such as

The research question is whether pre-processing of such rules can make it possible to
decide subtyping more efficiently.

52 CHAPTER 3. PQ-ENCODING

3.10 A Detailed PQ-Tree Example

The example below will shed some light on the “magic” behind Theorem 3.5 and the
implementation ofeduce due to Booth and Leuker [17].

We first trace the execution glenTree (Algorithm 3.1) where the input is the con-
straints (3.21) of the running example. The algorithm starts with a universal P@-tree
over the universe

7 ={A,B,C,D,E,F,G,H, I},

and iteratively callgeduce for each of the input constraints in the order they appear

in (3.21). The output of the algorithm is then the PQ-tree depicted in Figure 3.10, which
satisfies these constraints. (Using any other order would have resulted in an equivalent
PQ-tree.)

Figure 3.13 shows the PQ-tree at each of the intermediate steps in this iterative pro-
cess. Each subfigure shows the next input constraint (variaileAlgorithm 3.1), and
the current PQ-tree (variable in the algorithm), where the leaves corresponding to types
constrained to appear together in the next iteration are highlighted. Thus, Figure 3.13b is
the PQ-tree obtained by performingduce(P ", I.), while figures 3.13c, d, e, f show the
PQ-tree after reducing it with constraimts I, 1,, andl;, respectively.

Imposing the constraini. = {C,F,G} on the initial universal tree (Figure 3.13a)
yields the tree of Figure 3.13b, which uses an extra P-node to ensure that these three types
occur together. The next constraint to addjs= {G,D,H}. Since typeG is common
to both /. and/, we have that the permissible orderings must have a subsequence which
matches one of the following two patterns:

1. TypesC andF occur together, in any order, then tyge and then type® andH
together, but in any order.

2. TypesD andH occur together, in any order, then ty@e and then type€ andF
together, but in any order.

These two patterns are captured by the PQ-tree of Figure 3.13c, in which one P-node
forcesC andF to occur together, while another P-node forbeandH to occur together.
The Q-node of this tree makes sure tdialls between the pair§C, F} and{D, H}.

The transition between Figure 3.13c and Figure 3.13d is even more interesting. Let
be the subtree rooted at the Q-node of Figure 3.13c. Then, subtezFesures that the five
typesC, F, G, D andH occur together. To this requirement we now must add the con-
straint/c = {H, E, I}, which means thatt must be adjacent to eith&ror I. ThereforeH
must occur in a boundary position (either first or last) in the placement of the five types
in a.. The problem is that.. allowsD to take the place ofi in this boundary position.

The remedy is in “lifting” bothH andD to the containing Q-node, making sure thatlils
first, thenD is second, while ifH is last therD is in the penultimate position. After having
guaranteed that is in a boundary position, procedureduce incorporates a P-node of
typesk andl into the boundary ofv. The result is shown in Figure 3.13d.

3.10. ADETAILED PQ-TREE EXAMPLE 53

@ ° |)
WEEEEEEH)

(b)

(©
(d) |

1,={C,F,G,D,H,A}
(e)

[

1,={C,F,G,D,H,E,|,B}
(f)

Figure 3.13: Intermediate PQ-trees in the invocatiogaiTree on the constraints of the
hierarchy Figure 3.1

The transition from Figure 3.13d to Figure 3.13e is rather simple. dgebe the
subtree rooted at the Q-node of Figure 3.13d. Then, the consifain{C,F,G,D,H, A}
is almost satisfied by,; the only missing requirement is that does not guarantee that
Is adjacent to the others in the requirement. Procetkatace then makes the leaf a
child of this Q-node. It is possible to do so, since the &&tF, G,D,H} has a “free”
boundary (the other boundary is constrained to be ekraarl.

The transition from Figure 3.13e to Figure 3.13f follows the same lines as the previous
transition. Again, the s€tC, F, G, D, H, E, I} has only one “free boundary” in the Q-node

54 CHAPTER 3. PQ-ENCODING

of Figure 3.13e. The constraifiC, F,G,D, H, E, I} is realized by addin@ in the Q-node
at this free boundary. Figure 3.13f (which is the same as Figure 3.10) is the final PQ-tree,
representing the eight different orderings which satisfy the constraints in (3.21).

To see a situation in which Algorithm 3.1 returns which will make it necessary
to use more than one slice, consider the hierarchy depicted before in Figure 3.8. This
hierarchy is identical to the running example except that a new typ&as added as a
parent of typeE. This new node adds the constraint that all of its descendants must lie
together, i.e., the constraint

I, = {N,E,H, 1}, (3.24)

is added td.

Figure 3.14 shows the PQ-tree of the augmented hierarchy after abithiee con-
straints in (3.21) were incorporated. (This tree is easily obtained by addingutygpée
PQ-tree of Figure 3.13f.)

Figure 3.14: PQ-tree with a new configuration in whiekuce will return L

Consider now the constraint (3.24), depicted by highlighting tyes, H, | in Fig-
ure 3.14. By examining the figure, we see tNatannot be made adjacent to any of the
typesE, H, I. For exampleN cannot be adjacent td, becaused lies betweerD, and
one ofE andl. In other words, the sefH, E, I} has no “free” boundaries. Therefore,
calling reduce with the PQ-tree of Figure 3.14 and the constraint (3.24) returns

Chapter 4

Fast Algorithm for Creating Space
Efficient Dispatching Tables with
Application to Multi-Dispatching

Chapter Summary

The dispatching problem can be solved very efficiently in the single inheritance setting. In this
chapter we show how to extend one such solution to the multiple inheritance setting. This gener-
alization comes with an increase to the space requirement by a small fagtoirbfs factor can

be thought of as a metric of the complexity of the topology of the inheritance hierarchy.

On a data set of 35 hierarchies totaling some 64 thousand types, our dispatching data structure,
based on a novdlype slicingtechnique, exhibits very significant improvements over previous
dispatching techniques, not only in terms of the time for creating the underlying data structure, but
also in terms of total space used.

The cost is in the dispatching time, which is no longer constant, but doubly logarithmic in the
number of types. Conversely, by using a simple binary search, dispatching time is logarithmic in
the number of different implementations. In practice dispatching uses one indirect branch and, on
average, only 2.5 binary branches.

Our results also have applications to the space-efficient implementation of the more general
problem of dispatching multi-methods.

A by-product of our type slicing technique is axcrementaklgorithm for constant-timsub-
typing testawith favorable memory requirements. (The incremental version of the subtyping prob-
lem is to maintain the subtyping data structure in presence of additions of types to the inheritance
hierarchy.)

Message dispatchingtands at the heart of object-oriented (OO) programs, being the
only way objects communicate with each other. Indeed, it was demonstrated [48] that OO
programs spend a considerable amount of time in implementing dynamic dispatching.
There is a large body of research dedicated to the problem of “efficient” implementa-
tion of message dispatching [31, 37, 44-50, 60, 78, 86, 100, 102,118, 130-132, 135]. The

55

56 CHAPTER 4. TYPE-SLICING

principal optimization objective adopted by most of this prior research was a compact
representation of the dispatching data structure, while maintaining a small, preferably
constant, dispatch time. A heavy toll incurred in many cases was the time required for
creating the dispatching data structure.

This research revisits the problem, trying to optimize another important complexity
metric, creation timegi.e., the time required for generating the dispatching data structure.
Our motivation is the staggering importance of dynamic compilation and re-compilation
systems, as found idvA . Previous work tended to be conceptually locked in the static
compilation model, with few reports on creation time values; when reported, these times
were measured in seconds for modest size hierarchies.

Our noveltype slicingtechnique gives rise to a very fast algorithm for creating space
efficient dispatching data structure. The creation time is improved by one, two and some-
times three orders of magnitude compared to the famowsdisplacemen{RD) algo-
rithm [47]. In a collection of 35 hierarchies, totaling over 60,000 types, the slowest run-
time of our algorithm was less than a third of a second on a modern processor; this time
was on a hierarchy of circa nine thousand types and fourteen thousand messages. In the
vast majority of the hierarchies, the creation time was less than a hundredth of a second.
Its space requiremeninproves those of RD (arguably the best previously published algo-
rithm in this category), in 32 out of the 35 hierarchies of our data set; the median reduction
in space is by a factor of 2.6.

The improvement of creation time and of space requirement comes with a penalty of
a small increase to dispatching time. Specifically, dispatching requires a binary search
in which the number of branches is logarithmic in the number of implementations of the
dispatched message, or alternatively, doubly-logarithmic in the number of types. Each
dispatch requires about 2.5 branches on average as well as one dereferencing operation.
These numbers may be compared with the two dereferencing steps required/tstuidle
Function TablegVFT) [57] standard implementation strategy of C++ [124] in the single
inheritance setting. Note that in contrast with our results and most other dispatching
algorithms, the VFT technique is valid only statically typedlanguages [132]. Some
dispatching schemes, such as RD and selector coloring (SC), require additional space and
one more comparison at runtime in order to worklymamically typedanguages.

Interestingly, there is a strong practical evidence that binary searches, which are used
in our implementation, may be faster than the simple VFT implementation. The trick
Is to inline the binary search by generating what was called “static branch code” by the
implementors of the SmallEiffel compiler [135], instead of the more general binary search
routine. It was shown that with this optimization a binary search between fewer than 50
results was faster than the VFT implementation in most architectures.

One of the explanations of this phenomenon is that indirect branches do not schedule
well on modern processors [46,48-50]. Other, less direct, advantages of inlined binary
search is that it can take better advantage of type inference and that it is more suscep-
tible to inlining of method code and any ensuing optimization. The cost of inlining is
(of course) in an increase to the code size. Note that several other previous publica-
tions suggested using a combination of binary searches, array look-ups, and even linear
searches [3,27,78,102] for dispatching.

4.1. PROBLEM DEFINITIONS 57

Informally, we can say that our algorithm generalizes the linear sjpaeesal con-
tainmentalgorithm [60,100] which is restricted to the single inheritance setting. Our main
theoretical result is that the generalization to the multiple inheritance case comes:with a
(the number of slices) factor increase of space. This factor depends only wpthegy
of the multiple inheritance hierarchynd can be thought of as a metric of its complexity.
In practice this factor is small, but in arbitrary hierarchies it might be in the order of the
number of types.

In all single inheritance hierarchies, = 1. We provide a heuristic for finding an
upper bound of, and an actual implementation of the generalization. In our data set
of 19 multiple inheritance hierarchies the median value: & 6.5, the average is 7.3,
and the maximum is 19. We stress that the space increase is by a factor of at imost
practice, we find much better results.

Our dispatching technique has also applications to space-efficient implementation of
multi-dispatching

Finally, our type slicing technigue also providesacrementahlgorithm for constant-
time subtyping testsvith favorable memory requirements. We provide theoretical anal-
ysis of our algorithm, as well as practical evidence that our algorithm is fast even when
compared to previous non-incremental algorithms.

Outline The remainder of this chapter is organized as follows. The dispatching prob-
lem is defined in Section 4.1. Some straightforward solutions for this problem are de-
scribed in Section 4.2. A survey of prior dispatching techniques including a detailed
description of interval containment is the subject of Section 4.3. Our new slicing tech-
nique is described in Section 4.4. The data set of the 35 hierarchies used in our bench-
marking, collected from both single and multiple dispatching languages, is presented in
Section 4.5. Section 4.6 presents the experimental results, comparing the performance
of our algorithm with those of previous algorithms. The application of our results to the
problem of multiple dispatching is presented in Section 4.7. An incremental algorithm for
constant-time subtyping tests is the concern of Section 4.8. Finally, Section 4.9 mentions
open problems and directions for future research. Section 4.10 describes our heuristic for
performing type slicing.

4.1 Problem Definitions

Formally, ahierarchyis a partially ordered se7(,<) where7 is a set of types and is
a reflexive, transitive and anti-symmetdabtype relationlf « andb are types, and <b
holds, we say thai is asubtype(or adescendantof b and thatb is a supertypgor an
ancestoy of a. Direct subtypes (supertypes) are caldildren (parents.

Similarly, we abstract away from the nomenclature of different languages, and use
the termmessagdor the unique identifier of a family ofmethodgalso called member
functions, operations, features, implementations, etc.). A message, which is sometimes
called aselector(in e.g., SMALLTALK [71] or OBJECTIVE-C [36]) or a signature(in
e.g.,JavA [7] or C++ [124]), may include, depending on the programming language,

58 CHAPTER 4. TYPE-SLICING

components such as name, arity, and even the type of parameters. We will use the terms
messageand selectorinterchangeably. Note that a consequence of feature renaming in
EIFFEL [97], is that the message does not always include the name of a routine. The
intuition however is the same in all OO languages: when an object receives a message
encoded as a selectalispatching on the type of the receivaust take place at runtime

to find and invoke the implementation which is most appropriate for the receiver’s type.

We use the following notation. Theain operator return the set of smallest types in
any given set:

min(X)={te X | At' e X :¢ #t,t <t} (4.1)

Let ' C 7 denote thdamily of types which have enethod implementaticior the same
message Given a family F' and a type, cand(F,t) is the set of candidates if, i.e.,
those ancestors ofin which an implementation of the given message exists:

cand(F,t) = F N ancestors(t). (4.2)

A dispatching querydispatch(F,t) returns eithethe smallest candidater null if no
such unique candidate exists. (All result represents either theessage not understood
or message ambiguoesror conditions.) Specifically,

v if min(cand(F,t)) = {t'},

) (4.3)
null otherwise

dispatch(F,t) = {

Figure 4.1 depicts a hierarchy which serves as the running example of this chapter.
Type names are written with uppercase letters; messages with lower case letters.

Figure 4.1: A small example of a hierarchy and the methods implemented in each type

For instance, we see in the figure that for the fan#ily= {C, D, E}:

cand(F,,K)={C,E} dispatch(F,,K)=E
cand(F,,B)=1 dispatch(F,, B)=null (message not understopd
cand(F,,H)={C,D,E} dispatch(F,, H)=null (message ambiguous

The type checker of statically typed languages makes sure at compile time that dis-
patching never results imll. It would therefore be a compilation error in statically typed
language to sendto objects whose static type sor H. Moreover, it is a compilation
error even to send this message to any ancestdr efg., typeC. The reason is that the
type analyzer cannot infer [66] that the dynamic type isHhot

4.1. PROBLEM DEFINITIONS 59

We shall assume a pre-processing stage in which all ambiguities are resolved by an
appropriate augmentation of the families. In the example, we addHypehe family F.,
sincedispatch(F;, H) resulted inmessage ambiguou#s in previous work [77,112] in
which this assumption was made, our working hypothesis is that the ensuing increase of
problem size is insignificant in practice.

Figure 4.1 is an example ofraultiple inheritancehierarchy, since, e.g., tyge has
two parentsA andC. Single inheritancein which each type has at most one parent, is
mandated by languages such@&sALLTALK and OBJECTIVE-C. The fact that single
inheritance hierarchies take a simple forest topology, makes single inheritance an impor-
tant special case, for which very efficient algorithms exist. The general case of multiple
inheritance is more difficult, and will be our main concern here.

Definition 4.1 Given a hierarchyT,=<) and a family collectiorv C o(7), thedispatch-
ing problemis to encodethe hierarchy in a data structure supportirdispatch(F,t)
queriesforallFF € F,t € 7.

From a practical point of view we assume that each object includes an accessible type-
id, and tacitly ignore the object space overheads and the time of retrieving such type-id.
Also, the message is given at runtime as an integer selector. We usually assume that this
selector is known at compile time, and accordingly allow any pre-processing which is
dependent solely on this selector. Given the object type-id and this selectdisplagch
guery means that the runtime system must compute the address of the method defined in
the smallest candidate, and jump to it.

A solution to the dispatching problem is measured by the following three metrics:
() the space that the data structure occupies in memory, (ii) the time required for process-
ing a query, and (iii) the time for generating the data structure from the input hierarchy.
We would like to express these metrics as a function of the following parameters of the
problem:

e The number of types in the hierarchy

n=|T]. (4.4)

e The number of different messages that can be sent during runtime

m = |F|. (4.5)
e The total number of different method implementations

=Y "|F|. (4.6)

FeF

e The number of valid message-type combinations, i.e., combinations which do not
result innull

w = |{(F,t) | dispatch(F,t) # null}|. 4.7)

60 CHAPTER 4. TYPE-SLICING

4.2 Straightforward Solutions

The most obvious solution to the dispatching problem is im & m dispatching ma-
trix, storing the outcomes of all possible dispatching queries. We stress that the order
of rows and columns in the dispatching matrix is arbitrary, and the performance of some
algorithms for compressing the matrix may depend heavily on the chosen ordering.

The dispatching matrix of our running example is presented in Figure 4.2(a), where
the nm — w type-message pairs which resultiinll are represented as empty entries.
The figure depicts in grey allentries which represent a method implemented in a certain
type. For example, the top right grey entry is to say that #pas an implementation of
messagé (Recall that typeéd was added to family, to resolve an ambiguity. Therefore,
the cell corresponding t(H, c) is rendered in grey.)

a|bjc|d|e|f|g/h|i]|j|k]]

AlA A

B B B

C C C

DD DD DA

E|A|BE E ClE

F C F F [b]

G|G DG G DG B|B

HIDIHH/D|H H DE E| B

KIA|B|E KK K F|E HIH

J C F J|F K|B
(a) (b)

Figure 4.2: (a) The dispatching matrix, and (b) the sorted dictionary for mebsage

In the matrix representation queries are answered by a quick indexing operation. How-
ever, the space consumption is inhibitivly large, e.g., 512MB for the dispatching matrix
in the largest hierarchy in our benchmarks (8,793 types and 14,575 messages).

There are two opportunities for compressing the dispatching matrix:

Null elimination There is much empirical evidence to show that dispatching matrices are
very sparseNull elimination which was the objective of almost all previous work,
is the attempt to store only the namdl elements in the matrix.

The ratio(nm) /w is an upper bound on the compression rate which null elimination
might achieve. The matrix of Figure 4.2(a) h#&) = 10 x 12 entries, out of
which, 46 are non-null. Null elimination in this case gives a compression factor of
no more thani20/46 ~ 2.6. In our benchmarks we found that on average, null
elimination might achieve compression by a factor of circa 150.

Null elimination can be achieved by storing each columnsarted dictionaryi.e.,

a sorted array ofkey,value-pairs. In the running example, the sorted dictionary
for messag® is depicted in Figure 4.2(b). In this implementation, the query time
Is logarithmic in the number of non-null entries in each column. Space is linear in
this number.

Dynamic perfect hashin@PH) [42] is theoretically better than sorted dictionaries.
In this algorithm each column (or the entire matrix for that matter) is stored as a

4.3. PREVIOUS WORK 61

hash table. Indices (or their concatenation) serve as keys. The space requirement
Is linear inw. More importantly, query time is constant! Unfortunately, DPH is of
mere theoretical interest since it carries large hidden constants, which might offset
any saving of space due to null elimination.

The more sophisticated previously published practical algorithms, try, and in most
cases achieve complete, or almost complete null elimination with no hidden con-
stants and constant search time.

Duplicates elimination Even though optimal null elimination may give very good re-
sults, it still leaves something to be desired. In one hierarchy of our data set,
featuring 3,241 types, an optimal null elimination scheme still requires 2.4MB.
Duplicates eliminationmproves on null elimination by attempting to store only the
distinct/ entries of the dispatching matrix. Therefore, the compression factor of du-
plicates elimination is at mogtum) /¢, which was around 725 in our benchmarks.

The ratiow// gives the factor by which duplicates elimination can improve on null
elimination. This ratio was as high as 122.4 in one of our benchmarks. In the matrix
of Figure 4.2(a) there are 27 distinct entries, iles 27, so duplicates elimination

has the potential of compressing the dispatching matrix by a facto2f27 ~

4.44.

Itis not difficult to come close to full duplicates elimination, with a simple represen-
tation of the hierarchy as a graph where types are nodes and immediate inheritance
relations are edges. The cost is of course the search time, which becgmgs

since each dispatch must traverse all the ancestors of a receiver in order to find the
smallest candidate. Sophisticated caching algorithms make the typical case more
tolerable than what the worst case indicates. This is the implementation in lan-
guages such é&SVALLTALK .

Our challenge here is to come as close as possible to optimal duplicates elimination,
i.e., space linear in the number of implementatignghile still maintaining small, prefer-
ably constant, query time.

4.3 Previous Work

This section gives an overview of some of the dispatching techniques proposed in the
literature. The performance of these techniques might be improved by using various forms
of caching at runtime (see e.g., [31,37,78]).

VFT: Virtual Function Tables[57] As mentioned above, the VFT technique is valid
only in statically typed languages [132]. In a single inheritance setting, VFT achieves
optimal null elimination and constant dispatch time. A distinguishing property of the
technique is that it does not require whole program information. The VFT of any type can
be constructed using only information regarding its ancestors.

62 CHAPTER 4. TYPE-SLICING

The multiple inheritance version of the VFT is much more complicated than the single
inheritance version, with complicated space and time overheads. Each type stores multi-
ple VFTs, and if a method is inherited along more than one path, then it will be stored in
these more than once. Further, in presence of shared (virtual) inheritance, searching for
an implementation is carried out by either following a chain of pointers to ancestors, or
by additional increase to object size usingssential virtual base pointefg8]. It was
shown [53] that these space overheads can be very significant. Even with this overhead,
dispatching time increases due to what is known in the C++ jargtiisis -adjustment

RD: Row Displacemen45,47] Another null elimination technique is due to Driesen [45]
who suggested to displace the rows in the dispatching matrix by different offsets so that
they could be merged together imzaster array Later [47] it was found thaselector
based RDi.e., a displacement of columns rather than rows, gives much better compres-
sion values. In fact this technique comes very close (median value 94.7%) to optimal null
elimination.

In dynamically typed languages vanilla RD does not work, sindé entries which
correspond tanessage not understoadll usually become occupied. It is possible to
amend RD with an increase to space requirement and adding one more comparison at
runtime? We stress that duplicates elimination (which we use) does not suffer from this
limitation.

CT: Compact dispatch Tablegl30-132] The very good compression results of RD
were improved significantly by Vitek and Horspool on some hierarchies. Their CT tech-
nigue aims at duplicates elimination. The idea is to partition the set of fanfliego
disjointslicesF, ..., Fj. Slicing breaks the dispatching matrix intsub-matrices, also
calledchunks Identical rows within each chunk are then merged. Each tyss an ar-

ray r; of sizek. Entryr.[i] points to the row of in chunk:. Dispatching in CT requires

an extra load compared to the dispatching matrix, but the merging of rows may reduce the
space requirement.

Our algorithms for multiple inheritance adopt the slicing idea. However, we slice the
set of types rather than the set of families.

SC: Selector Coloring[44,118] SC aims at null elimination by slicing the set of mes-
sages. Each slice must satisfy the following propenty:two messages in the slice can
be recognized by the same typ# other words, in each chunk, a row can have at most
one nonrull entry. This property makes it possible to merge together all the columns in
a chunk, resulting in a space requirement.of k.

The performance of SC is improved as the number of slices decreases. Since it is
computationally hard to find an optimal slicing, the slices must be found using a heuristic.

Yn general, dispatching in C++ is tightly coupled with its peculiar object-layout, and is therefore not
directly applicable to languages with different layout scheme. Simple object-layout have the advantage of
fast synchronization, hash-codes, and easier garbage collection.

2The trick is to add a prologue to each method which checks that the method indeed corresponds to the
sent message.

4.3. PREVIOUS WORK 63

As in RD, null entries are treated as empty in SC and therefore additional storage and an
extra comparison are required in dynamically typed languages. CT also uses SC in each
of the chunks.

Jalapdio [3] JavA’s invokeinterface bytecode instruction, i.e., messages sent to
receivers whose static type is arterface , cannot be implemented using the VFT
technique. Jalap®, an IBM implementation ofavA virtual machine, uses a fast incre-
mental variant of SC in realizing these instructions. Messages are hashéddsites,
wherek is an a-priori fixed number. Each type hasiatierface method tablef lengthk.

When the slicing property of SC does not hold, i.e., some type recognizes more than one
message in the same slice, then a conflict resolution thunk must be generated by the com-
piler. Since there is no bound on the number of conflicting messages in each hash table
entry, dispatch time is not necessarily constant. It is easy to see that the total memory
requirement isuk for the tables, plu®)(w) memory for conflict resolution.

Interval Containment for single inheritance hierarchief60,100] Interval containment
achieves optimal duplicates elimination at the cost of non-constant dispatch time. Our
dispatching technique is a generalization of interval containment for multiple inheritance
hierarchies. Let us describe this technique in greater detail.

Interval containment assigng's to types in a preorder traversal of the tree hierarchy.
An important property of the preorder traversal is that descendants of & tgfene an
interval. Therefore, each family’, defines a set of intervals, one for each tyge F'.

Figure 4.3(a) shows a tree hierarchy with three implementations of a message
types:A, B, andF, i.e., family F, = {A, B, F}. Then, as can be seen in Figure 4.3(b), these
family members define three intervals in the preorder travefsati, [5, 7], and |3, 3],
respectively. The intersections of those three intervals partition the types into four seg-
ments:[1, 2], [3, 3], [4, 4], and[5, 7], which correspond to family membews; F, A, andB,
respectively. The dispatch of messagen any given type depends only on the segment
this type belongs to. If, for example, the receiver is of t@whoseid is 6, then we find
that it belongs to segmefi, 7], and therefore returs.

a 1.2 3 4 5 6 7
[#[elr[o[e]e]c]
A

O OO
NBREREBEE
B © ©
(a)

() 11345
A|F|A|B

Figure 4.3: (a) A familyF, = {A,B,F} in a tree hierarchy, (b) the intervals and seg-
mentsF, defines, and (c) the representatiornfffas a sorted dictionary

Given a family I, there are/F’| intervals which partitiorZ” into at most2|F| + 1

64 CHAPTER 4. TYPE-SLICING

segmentswhere all types in a segment have the same dispatching result. Fansly
represented as a sorted dictionary, mapping segments’ starting point to methods. In our
example, Figure 4.3(c) shows a sorted dictionary that represents the segment partitioning.
This dictionary serves as the dispatching tableAor

Note that the sorted dictionary representation is linea#in The total memory for
representing all families is therefo€&(¢). In fact, the number of memory cells required
by this representation is at most

> 202/F|+1)=2m+4) |F|=2m+ 4L
FeF FeF

It remains to describe the representation of the sorted dictionary and the procedure to
determine the segment to which a specific type belongs. Algorithmically, the problem is
characterized as follows: Given a set of integ€rs. [1, ..., n], build a data structure to
implement the predecessor operatipred(x), defined as

pred(z) = max{y € S |y < x}, (4.8)

for any integer: € [1,...,n]. Lets = |S|. In our cases, which is smaller than twice the
number of different implementations, is typically much smaller thaWe will therefore
be more interested by algorithms whose resource demands are depengdeattoer than
onn.

In an array implementation it is possible to implempnid(x) using abinary search
in O(log s) time, while the space requirementigs). The hidden constants are small.

If the number of integers is not so small, then a theoretically superior algorithm is
the Q-fast trie[134], which achieve®)(y/logn) time while still maintaining the space
linear ins. Stratified trees, also callechn Emde Boas data structuf#28, 129], offer
a different tradeoff, with space linear im and timeO(loglogn). In the randomized
version of stratified trees the expected space requirement is redu€gd)toln practice
we expect the simple binary search algorithm to outperform these asymptotically better
competitors.

4.4 Dispatching using Type Slicing

Our dispatching technique for multiple inheritance hierarchies is a generalizaiiteef

val containmentor single inheritance hierarchies. The idea behind interval containment
is that there is an ordering of the tree hierarchy in which the descendants of any given
type are consecutive. The difficulty in the multiple inheritance case is that an ordering
of 7" with the above property might not exist. Figure 4.4 shows the smallest hierarchy for
which such an ordering is impossible. The reason is that such an ordering imposes the
contradicting constraints that B andC must be adjacent tD.

Instead of imposing a global ordering, we partition the set of typeasto disjoint
slices7,...,7, and impose a local ordering condition on each of the slices. For a
slice7; and a type (not necessarily iff';), let D;(t) be the set of descendantstoh 7,

4.4. DISPATCHING USING TYPE SLICING 65

®
Figure 4.4. The smallest multiple inheritance hierarchy for which no ordering exists
where all descendants of any type are consecutive

i.e.,
D;(t) = descendants(t) N 7T ;.

Figure 4.5 shows a patrtitioning of the hierarchy of Figure 4.1 into two slices:
Tl - {B7A7 D7 G7 C7 F7 ‘]}7
T, ={E,H,K}.

The grey entries in any column represent a set of descendants of some type. The sets of
descendants of typg, for example, in the two slices are

D,(A) = {A,D,G},

Do(A) = {E, H,K}. (4.9)

[A[B[C[DIE[F[G[H[K]J]

W= N O~ WN =
XImM |[«TMO® O >w

Figure 4.5: Type slicing for the hierarchy of Figure 4.1

The type slicing technique is based on the demand that thésgtsareconsecutive
in some ordering of the rows. Visually this means that the grey entries are consecutive
within each chunk. For instance, in Figure 4.5 the sets of (4.9) definatdrwals

Dy(A) = [2,4],
Dy(A) =1, 3].
Formally, each slicd; must satisfy the following slicing property:

(4.10)

There is an ordering off'; in which D;(¢) is consecutive for ablypest € 7.

Each typet is identified by a paiKs,, id;), wheres; is an id of the slice to whict
belongs, andd; is the position oft in the ordering of this slice. Thanks to the slicing
property, the seb;(¢) defines arntervalfor eachi, 1 <i < k.

A partitioning of 7 into slices which satisfy the slicing property always exists, since
this property trivially hold for singletons. We will strive to minimize the total number
of slices.

66 CHAPTER 4. TYPE-SLICING

Finding the slices We are unaware of any non-exponential method for finding the min-
imal number of slices. Instead we use a greedy heuristic: “try to make the current slice
as large as possible without violating the slicing property”. Specifically, we traverse the
types in a topological order, and try to insert each type into each of the slices. If all these
insertion attempts fail then a new slice is created.

Given a slice7; and a type, PQ-trees [17, 136] can be used to check whether there
is any ordering of 7, U{t} which satisfies the slicing property, ®(n - |7;|) time. In
insertingn types using this strategy, the total time might be cubie,invhich is highly
undesirable.

Instead we use a heuristic which, by not disturbing the existing ord@s; adchieves
a run time that depends only on the number of ancestarsTdferefore, the total runtime
of the above algorithm for finding the slices(igx|=|). The exact details of the heuristic
are presented in Section 4.10.

Dispatching using type slicing Given a typet and a family /", a dispatching query
returns the smallest typée F' suchthat’ = t. Let7; be the slice of. Given atype’, we
have that’ >t iff ¢ € D;(t'). We therefore must consider all intervalsiof(t'), D;(t') #

0, wheret’ € F. Since there are at mogt'| such intervals, we obtain a partition 8,
into 2| F'| 4+ 1 segments, where the result of the dispatch depends only on the segment
to whicht belongs.

Figure 4.6 shows the dispatching representation for the family
F.={C,D,E,H}

in the hierarchy of Figure 4.1. Consider, for example, the first slice. Only t@psdD

define non empty intervals, which aj& 7] and [3, 4], respectively. We also consider

the implicit interval[1, 7] for the methodnessage not understoo@hose three intervals
partition the types into three segmenits:2], [3, 4], and|[5, 7]. Message is represented

in the first slice using an appropriate data structure storing those three segments, and
mapping them tonull (message not understopd, andC, respectively.

1[B] 0]
2|/AlC D 0]
3D/ D]
4|G| D] 170
5[C| [C| 3D
6|F| C] 5|C
7] C|
1[E|T ' 1]E
2H [T |1 2/H
3Kl b lH 3|E
cC E

(a) (b)

Figure 4.6: (a) The intervals and segments of messagehe two slices of Figure 4.5,
and (b) the message representation in each slice

4.5. DATA SET 67

In general, a familyf" is encoded in slice/; by a data structure of choice which
represents a set of segments, mapping each one to the appropriate method implementation.
As in vanilla interval containment, this data structure can be a simple array, a Q-fast trie,
or a stratified tree. Obviously, each slice has its own unique such data structure.

Dispatching on type € 7 and family F' € F is carried out in three stages:

1. Findings,, the id of the slice of,
2. following this slice to find the respective data structurgofand then

3. carrying on as in single inheritance in a searchdpfin this data structure to find
the dispatching result.

Thus, dispatching in multiple inheritance hierarchies requires only two more steps in
comparison to dispatching in single inheritance hierarchies. The space requirement in
multiple inheritance hierarchies increases by a factor of at mo€wriously, this factor
depends only on the topology of the hierarchy and the quality of the slicing algorithm. It
does not depend in any way on the number of messages.

Reducing the number of slices We now describe one optimization that given the set of
messages reduces the number of slicesn our multiple inheritance benchmarkss
reduced by an average of 1.35. (In the LOV hierarchy, for example, the number of slices
Is reduced from 12 to 7.) The key observation is that the dispatching algorithm assumes
that each family membeére F' defined an interval for each slice. Therefoig(t) must

be consecutive iff ;, onlyfor those types which are indeed members in some family

Formally, we say that a typeis significantif there exists a family¥’ such that € F,
and redefine the slicing property as follows:

There is an ordering of7; in which D;(t) is consecutive for all significant
typest € 7.

Optimizations for statically typed languages We also note that istatically typed lan-
guages the binary searchalgorithm can be optimized. Suppose that we dispatch on an
object whosestatic typeis a. Then, at runtime, the binary search can begin at a smaller
interval, restricted only to the interval of descendants of each of the slices.

Moreover, we can even discard segments which correspontessage not under-
stood since such a case does not occur in statically typed languages.

4.5 Data Set

The data set for benchmarking dispatching algorithms has 16 single inheritance hierar-
chies with 29,162 types, 12 multiple inheritance hierarchies with 27,728 types, and seven
multiple dispatch hierarchies with 7,082 types.

68 CHAPTER 4. TYPE-SLICING

This benchmark includes 5 hierarchies out of 13 hierarchies used in previous exper-
imental work on subtyping. (We were unable to obtain information on the definition of
messages and methods in the other eight hierarchies.) As observed previously [53] many
of the topological properties of these hierarchies are similar to those of balanced binary
trees. The average number of ancestors in these hierarchies is less than 9 for all hierar-
chies, with the exception of Geode, in which it is 14.0 and Self, in which it is 30.9.

All degenerate families, i.e., families of size one (singletons), were eliminated from
the data set prior to running the experiments, since no runtime dispatching is required for
such families.

We stress that by eliminating degenerate families we only made thermgretdifficult
for our new dispatching algorithm and any other duplicates elimination scheme, including
CT. The reason is that degenerate families, in which there are only two distinct values in
their corresponding columns, have the greatest potential for duplicates elimination.

Table 4.1 gives a summary of the pruned hierarchies. The three blocks in the table
correspond to single inheritance-, multiple inheritance-, and multiple dispatch- hierar-
chies. We see that the hierarchies span a range of sizes, from about a hundred types up to
almost 9,000 types.

The row denotedotal in this and some of the subsequent tables corresponds to the
total or universal hierarchy obtained by a simple disjoint union of all hierarchies in the
ensemble. In most cases, the “Total” row therefore corresponds to an average of the
different hierarchies, weighted by size. In Table 4.1, this row indicates that in total the
dispatching benchmark spanned some 64 thousand types and 70 thousand messages.

The//n column shows the average number of method implementations per type. Ex-
amining the entries along this column we see that in many multiple dispatch hierarchies,
there are about one or two methods per type. A typical value of the other hierarchies is
four or five implementations per type. The San Francisco (SI: IBM SF) project gives the
largest number of methods per type (13.3).

In checking the//m column we find that families tend to be small, with average
values of around four to six methods in a family in most hierarchies. We note that the
average number of comparisons in a binary search in families is no greatéld@gtﬁﬂ.

The reason is that the geometrical mean is no greater than the arithmetical mean, and
therefore

1
L3 g, F| = Tog, <H|F|>

FeF FeF

FeF
0
= log, —.
ng m

Thus, just by inspecting thé/m column we learn that the number of comparisons is
about 3.

The next(nm)/w column gives the best possible factor by which null elimination can
improve upon the complete dispatching matrix. As can be seen from the table, this matrix

4.5. DATA SET 69

Hierarchy n m [/n [L/m |(nm)/w | w/l
Visualworks1 774 1,170 6.0 4.0 11.4 17.1
Visualworks2 1,956 3,196 6.9 4.2 21.60 21.3
Digitalk2 535 962 6.2| 3.5 7.1 21.7
Digitalk3 1,357 2,402 7.0, 3.9 9.0, 38.3
IBM Smalltalk 2 | 2,320 4,335 7.0, 3.8 49.1] 12.6
© | VisualAge 2 3,241 6,529 8.1| 4.0 35.6 22.7
«% NextStep 3117 499 6.8 4.2 9.6/ 7.7
= | ET++ 371 296/ 3.8| 4.8 9.0 8.6
3 | SI:JDK 1.3.1 6,681 4,392 3.6/ 54 228.8 5.4
5 | SI: Corba 1,329 222 1.9/11.6 425 2.7
8 | Sl: HotJava 644 690 45 42 186 8.2
SI: IBM SF 6,62611,66413.3 7.6/ 2689 3.3
Sl: IBM XML 107| 131 5.5 4.5 10.8 2.2
Sl: Orbacus 1,063 980 3.6/ 3.9 55.3 4.9
Sl: Orbacus Test| 579 368 4.1 6.5 37.6 2.4
Sl: Orbix 1,278 535 2.3 5.4 62.7 3.8
Self 1,802 2,45912.1 8.8 18.9 10.8
Unidraw 614 360 3.8/ 6.5 27.3 35
LOV 436 663 6.5 4.3 20.5 5.0
= | Geode 1,318 1,413 7.2 6.7 15.2 12.9
S | MI:JDK 1.3.1 7,401 5,724 39 50 300.7 4.9
% | MI: Corba 1,699 396 1.9 8.1 496 4.2
S | MI: HotJava 736 829 4.6 4.1 245 7.3
® | MI: IBM SF 8,79314,57513.2| 8.0, 328.3 3.4
S | MI: IBM XML 145 271 6.5/ 3.5 16.9 2.5
@ | MI: Orbacus 1,379 1,261 3.6) 4.0 70.14 5.0
MI: Orbacus Tesf 689 379 4.00 7.3 349 27
MI: Orbix 2,716 786 1.4 4.7 95.1 6.1
= | Cecil 932 1,009 4.5/ 4.2 12.9 17.3
S | Dylan 925 428 1.9 4.2 5.6 39.5
S | Cecil- 473 592 5.00 4.0 17.4 6.8
O | Cecil2 472 131] 1.2| 4.3 3.6 30.6
S | Harlequin 666 229 15 4.4 6.6| 22.7
S | Vor3 1,660 328 1.1 5.7 353 8.3
2 | Vortex3 1,954 476 1.3 5.2 3.0[122.4
Total 63,97470,680 6.5 5.9 1,242.40 8.7
Median 1,053.0 690.0 4.5 4.4 2160 7.3
Minimum 107} 131 1.1} 3.5 3.0 22
Maximum 8,79314,57513.3| 11.6 328.3122.4

Table 4.1: Statistical and topological properties of the 35 hierarchies used in benchmark-
ing dispatching algorithms

70 CHAPTER 4. TYPE-SLICING

is very sparse. In most cases, 90% or more of its cellsialie In hierarchies such as
MI: JDK 1.3.1 and MI: IBM SF we even find that the potential compression is by a factor
as high as 300. (The 1,242.0 bound for the universal hierarchy is meaningless.)

How much can duplicates elimination improve onaptimal null elimination? The
answer isin thev /¢ column. We observe a potential fadditionalcompression by factors
of about 10. Duplicates elimination performs very well precisely on the multiple dispatch
hierarchies, where mere null elimination is not as effective as it is in other hierarchies.

4.6 Experimental Results

In order to evaluate the quality of the order-preserving heuristic used in our TS technique,
we compared it with a much more powerful, but time consuming, heuristic which uses
PQ-trees. The superscript PQ shall denote the variant which use the PQ heuristic.

Space requirement We follow the popular convention of ignorirgpde spaceequire-

ment, i.e., assuming that there is a single generic dispatching routine which receives a
message-selector and a type-id. Although our results indicate that inlining of the binary
search might be worthy, further research is required to estimate the incurred code space
penalty. The following definition is pertinent to the comparison of algorithms.

Definition 4.2 Let W be the number of 4-bytes words the algorithm uses to encode the
dispatching tables of a certain hierarchy, then the algorithredundancy factoon this
hierarchy isWW/¢.

In other words, the redundancy factor of a dispatching algorithm in a certain hierarchy is
the ratio between the total space requirement of that algorithm and the lower bound ideal
implementation which usesbytes for storing the address of each method.

Table 4.2 gives the redundancy factor of different algorithms on the 35 hierarchies in
our dispatching benchmark. In reading the table, remember that better algorithms have
lower redundancy factors.

Algorithms CT, TS, and TS attempt to achieve duplicates elimination. The other
algorithms rely on null elimination. The results in the table do not include the additional
provisions mentioned above for the RD, CT, and SC algorithms to support dynamically
typed languages. The redundancy factors have to be appropriately adjusted to include
selector verification information.

Since we did not have access to the original implementation and heuristics of SC and
CT, redundancy factors reported in the respective columns present a lower bounds on these
values: In SC, the number of slices is no less than the maximal number of messages that
a type understands. In estimating CT, the set of messages was divided into chunks of 14
messages each (as prescribed in [132]). We then applied the SC lower bound estimate in
each chunk.

The results of the VFT technique are calculated in the traditional manner [47], under
the assumption that there are no virtual bases. The size of a type VFTs equals the sum

4.6. EXPERIMENTAL RESULTS 71

Hierarchy CT | VFT | sC RD | TS™ | TS | Men¥
Visualworks1 18.3| 17.1| 24.3] 173| 28| 25 45
Visualworks?2 375 21.3| 39.8| 21.7 26| 25 134
Digitalk2 15.8| 21.7| 59.8| 22.0| 3.0/ 2.7 35
Digitalk3 298| 38.3| 925| 388| 3.0| 27 08
IBM Smalltalk 2 | 48.9| 12.6| 37.5| 154| 3.0| 2.6 165
© | VisualAge 2 63.0| 22.7| 623| 29.2| 3.0| 26 267
& | NextStep 10.7| 7.7| 218 79| 29| 26 22
= | ET++ 99| 86| 260 89| 26| 24 13
32 | SI:JDK 1.3.1 91.9| 54| 679| 62| 26| 24 219
Z | SlI: Corba 10.1| 27| 25.2| 37| 28| 27 27
§ SI: HotJava 155| 8.2| 337| 85| 28| 25 28
SI: IBM SF 66.0| 3.3| 26.0| 35| 24| 22 744
SI: IBM XML 42| 22| 84| 25| 25|21 5
SI: Orbacus 226| 49| 350| 51| 28| 24 36
SI: Orbacus Test 8.4 24| 439 2.9 25| 2.3 21
SI: Orbix 21.3| 38| 357| 46| 28| 25 29
Self 17.6| 10.8| 27.3| 11.1| 30| 28 240
Unidraw 10.7| 35| 153| 40| 27| 25 23
LOV 12.1| 12.8| 11.8| 5.2| 44| 45 50
=z | Geode 19.2| 449| 404| 16.2| 55| 6.1 228
S | MI:JDK1.3.1 109.2| 58| 624| 55| 41| 41 463
= | MI: Corba 185| 65| 356| 49| 34| 33 42
S | MI: HotJava 17.3| 85| 39.0| 76| 42| 46 60
® | Ml: IBM SF 823| 59| 26.2| 35| 38| 37| 1,663
8 | MI: IBM XML 57| 35| 87| 26| 35| 33 12
8 | MI: Orbacus 280| 6.9| 375| 53| 4.0/ 38 75
MI: Orbacus Testf 8.8 35| 453 3.0 32| 3.2 35
MI: Orbix 451| 7.0| 645| 67| 36| 34 49
= | Cecil 195| 34.0| 346| 178 42| 41 68
S | Dylan 20.5| 46.3| 716| 402| 35| 35 24
= | Cecil- 12.7| 12.7| 27.7| 72| 45| 438 45
O | Cecil2 11.6| 100.3| 69.7| 31.2| 33| 3.9 9
S | Harlequin 14.2| 47.9| 83.3| 235| 43| 44 18
S | Vor3 241| 19.4| 50.8| 93| 34| 35 26
2 | Vortex3 29.2| 375.7| 159.7| 124.0| 35| 4.1 40
Total 55.7] 22.8] 485] 13.3] 3.3] 3.2 433
Median 185| 85| 375| 76| 30| 28 42
Minimum 42| 22| 84| 25| 24| 21 5
Maximum 109.2 | 375.7| 159.7| 124.0| 55| 6.1| 1,663

aA lower bound on SC redundancy factor
bThe space requirements of TS in kilo-bytes

Table 4.2: The redundancy factor of different dispatching algorithms and the total memory
requirements of TS in kilo-bytes

72 CHAPTER 4. TYPE-SLICING

of its parents VFTs plus the number of newly introduced messages. However, in practice
inheritance is usuallghared(not repeated, giving rise to other overheads [53].

In studying the last column of the table (labeled “Mem”) we see that the total space re-
guirement of type slicing ranges between 5KB to almost 1.7MB. When viewed in relative-
rather than absolute-terms (in the penultimate column labeled TS showing redundancy
factors), we find that the space requirement of type slicing is about three or four times
larger than a theoretic optimal duplicates elimination.

In comparing the columns TS and RSve find that using the PQ-heuristic does not
always improve the space performance. In fact, in all single inheritance hierarchies, and
several multiple inheritance hierarchiesintreaseshe memory consumption of the al-
gorithm. The improvement, in the few cases it occurs, is quite small; a maximum of 15%
in the Vortex3 hierarchy.

RD is better than our main TS algorithm in three out of 35 hierarchies: IBM SF
(redundancy factor 3.5 in RD vs. 3.7 in TS), IBM XML (2.6 vs. 3.3), and Orbacus Test
(3.0 vs. 3.2) multiple inheritance hierarchies. We see that even in these cases the space
requirement of TS is comparable to that of RD.

TS however always wins against CT, VFT, SC, and against RD in all other hierar-
chies, sometimes by factors as large as 30. For instance, in the Vortex3 hierarchy, RD
uses 1.24MB, an optimal null elimination scheme will use 1.22MB, while TS uses 40KB!

The average improvement of TS over RD is by a factor of 4.6, while the median
improvement is by a factor of 2.6. In fairness, it should be said that all these algorithms
dispatch in constant time, using simple array references, while TS uses a non-constant
time binary search. This constant time must be extended to include selector verification in
dynamically languages, which is not required in TS. Conversely, as we saw in Section 4.4,
the search time in TS can be reduced in statically typed languages.

In general, the VFT algorithm is the next best algorithm amsimgjle inheritance
hierarchies The RD algorithm is usually the second bestruiltiple inheritance hierar-
chies while CT performs well ormultiple dispatch hierarchies

We remind the reader that the comparison presented in Table 4.2 is different than that
reported in the literature, since even though we used the same hierarchies, we eliminated
degenerate families from the benchmark. Different algorithms compress such families to
different levels.

Creation time Table 4.3 compares the times for creating the compressed dispatching
data structures using RD with those of TS and those 6R.TSince we could not obtain

the original implementations of SC and CT, their runtime is not reported. Vitek and Hor-
spool [132] report that CT required 1.5 seconds for NextStep hierarchy, and 4.8 seconds
for Visualworks2, on a Sparc station 5. The implementation of VFT is so straightforward
and fast that its runtime overhead can be considered as zero for many practical purposes.

TS is consistently better than RD, sometimes by a factor of hundreds. The average
improvement of TS over RD is by a factor of 37.4, while the median is 6.3. (Since RD is
a heuristic it may sometimes find a good solution quickly.y?liSvery slow.

4.6. EXPERIMENTAL RESULTS 73

Hierarchy RD | TS TS
Visualworks1 54 5 261
Visualworks?2 250 | 13 2,430
Digitalk2 54| 3 130
Digitalk3 281 9 1,040
IBM Smalltalk 2 3,430 15 3,790
%3, VisualAge 2 18,800| 24 8,160
S NextStep 13 1 50
= | ET++ 9| 1 60
g SI:JDK 1.3.1 162 | 26 33,600
g | Sl: Corba 11 3 561
8 | SI: HotJava 22| 2 211
Sl IBM SF 1,620| 69 30,300
Sl: IBM XML 1 1 10
Sl: Orbacus 27 4 401
Sl: Orbacus Test 12 1 110
Sl: Orbix 18 3 571
Self 242 | 30 27,600
Unidraw 9 3 371
LOV 18 5 3,430
=z | Geode 182 | 38 66,800
S | MI: JDK 1.3.1 240| 88| 324,000
S | MI: Corba 26| 9 10,400
3 | MI: HotJava 30 7 3,390
2 | Ml: IBM SF 903 | 307 | 1,740,000
8 | MI: IBM XML 2] 1 140
8 | MI: Orbacus 31| 11 12,700
MI: Orbacus Test 11 4 1,740
MI: Orbix 31| 14 12,400
=z | Cecil 57 9 6,410
S | Dylan 48 5 1,870
= | Cecil- 18| 4 2,490
g_ Cecil2 16 1 2,650
S | Harlequin 23 2 2,710
S | Vor3 24| 9 23,400
2 | Vortex3 394| 11 42,100

Table 4.3: Encoding creation time in milliseconds, on a 900 Mhz Pentium lll, of different
dispatching algorithms

Dispatch time Recall that in TS we associate with each message an array of the
addresses of the appropriate binary search code in each slice. The main performance
metric of such code is the number of conditionals.

We computed the average number of such conditionals, taking care to weigh each
slice proportionally to the number of types in it. The average number of such conditionals
in the 35 hierarchies ranged between 0.6 and 3.4; the median value being 2.5. (Even
though the experiments used only non-degenerate families, i.e., families with two or more
methods, it turned out to be that the number of conditionals was sometime zero, precisely

74 CHAPTER 4. TYPE-SLICING

when there was only one method implementation in a slice.)

A potentially better technique eliminates the jump by coalescing the jump and the
binary branch code of each message. Observe that with this technique dispatching time
increases fromO(log|F'|) to O(log x| F|). In practice, if this is implemented then the
average number of comparisons ranges between 2.5 to 3.8; the median becomes 2.9. We
see that the indirect jump is substituted by about one or two comparisons on average.
We should also say that this coalescing technique reduces the total memory requirement,
since it eliminates the array of theaddresses which was associated with each message.
We finally note that, for this technique, we can use a weaker definition for the complexity
of an hierarchy, which isthere exists an ordering &f in which the descendants of any
type define at most intervals

4.7 Multiple Dispatching

Interestingly, our results have applications also to the more general multiple dispatching
problem.

4.7.1 Introduction to Multiple Dispatching

Remember that in ordinary dispatching, the method to be invoked depends only on the
type of a single receiver. In contrast to this single dispatchingltiple dispatchings

the dispatch over several arguments. Consider, for example, a geometric modeling ap-
plication, in which shapes such as rectangles, triangles, circles, are to be depicted on
various drawing canvases, such as screens, printers and files. Then, the appropriate draw-
ing method is to be selected according to both the shape and canvas kind. Languages
such asPoLYGLOT [2], KEA [99], ComMONLoOOPS[16], CLOS [15], CEcCIL [26],

DYLAN [120] make only a partial list of the new generation OO languages which sup-
port multiple dispatching in the form ahulti-methods

Even though multi-methods are believed to be more expressive, natural and readable
thanmono-methodghey did not find their way into more mainstream languages. One of
the reasons is probably the perceived cost of implementation. The prospect of efficient
multiple dispatching drew much research effort [5, 27, 28, 51, 52,61, 77,87, 112]. The
contribution that this paper makes is improving the memory requirements of two existing
practical techniques of multiple dispatching.

Multiple dispatching can be viewed as dispatching over tuples. Given a hier@rchy),
we define the-tuplehierarchy(7°¢, <), where

(ay, ... ac) X' (by,...,b) Iff YVi=1,... ¢c:a; =<0
A multi-methodm(ty, . .., t.) can be thought of as a mono-method defined inntlogti-

type(ty, ..., t.) € T°. However, this perspective does not lead to any efficient algorithms
because of the size of thetuple hierarchy.

4.7. MULTIPLE DISPATCHING 75

4.7.2 Review of Algorithms for Multiple Dispatching

The best practical techniques for multiple dispatching known todayarepressed N-
dimensional Table§CNT) [5, 52, 87] andSingle-Receiver Projectior(SRP) [77]. Both
techniques begin with the samnmeono-dispatch stagen which ¢ independent single-
dispatch queries are executed for a multi-method of arityhe results of these queries
are then used in theesolution stagevhich is technique specific.

The mono-dispatch stage quickly reduces the number of candidate methods using the
following observation. For a given multi-famil, let 7;(F') be the set of all types which
occur in position: in some tuple of the multi-family, i.e., if (¢t1,...,t;,...,t.) € F
thent; € T;(F). Then, the dispatching af on a multi-type(ty, . . ., t.), can be made eas-
ler by first using a single-dispatch algorithm for finding for eaeh1, . . ., ¢, the dispatch-
ing resultt; = dispatch(T;(F'),t;). Notice that it might be the case that, ... ,t.) ¢ F.

Consider, for example, the multi-family
F={(A,A),(A,D),(B,D),(E,D)}, (4.12)
defined over the type hierarchy of our running example (Figure 4.1). Then,

T\ (F) = {A,B,E},

Ty(F) = {A,D}. (4.13)

In dispatching the multi-typéH, D), the mono-dispatch stage first determines that E
and that, = A. The resolution stage then continues with the multi-type?). Note that
even thoughE, A) ¢ F, we still have thatispatch(F,H, D) = dispatch(F,E, A).

Fact 4.3 (DUJARDIN ET AL. [52, P. 129]).If dispatching never result inull then there
is always a unique sudh). Further, dispatching offt4, . . ., ¢.) is the same as dispatching
on(ty,...,t.),ie.,

dispatch(F,ty,...,t.) = dispatch(F, ¢, ... t.).
The CNT technique creates-alimensional dispatch table with entries for each multi-
type in the cartesian product
Ti(F) x -« x T(F).
The dispatching table for the multi-family of (4.12) is shown in Table 4.4.

A D

A | (AA) | (AD)
B| nul | (B,D)
E|(AA) | (ED)

Table 4.4: CNT representation for the multi-family of (4.12)

The resolution stage in CNT requires orilyc) time. The number of memory cells
for representing the multi-dimensional dispatch table is reduced €omi) to

T2 (F)] x - < |T(F)| = O(F[%), (4.14)

76 CHAPTER 4. TYPE-SLICING

which might still be very large.

SRP gives a different tradeoff in which the time of resolution increasés(tor|),
while the space (in bits) is

[F|(ITi(E)| + -+ |To(F)]) = O(c(| F])?). (4.15)

An asymptotic comparison of the bound (4.15) witfy| F'|)¢ log| F'|), the bound on num-
ber of bits in the CNT representation obtained from (4.14), as well as practical experience,
shows that SRP is usually more space efficient than CNT.

SRP uses an encoding of subsetgodis bit vectors of length#'|. The positions in
this bit vector are given in a topological order, so that smaller multi-types are positioned
first. Foralli =1, ..., ¢, andforallt € T;(F'), the technique encodes the set of all family
members which might be candidates if tHeargument is of type, i.e., the set

(1o tis) € F | E=1) (4.16)

At the resolution phase, the intersection of @Bets defined by (4.16) is computed
by ANDing the bit-vector representation of these sets. The smallest multi-type in the
intersection is then found usindiad-first-setoperation, which can often be implemented
as a single machine instruction.

Assuming that the multi-methods in (4.12) are positioned in the following order:
{(E,D), (B,D), (A, D), (A, A)},

then the bit-vectors assigned with the Sét§F) and7:>(F’) of (4.13) are shown in Ta-
ble 4.5.

T\(F) | vector Ty (F) | vector
A 0011

A 0001
B 0100 D 1111
E 1111

Table 4.5: SRP representation for the multi-family of (4.12)

4.7.3 Reducing the Space Requirement of the Mono-dispatch Stage
with Type Slicing

We applied the mono-dispatch reduction on multiple dispatching benchmarks, drawn
from various languages. The resulting hierarchies were used as benchmarks to single-
dispatching algorithms. Degenerate multi-families, and degenerate arguments were re-
moved?

The mono-dispatch stage in SRP or CNT [5,52,77,87] is currently carried out using
either the technique of SC or RD for single dispatching, which are both null elimination
schemes.

3A multi-family F is degenerate ifF’| = 1. The:" argument is degenerate|if;(F)| = 1.

4.7. MULTIPLE DISPATCHING 77

Table 4.6 compares the average numbditsfper multi-family for the mono-dispatch
stage and the resolution stage. Theno-dispatch stages carried out using either our
type slicing (TS) technique, or using an ideal null elimination scheme which requires
entries. Thaesolution stages carried out using either SRP or CNT. The results were
broken down by arity of the multi-method, which ranged between 2 to 4.

Arity

Hierarchy 2 3 4

TS w?| SRP| CNT| TS w?| SRP| CNT| TS w?®| SRP| CNT
Cecil 296| 718| 234| 110| 380| 1,718| 168| 501| 263| 2,798 16 16
Dylan 228| 1,100| 115, 142| 496| 3,903| 609| 8,906 697| 4,031| 801| 38,475
Cecil- 269| 177| 180, 473| 327 137| 30 73| 408 272| 16 16
Cecil2 241| 373| 270, 644| 286 740| 30 73| 352| 272| 16 16
Harlequin| 283| 466| 148| 185| 284| 471| 123] 238 O 0 0 0
Vor3 330| 303| 347| 925| 485| 278| 666| 1,449| 328| 320| 16 16
Vortex3 | 351| 2,100| 294| 720| 469| 5,996/ 302| 828| 472| 320| 16 16

aAn ideal null elimination scheme

Table 4.6: Average number of bits per family for the mono-dispatch stage and the resolu-
tion stage

The space requirements presented in the table are in a way a lower bound, since we
used a bit granularity rather than byte. For instance, in the ideal null elimination scheme,
an entry for familyF" occupieglog,| F'|] bits. Also, in thec-dimensional matrix of CNT,
the number of bits in one matrix entry is not necessarily divisible by 8. The same is true
for the bit-vector size in SRP, or the size of entries in our array implementation of TS.
Therefore, shift and mask operations are needed in order for the assumption to hold.

We observe the following in the table:

1. Therelative advantagef SRP over CNT (in theesolution stageincreases with
the arity. For example, in thBYLAN hierarchy SRP improves on CNT by 19% for
an arity of 2, by 93% for an arity of 3, and by 98% for an arity of 4. This fact is in
agreement with the theoretical analysis of SRP in (4.15) and of CNT in (4.14).

2. The space requirement of thheono-dispatch stagesing an ideal null elimination
scheme dominates those of tlesolution stageising SRP. In other words, the ben-
efits of a space efficient resolution stage are wasted if we simply use RD or SC in
the mono-dispatch stage.

The reason that null elimination performs so poorly in the multiple dispatching
benchmark is that many multi-methods hawet-type argumentt handle unex-
pected combination of arguments. Null elimination schemes cannot compress such
multi-methods. Therefore, it was even suggested [77] to compare different algo-
rithms on data sets without such multi-methods. Duplicates elimination schemes,
such as CT and our TS, performs especially well on such cases.

3. Using TS instead of a null elimination scheme reduces, in most cases, the space
requirement of thenono-dispatch stageln the Cecil- and Vor3 hierarchies (and

78 CHAPTER 4. TYPE-SLICING

in the Cecil2 hierarchy for the case of an arity 4) an ideal null elimination scheme
Is better than TS. However, in the other five hierarchies TS is better by as much
as 92%.

4.8 Incremental Algorithm for Constant-time Subtyping
Tests

4.8.1 Problem Definition

In theincremental versiof the subtyping problem, the type hierarchy may grow during
program execution as new types are added as leaves. Such additions are allowed, e.g.,
in JAVA [7]. This dynamic hierarchy model gains increasing popularity since it shortens
the initialization time of applications loaded from a local storage device, such as a disk,
and even more so from a remote device such as the network. Also, in mission critical
systems, in which an application cannot be restarted, it is convenient to make updates to
the running software by simply loading more types. Finally, we note that this problem
also appears in the implementation of ScopedMemory of Real-time Java [34, 110] where
the memory is organized at runtime in a dynamic tree structure.

Almost all previous work on the subtyping problem [59,84,90,115,127,133] mention
an incremental extension of the proposed algorithm. However, these after thought addi-
tions invariably suffer from the limitation that the total time for building the associated
data structures is much greater in a piecemeal feed of the type hierarchy, than if the entire
hierarchy is supplied up front.

An algorithm for the dispatching problem is also a solution to the subtyping problem,
since if we associate with each typae unique familyF; = {t}, thena < b holds precisely
whendispatch(F;,a) # null. We know of no opposite reduction. Indeed, solutions of
the subtyping problem tend to be more efficient then their dispatching counterparts.

After this reduction, applying TS gives constant-time subtyping tests. The reason is
that the dispatch time i©(log|F'|), and |F'| = 1. For completeness we describe the
subtyping algorithm in detalil.

4.8.2 Previous Work on Subtyping Tests

(B)PE: (Bit) Packed Encoding133] SC was specialized into a subtyping test scheme
called Packed Encoding (PE), by Vitek, Horspool and Krall. They also suggested packing
several identifiers into the same byte, resulting in an encoding called Bit Packed Encod-
ing (BPE).

NHE: Near Optimal Hierarchical Encoding[90] Bit-vector encodinggmbeds the hi-
erarchy in the lattice of subsets f, . . ., 5}. In this scheme, each typeis encoded as a
vectorvec, of 3 bits, such that relation < b holds iff

vec, A\ vec, = vecy . (4.17)

4.8. INCREMENTAL SUBTYPING TESTS 79

The challenge in building a bit-vector encoding is in finding the minigdbr which

such an embedding is possible. The problem is NP-hard [75], but several good heuristics
were proposed. Currently, NHE due to Krall, Vitek and Hoorspool, is the best (in terms
of smallests) algorithm for bit vector encoding.

Bommel and Beck [127] describe an incremental technique for updating a bit-vector
encoding. Although no asymptotic results are given, and testing was limited to “randomly
generated hierarchies”, it appears from the authors description that the technique is useful
for small hierarchies, with at most 300 types.

PQE: PQ-Encoding[136] PQ-encoding, which uses PQ-trees [17] gives one of the best

compression results of the subtyping matrix, while maintaining constant time for queries.
PQE is not incremental since it requires feeding whole program information into a very
sophisticated data structure.

Dynamic subtyping in single inheritance Dietz [40, 41] suggested an asymptotically
optimal solution to the dynamic subtyping problem, i.e., linear space requirement and
constant time for queries and additions. The idea is to maintain the pre- and post-orders
of the tree in arordered list(see Section 4.10). Subtyping tests are answered by using
two ORDER queries relying on the fact that< b iff a occurs beforé in the post-order

andb occurs before: in the pre-order.

A different incremental algorithm for single inheritance is Cohen’s algorithm [29].
Let!/; = |ancestors(t)| denote the level of. The algorithm associates with each typn
array of length;, storing the type-id of eacth = ¢ in position/,,. Cohen’s algorithm gives
simpleand constant-time subtyping tests. The cost is that the space requirement might
be O(n?) if the hierarchy is, for instance, a long chain. In practice, since the maximal
number of ancestors is relatively small, the space requirement of Cohen’s encoding is
tolerable. Jalag®e [4], IBM implementation of theJava virtual machine (JVM), uses
Cohen’s algorithm for subtyping tests where the supertype is a class.

4.8.3 Subtyping using Type Slicing Scheme

Our incremental subtyping algorithm is based on the order-preserving heuristic for main-
taining the slices (described in Section 4.10). The non-incremental variant is described
next.

Figure 4.5 showed the slicing of the running example into two slices. We associate
with typeA, for example, the following data,

Sa =1,

id, = 2,
Dl(A) = [274]v (418)
Dy(A) =11, 3].

Encoding a hierarchy in this fashion requires at n¥st + 2n memory cells.

80 CHAPTER 4. TYPE-SLICING

Sincedescendants(t) = |J,,;-,. Di(t), we have that < b holds if and only if the
position ofa is within the appropriate interval of i.e.,

id, € Dy, (b). (4.19)

For instance, we test wheth@r< A, by retrieving the slice oG, s; = 1, and its identi-
fier,ids = 4. We then determine whether this identifier falls inside the appropriate interval
of A. In this example, we conclude that< A since4 € [2,4].

4.8.4 Experimental Results for Type Slicing

To make the comparison of incremental and non-incremental algorithms meaningful, we
do not include in the space requirement pointers or other auxiliary data used in computing
the encoding or in maintenance of the dynamic data structure. In the case wypeur
slicing (TS) algorithm this auxiliary data is a small number of (about four) words per

type.

The BTS variantof the basic TS algorithm applidst packingto compress the iden-
tifiers of types in small slices, in a manner similar to BPE. Note that the BTS and the
BPE variants are slower than their non-packing counterparts, since they are obliged to
use shifts and masks to unpack the type identifiers. As mentioned in Section 4.6, the
superscript PQ shall denote the variant which use the PQ heuristic.

Creation time Table 4.7 compares both the total and the per-type run time of differ-
ent subtyping algorithms on modern computing platforms. In the worst case hierarchy
(Geode), the average time required to insert a type using (B)TS algorithms is as little
as 16 micro-seconds. We also see that the PQ variants of TS are very slow, requir-
ing 17.223 mSeper typein this hierarchy, whereas the basic TS algorithms require just

a little more (21 mSec) to process thtire hierarchy.

To estimate the cost of using the PQE in an incremental fashion, we can compare the
total timeof PQE with theper-type timeof the incremental (B)TS. In doing so we find
that (B)TS is three to four orders of magnitude faster than PQE. Evdptdleguntimeof
the (B)TS algorithms is, on average, three times faster than that of PQE.

Despite the fact that the data on the NHE runs was generated on a different architec-
ture, we argued [136] that PQE is in general faster than NHE.

Space requirement The main metric of subtyping algorithms is the encoding length,
l.e., the number of bits per type. Table 4.8 compares the encoding length obtained by
TS and its three variants with those of some other algorithms over the standard ensemble
of 13 multiple inheritance hierarchies.

In comparing the last two columns of the table we learn that our quick order-preserving
heuristic can be improved, sometimes by as much as 40% by applying the PQ heuristic.
However, in going through the BTS column we discover that bit-packing is a more effec-
tive compression technique, outperformed by <8 only two out of the 13 hierarchies.
Therefore, it seems worthwhile to spend the little extra time in the subtyping tests of BTS.

4.8. INCREMENTAL SUBTYPING TESTS 81

PQE? NHE P (B)PE® (B)TS® (B)TS™®

Hierarchy | Total | Per7 | Total | Per7 | Total | Per7 | Total |Per7 | Total | Per7

(mS) | (uS) | (MS) | (uS) | (MS) | (uS) | (MS) | (uS) | (MS) | (uS)
IDL 1 15 - - 5 75 0.1 1 1 15
Laure 3 10 21 71 9 31 0.5 2 90 305
Unidraw 1 2 93 151 10 16 1.6 3 90 147
JDK 1.1 1 4 19 84 10 44 0.3 1 30 133
Self 48 27| 1,367 759 22 12| 20.2 11| 12,100| 6,715
Ed 29 67 136 313 12 28 1.7 4 711 1,638
LOV 42 96| 168 385 10 23 2.0 5 941 | 2,158
Eiffel4 146 73 - - 29 15| 195 10| 11,400| 5,703
Geode 311 236| 1,902 | 1,443 28 21| 20.6 16| 22,700|17,223
JDK 1.18 15 9 - - 26 15| 10.0 6 2,520 1,479
JDK 1.22 81 19 - - 77 18| 38.1 9| 32,500| 7,490
JDK 1.30 113 21 - - 90 17| 53.8 10| 49,800| 9,158
Cecil 24 26 - - 13 14 4.4 5 2,000| 2,146
Total 815 42 - -| 341 17| 172.8 9| 134,883| 6,880
Median 29 21| 136 313 13 18 4.4 5 2,000| 2,146

2900 Mhz Pentium Il
500 Mhz 21164 Alpha
¢750 Mhz Pentium Ill, user time in Linux

Table 4.7: Total time (in mSec) and average time per tyf8e€) for generating a subtyp-
ing encoding

Hierarchy | PQE | NHE | BPE | PE | BTS"™® | BTS | TS™? | TS

IDL 0 17 32| 96 56 64 40| 56
Laure 6 23 63 | 128 72 80 88| 152
Unidraw 2 30 63| 96 72 72 88| 88
JDK 1.1 1 19 32| 64 64 64 56| 56
Self 39 53| 126 | 344 88 96| 120| 152
Ed 36 54 94 | 216 144 | 152 | 376 | 408
LOV 42 57 94 | 216 144 | 152 | 376 | 408
Eiffel4 65 72| 157 | 312 160| 176| 312| 344
Geode 80 95| 157 | 408 248 | 264 | 600 | 632

JDK 1.18 25 39 94 | 128 104 | 112 | 152 | 184
JDK 1.22 36 62| 157 | 184 152 | 168 | 280 | 312
JDK 1.30 41 65| 188 | 216 160| 192 | 280| 376

Cecil 22 58 94 | 192 104 | 112 | 184 | 216
Total 40 61| 145| 227 144 | 161 | 266 | 315
Median 36 54 94 | 192 104 | 112 | 184 | 216

Minimum 0 17 32| 64 56 64 40| 56
Maximum 80 95| 188 | 408 248 | 264 | 600 | 632

Table 4.8: The encoding lengths of different subtyping algorithms

82 CHAPTER 4. TYPE-SLICING

Note also that applying the PQ heuristic on top of bit packing does not yield much:
the maximal compression of the encoding length in doing so is 16.7%. Therefore, our
basis of comparison of the incremental algorithms with their static counterparts will be
the BTS column.

The BTS encoding is better than PE in all hierarchies, but is only better than BPE in
the Self hierarchy. It is slightly worse than BPE in all but the Geode hierarchy. BTS does
not yield as good encoding length as NHE and PQE. However, since BTS is incremental,
it can answer subtyping queries during any stage of the creation process—a task in which
PE, BPE, NHE and PQE falil.

4.9 Open Problems

The most important problem this thesis leaves open is an incremental dispatching algo-
rithm, i.e., allowing additions of types, along with their methods, at the bottom of the
hierarchy. Another natural extension worth investigating is in allowing dédetionof

leaves from the hierarchy, as supported, at least in pada\ay. Other extensions include
addition of new methods to existing types, or as it might be the case in knowledge repre-
sentation, reasoning, database management, and query processing, allowing insertion of
types anywhere in the hierarchy.

In the more pure algorithmic front, it would be both interesting and useful to general-
ize the PQ-tree data structure to support modifications of existing constraints when a new
element is added to the universe.

Our algorithms assumed that ambiguities are resolved by an appropriate augmentation
of families. Some OO languages resolve ambiguities based lorearization of the
partial order<. CoMMONLOOPS[16], for example, uses a global type ordering, while
CLOS[15] uses a local type ordering. Extending our algorithms to support linearization
based ambiguity resolution appears to be a worthy prospect.

Dispatching and linearization also occurdavA exception handling, as the following
code excerpt shows.

try {.. }
catch (D d) {.. }

catch (E e) {.. }
catch (A a) {... }

When an object of a dynamic typex = a(o) is thrown in atry block, the program
executes the firstatch block whose argument is a supertypeaof Thus, each of the
catch clauses is a subtyping test. When the number of such clauses is large, it might be
worthwhile to choose the exception handler using a dispatching algorithm which will find
the clause with the smallest supertypAmbiguities are resolved using the order of the
catch blocks chosen by the programnter.

4The above code, if read in C++ [124], leads to the same problem. This is due to the separate compilation
model of C++, in spite of the fact that exceptions are caught according stettietype of the thrown object.
5In fact, there is no possibility for ambiguity i#avA exception handling. The reason is that a type in

4.10. ORDER-PRESERVING HEURISTIC 83

4.10 An Order-Preserving Heuristic for Finding the Slices

The algorithm for creating the slices uses the order-preserving heuristic as an internal
procedure in the following fashion. We traverse the types in a topological order, i.e., as if
the hierarchy is given to us incrementally where new types can be added only as leaves.
For each such type we try to find the first slice it can be added to, without violating the
slicing property. If no such slice is found, we create a new slice.

Given a slice7; and a type, we give an algorithm whose runtime|isicestors(t)|,
which checks whether there is a valid list location for insertingnd if so, finds it. The
idea is to maintain aordered listfor all types in a slice. The slicing property is slightly
modified so that the sef3;(¢) are consecutive ithe ordered lisof slice7 ;.

An ordered listis a data structure supporting two kinds of operatidnsERT trans-
actions andDRDER queries of the following sort. Given two positions in the list (usually
as pointers to list nodes), determine which one precedes the other. In a paper entitled
“Two Algorithms for Maintaining Order in a List”, Dietz and Sleator [41] give the best
algorithm for this problem, achievin@(1) worst-case time per operation. However,
the authors comment that their other algorithm “is probably the best algorithm to use
in practice”, even though it is theoretically inferior, since its amorfiziedertion time
is O(logn). This other algorithm is based on a technique knowseadadjustmentin a
nutshell, each list node is assigned an integer position in an increasing ordédRrbag
gueries are answered in constant time. “Holes” are left to support future insertions, and
if a “hole” is filled, then we redistribute the positions in some “sufficiently large and un-
even” list interval. We implemented this simple algorithm and indeed found it to be very
fast in practice.

Before describing the order-preserving heuristic we need to make the notions of list
locations and list intervals more precise.

Definition 4.4 A locationof a linked list is either (i) the beginning of the list, (ii) the end
of the list, or (iii) any point between two consecutive nodes of the lisint&nvalin the
list is a set of consecutive locations. Tiheundaryof an interval comprises its first and
last locations. All other locations are called ti@erior of the interval.

The boundary usually contains two locations, the first and the last. For example,
the interval marked a®;(A) in Figure 4.7 has two interior locations and two boundary
locations.

The interior ofdegenerate intervals empty; in such intervals the first and last loca-
tions are the same. Aempty intervahas an empty boundary and an empty interior.

Definition 4.5 Theinterval of the seD;(¢) in the ordered list of7 ; includesall locations
in the sub-list defined by, (t).

thecatch block must be a subtype of tiibass Throwable , andJava has a single inheritanagass
hierarchy (and ambiguities cannot occur in a single inheritance hierarchy).

5Theamortized timeof an operation ig(n), if a sequence of, operations requires at mast(n) time.
The worst case time of any single operation can however be much greatefthan

84 CHAPTER 4. TYPE-SLICING

Figure 4.7: Addition of a new type to the first slice of Figure 4.5

In other words, the interval of the sék;(¢) also includes the location prior to the first
element ofD;(t), as well as the location following its last element.

In the example, we see in Figure 4.5 tidahas three descendants in the first slice,
i.e.,Di(A) = {A D,G}. In Figure 4.7 we see that these three types are consecutive in the
ordered list of the first slice and that the intervall®f(A) has four locations.

When inserting a new typeto the ordered list of7 ;, we search for a list location
where inserting will not violate the slicing property. Such locations must belong to the
interval of D;(t') for all ancestorg’ of ¢, i.e.,t' >t. LetZ denote the set of all such
intervals, and let\ denote the intersection of all intervalsn A list locations inA is
called acandidatefor insertingt.

Algorithmically, A is computed by finding the largest first location of the intervals
in Z, and the smallest last location of these intervals. (Comparisons are carried out using
simpleORDERqueries.) IfA is empty, then we conclude thatannot be inserted intd;.
The time for computing the intersection and for checking whether it is empty is in the
following asymptotic growth class:

O(|parents(t)|) € O(]ancestors(t)]).

It is also required that does not “break” any interval ob;(t”), t” /~=t. More
precisely, a location is aimvalid candidatdf it belongs to thenterior of these intervals.
Although it is possible to check each candidate locatich A against every interval of
atypet” € T \ ancestors(t), the running time of this exhaustive search may be linear in
the size of the hierarchy!

Figure 4.7 shows the ordered list of the first slice of Figure 4.5. We try to insert to that
slice a new type whose parents &andC. We see the intervals dp, (A) and D;(C),
and their intersectioi. The new type can only be inserted in a candidate locdtien\.
The candidate location between tyfgeandG, for example, is invalid since it belongs to
the interior of the interval o), (D), andD is not an ancestor of the new type. The other
two candidate locations are valid.

Thecounts)\, associated with each location in Figure 4.7 are a part of a more efficient
implementation for determining if a location is an invalid candidate. For each location
in the ordered list, led, be the number of all interval®;(t), such that is in theinterior
of D;(t). For instance, the location between tyeandG has a count 08, since itis in
the interior of D, (A), D(C) and D, (D).

A location Z in the interior of A is contained in the interior odll intervals defined

4.10. ORDER-PRESERVING HEURISTIC 85

by D;(t'), t' = t. Therefore, for all candidate locatiofis A we have that
A¢ > |ancestors(t)]. (4.20)

The location is an invalid candidate if it is contained in the interior of any other interval,
and therefore

A¢ > |ancestors(t)]. (4.21)

In the example of Figure 4.7, the location between type@dG is an invalid candidate,
since its count is strictly higher than the number of ancestors.

We must be more careful in checking a location theboundaryof A. Let I € 7 be
arbitrary. Then, by definitiod € I. It is not however guaranteed thais in the interior
of I. We therefore compute the numberof intervals/ € 7 such that is in the interior
of I. A boundary locatiorf is an invalid candidate iff

Ao > Ny (422)

In our example, both boundary locations are valid candidates.

Although there are several special cases and many nitty-gritty details, it is a straight-
forward matter to update i@(1) time the counts\, with every insertion. (Note that the
count may change only for two locations: before and after the insertion point.) Also,
computingn, and checking (4.22) can be done(M|ancestors(t)|) time. It is potentially
more time consuming to do the check (4.21) since we have no a priori bounds on

Non-exhaustive techniques for finding a valid insertion location We found empiri-

cally that if £ could not be inserted at the boundary/gfthen it was rarely possible to
insert it to the interior ofA. For example, out of the 4339 types of JDK 1.22, only 22
types (less than 0.5%) were inserted in the interioAofin all other hierarchies of our

data set, the total number of such types was even smaller, and their fraction was always
lower than 1%.

Therefore, it does not seem necessary to apply the check (4.21) at all. Nevertheless, we
should note that there are ways of implementing (4.21) more efficiently than an exhaustive
search. It follows from (4.20) and (4.21) that there exists a valid locdtiorthe interior
of A if and only if

min{\, | £isin the interior ofA} = |ancestors(t)].

Therefore, the problem of finding a valid location in the interiorAofs reduced to the
famousrange minimgroblem [65]. A simple solution to the range minima problem is to
maintain a balanced binary search tree (BBST) over the ordered ISt stich that each
internal node in it stores the minimum &f of all locations? in the subtree rooted at this
node. This representation ad@$log n) time to each insertion operation. It is standard
to use this BBST to compute the minimum of any given interval. More sophisticated
solutions to the range minima problem require only constant time per operation [65]. It is
not clear whether these algorithms have any practical utility.

86 CHAPTER 4. TYPE-SLICING

Inserting types with a single parent into multiple inheritance hierarchies Finally,
we present an optimization for quickly inserting a typwith a single parentp. Let
be the slice ofp, i.e.,p € 7,. Consider the ordered list df;, and a list locatior?
immediately to the left (or to the right) of. We claim that’ is valid for¢. Assume the
contrary, i.e./ is in theinterior of some interval defined by;(¢”), and that” is not a
supertype of. Combined with the fact thatis adjacent td, we conclude that € D;(t”),
and thereforey <t”. Sincet < p, it follows thatt <¢”, which contradicts our assumption.

Incremental subtyping algorithm Recall that each slice is kept in andered list In-

stead of associating integer values wiiflh and D;(t) as in (4.18), we now use pointers

to cells in the ordered list. The test (4.19) can be carried out in constant time using two
ORDER queries. We show next how to update this representation as new types are added.

When a typet is added to the ordered list of slicE;, only the list intervals of its
ancestors can change. Therefore, for eaeht we check ift was added at the boundary
of D;(t'), and if so update it. Updating all list interval3;(¢') takesO(|ancestors(t)|)
time. Since the insertion time of the heuristiaiéx|ancestors(t)|), the asymptotic time
bound remains the same.

When a new slice is created, the arrays which stOr&), ¢ = 1,...,x, must be
extended. Note that with the cost of a constant factor increase of the space requirement,
the amortized time for extending an array is constant. Using techniques of “background
copying” [42], theworst casdime for an array extension operation becomes constant as
well.

Chapter 5

Incremental Algorithms for Dispatching
In Dynamically Typed Languages

Chapter Summary

A fundamental problem in the implementation of object-oriented languages is that of adisigal
patching data structurée., support for quick response to dispatching queries combined with com-
pact representation of the type hierarchy and the method families. Previous theoretical algorithms
tend to be impractical due to their complexity and large hidden constant. In contrast, successful
practical heuristics, including Vitek and Horspoaismpact dispatch tabl€€T) [132] designed

for dynamically typed languages, lack theoretical support. In subjecting CT to theoretical analysis,
we are not only able to improve and generalize it, but also provide the first non-trivial bounds on
the performance of such a heuristic.

Letn, m, £ denote the total number of types, messages, and different method implementations,
respectively. Then, the dispatching matrix, whose sizenis can be compressed by a factor of at
most. = (nm)/¢. Our main variant to CT achieves a compression factér\ﬁ More generally,
we describe a sequence of algorith@is,, CTsy, CTs, ..., whereCT, achieves compression by
a factor of (at Ieast%al—l/ 4 while usingd memory dereferencing operations during dispatch.
This tradeoff represents the first bounds on the compression ratio of constant-time dispatching
algorithms.

A generalization of these algorithms tavaultiple inheritancesetting, increases the space by
a factor of(2r)'~1/4, wherex is a metric of the complexity of the topology of the inheritance
hierarchy, which (as indicated by our measurements) is typically small.

The most important generalization is axcrementalvariant of theCT,; scheme for a single
inheritance setting. This variant uses at most twice the spa€d gf and its time of inserting a
new type into the hierarchy is optimal. We therefore obtain algorithms for efficient management
of dispatching in dynamic-typing, dynamic-loading languages, suSvasLTALK and even the
Java invokeinterface instruction.

Message dispatchingtands at the heart of object-oriented programs, being the only
way objects communicate with each other. To implement dynamic binding during dis-
patch, the runtime system of object-oriented languages udispatching data structure

87

88 CHAPTER 5. COMPACT DISPATCH TABLES

in which adispatching queryinds the appropriate implementation of the message to be
called, according to the dynamic type of the message receiver. A fundamental problem in
the implementation of such languages is then a frugal implementation of this data struc-
ture, i.e., simultaneously satisfying (i) compact representation of the type hierarchy and
the families of different implementations of each method selector, and (ii) quick response
to dispatching queries.

Virtual function tablegVFT) are a simple and well known (see e.g., [123]) incremen-
tal technique which achieves dispatching in constant time (two dereferencing operations),
and very good compaction rates. The VFT of each type is an array of method addresses.
A location in this array represents a message, while its content is the address of an im-
plementing method. The VFT of a subtype is an extension of the VFT of its supertype,
and messages are allocated locations at compile time in sequential order. The static type
of the receiver uniquely determines the location associated with each message. VFTs rely
on single inheritance Multiple inheritanceimplementations exist [68], but they are not
as elegant or efficient.

The challenge in the dispatching problem is therefore mostly in dealingdyitami-
cally typedand/or multiple inheritance languages. Also very important isrtbeemental
version of this problem, in which types (together with their accompanying messages and
methods) are added at the bottom of the hierarchy.

Our contribution (described in greater detail in Section 5.3) includes a provable trade-
off between space and dispatching time with extensions to multiple inheritance hierar-
chies. The pinnacle of the results is an incremental algorithm for maintaining a compact
dispatch table in dynamically typed languages.

Outline The remainder of this chapter is organized as follows. The subtyping tests
problem is defined in Section 5.1. Some straightforward solutions for this problem are
described in Section 5.2. Section 5.3 mentions our results in perspective of these solu-
tions. Section 5.4 presents the generalized CT schemes for single inheritance hierarchies.
Section 5.5 shows how these schemes can be made incremental. A (non-incremental)
version of these schemes for multiple inheritance hierarchies is described in Section 5.6.
Section 5.7 presents the experimental results: timing and compression values on a data-
set of 35 hierarchies collected from both single and multiple dispatching languages. Open
problems and directions for future research are the subject of Section 5.8.

5.1 Problem Definition

We define the dispatching problem in a similar fashion toablered-ancestorabstrac-
tion described by Ferragina and Muthukrishnan [60hierarchyis a partially ordered
set (Z,<X) where7 is a set of types and is a reflexive, transitive and anti-symmetric
subtype relationThemin operator return the set of smallest types in any given set:

min(X)={te X | At' e X :¢ #t,t <t}

5.1. PROBLEM DEFINITION 89

Let ' C 7 denote thdamily of types which have enethod implementaticior the same
message

For example, consider the single inheritance hierarchy in Figure 5.1a. Type names are
uppercase and messages are lowercase, e.g.Dtypplements the messagese andf.
Then,{A, D, E} is the family of method implementations of

a,b,c
d,e,f

abcdef
AIA[AIA|A|A|A
B/A|B|A|A|B|A
b a c,e CICIA|A|A|A|A
(@) e e f D|/A|A|D|A|D|D (b)
E|A|B|E|E|B|A
FlAa|A|D|A|D|F
G|A|[G|D|A|D|D

c f b
d
Figure 5.1: (a) A small example of a single inheritance hierarchy, and (b) its dispatching
matrix

Given a family F' and a typef, cand(F,t) is the set of candidates if, i.e., those
ancestors of in which an implementation of the given message exists:

cand(F,t) = F N ancestors(t). (5.1)
In the figure, we have for exampband({A,D,E},G) = {A,D}.

A dispatching querylispatch(F, t) returns eithethe smallest candidater null if no
such unigue candidate exists. (All result represents either theessage not understood
or message ambiguoesror conditions.) Specifically,

dispatch(F. 1) = t if mm((_:and(F, t)) ={t'},

null otherwise
Definition 5.1 Given a hierarchyT,=<) and a family collectior C o(7), thedispatch-
ing problemis to encodethe hierarchy in a data structure supportirdispatch(F,t)
queriesforallFF € F,t e T.

A solution to the dispatching problem is measured by the following three metrics:
(i) space, (i) query time, and (iii) encoding creation time. We would like to express
these as a function of the following problem parametersn, ¢/): the number of types,
families, and implementations (or family members). Specifically,

n=|T|,
m = |F|, (5.2)
(= Z|F|

FeF

We abstract away from the nomenclature of different languages, and use thenessegéalso called
selectors or signature) for the unique identifier of a familingblementatiorfalso called methods, member
functions, operations, features, etc.)

90 CHAPTER 5. COMPACT DISPATCH TABLES

In Figure 5.1 for example, we have= 7, m = 6 and/ = 16.

The incremental version of the problem, is to maintain this data structure in the face
of additions of types (with their accompanying methods) to the bottom of the hierarchy,
as done in languages suchJasa [7].

5.2 Straightforward Solutions

The most obvious solution is an x m dispatching matrixstoring the outcomes of all
possible dispatching queries. Figure 5.1b shows the dispatching matrix of Figure 5.1a,
where the/ grey entries correspond to (non-inherited) family members.

In the dispatching matrix representation, queries are answered by a quick indexing
operation. However, the space consumption is prohibitively large, e.g., 512MB for the
dispatching matrix in the largest hierarchy in our benchmarks (8,793 types and 14,575
families).

Note that an encoding that does not try to compress pointers must use atlkeléstor
representing thé different method addresses. We would like to get as close as possible to
this space requirement while preserving a constant and small query time. The dispatching
matrix can be potentially compressed by a factor of

L= (nm) /L. (5.3)

We shall refer to. as theoptimal compression factprand to schemes attempting to
reach: asduplicates-elimination schemes$n our data-set of 35 large hierarchies (see
Section 5.7) ~ 725.

Let w denote the number of namill entries in the dispatching matrix, i.e.,
w = |{(F,t) | dispatch(F,t) # null}|. (5.4)

By eliminatingnull memory cells, the dispatching matrix might be compressed by a factor
of (nm)/w, which is around 150 in our data-set. Examplesiaif-elimination schemes
arerow displacemeni{45, 47], selector coloring[44, 118], andvirtual function tables
(VFT) [123]. In single inheritance and static-typing setting of the problem, the VFT
technique uses precisedlymemory cells.

In the more general setting, the matrix can also be compresse@intbcells (with
fairly large constants) by using perfect hashing [64] or one of its variants. Even though
dispatching time is constant in perfect hashing, it is complicated by the finite-field arith-
metic incurred during the computation of the hash function.

With additional increase to the complexity of dispatching, there are variations to the
famous FKS [64] scheme which use+ o(w) cells. There is also a dynamic version of
perfect hashing [42] which can support incremental dispatching. The memory toll is even
larger, with constants in the range of a thousand.

Notice that even complete null-elimination gives suboptimal compression, gince
might be substantially larger than In our benchmark of 35 large hierarchies,/ is on
average 8.3, and in one hierarchy it is 122.4!

5.3. OUR RESULT IN PERSPECTIVE 91

It is not difficult to come close to complete duplicates-elimination, i.e., a SpaQé/of
with a simple representation of the hierarchy as a graph where types are nodes and im-
mediate inheritance relations are edges. The cost is of course the query time, which
becomeg)(n), since we must traverse all the ancestors of a receiver in order to find the
nearest family member. Sophisticated caching algorithms (as employed in the runtime
system ofSMALLTALK [37]) make the typical case more tolerable than what the worst
case indicates.

5.3 Our Result in Perspective

There is a large body of research on the dispatching problem (see e.g., [37,44,45,47,78,
118,131,132,135,137]). The focus in these was on “practical” algorithms, which were
evaluated empirically, rather than by provable upper bound on memory usage. The main
theoretical research on the topic [60, 100] produced algorithms (for the single inheritance
setting) which using minimal spac@(¢) cells) supported dispatching in doubly logarith-

mic, O(lglgn), time. However, the hidden constants are large, and the implementation is
complicated.

In this chapter, we describe a different tradeoff: constant-time dispatchihgteps,
while using at mosti¢«/. cells. Stated differently, our results are thiasteps in dis-
patching (provably) achieve a compression rated—gif. For example, withi = 2 the
compression is by a factor of at least half of the square rogttbe optimal compression
rate. Also, the compression factor is close to optiggi;-, when the dispatching time is
logarithmic,lg m.

An important advantage of these results in comparison to previous theoretical algo-
rithms is that they are simple and straightforward to implement, and bear no hidden con-
stants. In fact, our algorithms are based on a successful practical technique, camely
pact dispatch table¢CT), which was invented by Vitek and Horspool [132]. Viewed
differently, the results presented here give the first proof of a non-trivial upper bound on
practical algorithms.

Even though the algorithms carry on to multiple inheritance with the same time bounds
of dispatching, the memory consumption increases by a factor of at (Rest /7,
wherex can be thought of as a metric of the complexity of the topology of the inheritance
hierarchy. (In a benchmark of 19 multiple inheritance hierarchies with 34,810 types, we
found the median value of an upper bound#as 5, the average is 6.4, and the maximum
is 18.) Our previous work [137] on dispatching gives an implementation of a dispatching
data structure whose space was anly:/), but the dispatching time was logarithmic. The
results presented here complete the tradeoff spectrum, giving constant time dispatching
with any number of steps. We give empirical evidence that the algorithms perform well
in practice, in many cases even better than the theoretically obtained upper bounds.

We also describe an incremental version of the algorithms in a single inheritance set-
ting, and prove that updates to the dispatching data structures can be made in optimal
time. The cost is in a small constant factor increase (e.g., 2) to the memory footprint.

Readers may also take interest in some proof techniques, including the representation

92 CHAPTER 5. COMPACT DISPATCH TABLES

of dispatching as search in a collection of partitionings, the elegant Lemma 5.11, and the
amortization analysis of the incremental algorithm.

5.4 Generalization of Compact Dispatch Tables for Sin-
gle Inheritance Hierarchies

For simplicity, assume w.l.0.g. that the hierarchy is a tree (rather than a forest) rooted at
a special nodél’ € 7. There cannot be message ambiguous a single inheritance
setting. To avoid the other error situation, namelgssage not understoode assume
thatT € F for all F' € F. With this assumption, every dispatching query returns a single
family member. The cost is in (at most) doubling the number of implementatiofst

the end of this section we will show that the memory toll can be made much smaller.)

Vitek and Horspool’'s CT algorithm [132] partitions the family collectigninto k
disjointslicesF = F, U... U Fy . These slices break the dispatching matrix ihtsub-
matrices, also calledhunks The authors’ experience was that chunks with 14 columns
each give best results, and this number was hard-coded into their algorithm.

Figure 5.2 shows the three chunks of the dispatching matrix of Figure 5.1b for follow-
ing partitioning:

fl :{Fa7Fb}7
FZ = {FcaFd}7 (55)
F3:{Fe7E}-

As Vitek and Horspool observed, and as can be seen in the figure, there are many
identical rows in each chunk. Significant compression can be achieved by merging these
rows together, and introducing, in each chunk, an auxiliary array of pointers to map each
type to a row specimen.

GTMMmMmOOwW >
> > > >|0|> > ®
Q> w|l>| > wl>oC
glomlol>|>|> o0
> > ml> > > >
O|0|w|O|>»|w|l>|®
o|lTn|>|o|l>|>|> —

Figure 5.2: Three chunks of the dispatching matrix of Figure 5.1b

Why should there be many duplicate rows in each chunk? There are two contributing
factors: (i) since the slices are small, there are not too many columns in a chunk, and (ii)
that the number of distinct values which can occur in any given column is small, since,
as empirical data shows, the number of different implementations of a selector is a small
constant. Hence, there could not be too many distinct rows.

5.4. COMPACT DISPATCH TABLES IN SI HIERARCHIES 93

However, these considerations apply to any random distribution of values in the dis-
patching matrix. The crucial observation we make is that a much stronger bound on the
number of distinct rows can be set relying on the fact that the values in the dispatching
matrix are not arbitrary; they are generated from an underlying structured hierarchy.

Consider for example a chunk with two columns, withandn,, distinct implementa-
tions in these columns. Simple counting considerations show that the number of distinct
rows is at most;n,. Relying on the fact that the hierarchy is a tree we can show that the
number of distinct rows is at most + ns.

To demonstrate this observation, consider Figure 5.3a which focuses on the first chunk,
corresponding to slicé&, = {F,, F. }.

ab
AlalA A AlAll
BlalB B ab Bls| ab
Clcla C All A Clcl Alalla
D AlA D AlB DAl Blale
ElalB E cla Els| Clc]a
Flala F AlG Flal Glala
G Aala G Gla]

—
f=)
~"

(b) (©)

Figure 5.3: (a) The first chunk of Figure 5.1c, (b) the chunk compressed using an auxiliary
array of pointers, and (c) the chunk compressed using an array of labels

As can be seen in the figure, the rows of type®, andF are identical. Figure 5.3b
shows the compressed chunk and the auxiliary array. We see that this auxiliary array maps
typesA, D, andF to the same row.

We call attention to the (perhaps surprising) fact that it is possible to select from the
elements of each row in Figure 5.3b a distinguishing representative. These representatives
are members of what we call theaster-family

F'=F,UF, ={AB,C,G}.

The representatives of the four rows in the first chunksgre, C andG, in this order.
The figure highlights these in grey. Also note that each member of the master-family
serves as a representative of some row.

Figure 5.3c gives an alternative representation of the chunk, where each row is labeled
by its representative. The auxiliary array now contains these labels instead of pointers.
For example, the second row is labelBde F;; the second and the fifth entry of the
auxiliary array store rather than the row specimen address.

Our improvement is based on the observation that the distinguishing representatives
phenomenon is not a coincidence and on the observation that CT apple@sieand-
conguerapproach to the dispatching problem: The search first determines the relevant
master-family, and then continues to select the appropriate result among its members.

Let A; denote the compresséll chunk of the dispatching matrix, and I8t be the
master dispatching matrix, whose columns are the auxiliary arrays of the chunks. Fig-

94 CHAPTER 5. COMPACT DISPATCH TABLES

ure 5.4 shows matriced,, A,, A; and B, which constitute the complete CT representa-
tion for the hierarchy of Figure 5.1. Note that the first columrBof the auxiliary array
depicted in Figure 5.3c.

A1 A2 As
AlA|A]|A ab c d e f
B|B|A|B AlA|A AlAlA AlA|A
ClC|A|A B/ A|B Dip|A BiB|A
DialD|D Clc|A E|E|E Dip|D
E/B|E|B G|A|G FID|F
F A|D|F
clelolo Al A As

B

Figure 5.4: CT representation for the hierarchy of Figure 5.1

For each sliceF; let themaster-familyF! be the union of families in that slice, i.e.,
F] = Upcr, F. Then, answering the quedyspatch(F, t) at runtime requires three steps:

1. Determine the slice of’. That is, the family collectior¥F,, such thatF’ € F,. If
the partitioning into slices and the selectorare known at compile-time, as it is
usually the case in dispatching of static-loading languages, then this stage incurs no
penalty at runtime.

2. Fetch the first dispatching result = dispatch(F7,t). This value is found at the
row which corresponds to typeand the column which corresponds to the master-
family F/, i.e.,t’' = Blt, s].

3. Fetch the final dispatching result = dispatch(F, t). This type is found in the row
of ¢ and the column of” in the compressed chunk;, i.e.,t” = A,[t, F].

The algorithm merges together all the different messag#s irAt step 2, we find’ > ¢,
which is the smallest candidate in the merged master-family. M&rigf sizen x k) is
the dispatching matrix of the typ&sand the master-family collectiof?7, . .., F/}.

The search then continues with to find ¢” = t/, the smallest candidate iR, the
original family. Each matrix4; (of size|F}| x |F;|) is the dispatching matrix of the types
in £ and the family collectiorF;.

To understand the space saving, consider just two familieand F,. The naive
implementation of dispatch is usingo arrays, each of size = |7, which map each
typet to two typest”; € F; andty,” € Fy, such that,” = dispatch(¢, F;),i = 1,2. A
more compact representation can be obtained by ussimggéearray of sizen, to dispatch
first on the merged master-family = F; U F;. Lett’ € F’ be the result of this dispatch.
The crucial point is that the smallest candidate#oin either F; or F5, is the same as
for t. Since there argF”’| < |F| + | F3| different values of’, a continued search from
(for either Fy or Fy) can be implemented using two arrays, each of §iZ¢ The first
such array maps” to F; the second td,. Total memory used is + 2| F’| instead oRn
cells, while the cost is an additional dereferencing operation.

5.4. COMPACT DISPATCH TABLES IN SI HIERARCHIES 95

More generally, given a dispatching problem for a family collectfgrtheCT reduc-
tion partitionsF into k disjoint slices

F=FU...UF, (5.6)

and merges together the families in each slice by defining a master-family

Fl=|]JF (5.7)

FeF;

forall: =1,... k. Let A; be the matrix whose dimensions are
FY] x |7, (5.8)
corresponding to thé" slice. Then, the querglispatch(F, ¢) is realized by the fetch
A,[dispatch(F.,t), F], (5.9)

wherel’ € F,.

Since both steps 2 and 3 in the dispatching are in essence a dispatching operation,
better compaction of the dispatching data structure might be achieved by applying the CT
technique recursively to either the matiix or all the matrices4;. It is not difficult to
see that each of the recursive applications will yield the same dispatching data structure,
in which the set of selectors is organized in a three-level hierarchy of partitions: families,
master-families, and master-master-families (so to speak). We chose to describe this 3-
level system by applying the CT technique to the mafix The (potential) saving in
space comes at a cost of another dereferencing step during dispatch. Clearly, we could
recursively apply the reduction any number of times.

We need the following notation in order to optimize these recursive applications, i.e.,
find the optimal number of slicds and the size of each slice. Letem,(n, m,) denote
the memory required for solving the dispatching problem afpes,m families and¢
method implementations, usinfjdereferencing operations during dispatch. A simple
dispatching matrix representation gives

memy (n, m,{) = nm. (5.10)

Each application of the CT reduction adds another dereferencing, while reducing a
dispatching problem with parameters m, ¢) to a new dispatching problem with param-
eters(n, k, '), where

k k

=3 IFI=)

=1 =1

U Fl.

FeF;

Note that?’ < ¢. To see this recall that

=Y IR=Y YR

FeF i=1 FEF;

96 CHAPTER 5. COMPACT DISPATCH TABLES

and apply the fact that the cardinality of the union of sets is at most the sum of cardinalities
of these sets

k

Py

=1

k
<> > |FI=t (5.11)

=1 FE]'-I'

U rF

FeF;

The reduction generates the matricks. .., A;. To estimate their size suppose that
all slices are equal in size, i.e., they all haviamilies. (For simplicity we ignore the case
thatm is not divisible byz, in which slices aralmostequal.) Then, the total memory
generated by the reduction is

k k

:
Z|FZ’| X |Fil = Z|Fl’| X T = xZ|FZ’| =al <zl

=1 =1 =1

To conclude, the costs of the CT reduction are another dereferencing and an additional
space of:/. In return, a dispatching problem with parametersmn, ¢) is reduced to a new
dispatching problem with parametdrs k, ('), wherek = m/x and? < (. Formally,

memgq(n, m,{) < lx+ memgy(n,m/z, 1), (5.12)

wherez is arbitrary.

Let CT, be the dispatching data structure and algorithm obtained by applying the CT
reductiond — 1 times to the original dispatching problem. The recursion is ended by
applying simple dispatching matrix at the last step. Thus, STsimply the dispatch-
ing matrix, while CT, is similar to Vitek and Horspool’'s algorithm (with = 14). By
makingd — 1 substitutions of (5.12) into itself, and then using (5.10), we obtain

nm

memg(n, m,l) < lxy + -+ +lrg 1 + ———, (5.13)
T1Z2 " Td—1

wherez; is the slice size used during tli€ application of the CT reduction. Symmetry
considerations indicate that the bound in (5.13) is minimized when; @te equal. We
have,

memg(n, m,) < (d —)0z + -, (5.14)
xXr

which is minimized when: = (nm/£)'/.
Table 5.1 summarizes the space and time requirements of algorithgnsvedre. =
(nm) /¢ is the optimal compression factor.

The last row in the table is obtained by applying the CT reduction a maximal number
of times. In each application the slice sizerigtypically, = = 2). The collectionF is
then organized in a hierarchy big, m levels, which is also the number of dereferencing
steps during dispatch. The memory used in each level (see (5.12)).

The generalizations (Table 5.1) of ¢éver Vitek and Horspool'’s algorithm is in the
following directions: (i) a sequence of algorithms which offer a tradeoff between the

5.5. INCREMENTAL VARIANTS FOR SI HIERARCHIES 97

Scheme| Slice size| Time Space | Compression
factor
CTy N/A 1 7]
CT, Vi 2 231 P
CTs Vi 3 RIAD 55
CTy Vi d eyt 4
CT]ng m €z logx m (Ing m)&r T 10é m

Table 5.1:Generalized CT results for single inheritance hierarchies

size of the representation and the dispatching time, and (ii) precise performance analy-
sis, which dictates an optimal slice size, instead of the arbitrary universal recommenda-
tion, z = 14.

In reflecting on the generalized CT algorithm we see that they are readily adapted to
the case wheremessage not understo@de allowed as is the case in dynamically typed
languages. Whenever the search in a master-fafiieturnsT, we can be certain that
the search in every constituent Bf will also returnT. Therefore, it is possible to check
after each dereferencing operation whether the fetched typeaad emit the appropriate
error message. A more appealing alternative is to continue the search witing an
array which mapg into itself for each constituent df’. Now, since this array does not
depend on the identity of”, we can store only one such copy for each application of the
CT reduction. The memory toll that Gbears for these arrays(g — 1)z cells.

Note also that Vitek and Horspool’s idea of using selector coloring [44,118] in each
chunk is still applicable with a slight variation to our generalization. If certain columns
in a chunk contain many" elements, it might be possible to collapse these columns
together.

5.5 Incremental variants for Single Inheritance Hierar-
chies

This section describes an incremental variant of the CT scheme in the single inheritance
setting, achieving two important properties: (i) #pacet uses is at most twice that of the
static algorithm, and (ii) its totauntimeis linear in the final encoding size. (We cannot
expect an asymptotically better runtime since the algorithm must at least output the final
encoding.)

Section 5.5.1 describes 1G,Tthe incremental variant of GT Section 5.5.2 gives the
generalization for CJ.

The main idea is teebuild the entire encodingghenever the ratio between the current
slice size and the optimal one reaches a high- or low-water mark (for example 2 and 1/2).
Therefore, some insertions will take longer to process than others. We therefore obtain

98 CHAPTER 5. COMPACT DISPATCH TABLES

bounds on themortizedtime for an insertiorf. The amortized time of an insertion is
asymptotically optimal since the total runtime is linear in the final encoding size. Using
techniques of “background copying” [42], it is possible to amend the algorithms so that
theworst casensertion time is optimal as well.

Note that unlike the static version of the problem, we cannot assume that the families
always include the root. The reason is that this assumption would reqir® include
implementation okll families, and the initial value of the number of families will jump
tom.

5.5.1 Algorithm ICT 5 in a Single Inheritance Setting

The CT, scheme applies a single CT reduction and uses a dispatching matrix for the
resulting master-families. This process divides the dispatching problem into independent
sub-problems: one dispatching matrix, and a set of matdges= 1, ..., k, which (in a

single inheritance setting) are in fact dispatching matrices as well.

We first describe how to maintain a plain, single-level, dispatching matrix subject to
type insertions. The insertion time will be linear in the encoding size, and the cost in
dispatching time is in an additional comparison to guard against array overflows.

Each family is assigned a unique identifier in increasing order. The mapping of family-
to-identifier is maintained as a hash-table. Consider a newly added .typee newly
introduced familie$ are assigned new identifiers and inserted into the hash-table. Ob-
serve that the dispatching result for such a newly introduced family and every other type
Is alwaysnull. However, instead of extending all the other rows witiil entries, we
perform a range-check before accessing any given row. In the case of array-overflow we
returnnull, otherwise we proceed as usual.

The row oft in the dispatching matrix maps each family to its dispatching result.
More precisely, the row of is an extension of the row of its parent, except for entries
corresponding to families in whichis a member. Note that the insertion time of a type is
linear in its row size, and the total runtime is therefore linear in the final encoding size.

The space requirement of €in a single inheritance setting is (see Table 5.1)

mem(z) = lz + nm/x, (5.15)
which is minimized when the slice size is

Topr = nm/f (516)
Algorithm ICT, will maintain the following invariant

x;PT < v < 2Zopr, (5.17)

and will rebuild the encoding whenever this condition is violated. Algorithm 5.1 shows
the procedure to apply whenever a new type is added to the hierarchy.

2We remind the reader that thenortized timef an operation is(n), if a sequence aof such operations
requires at moste(n) time. The worst case time of any single operation can however be much greater
thanc(n). For more information on amortized complexity see [121].

3A new typet introducesa family F, t € F, if and only if no other type was a member Bf

5.5. INCREMENTAL VARIANTS FOR SI HIERARCHIES 99

Algorithm 5.1 Insertion of a new typein ICT,
1. Letx be the current slice size.

Let (n, m, () be the current problem parameters.
Topr < /nm/l /Il The optimal slice size.
If not (IOTPT <z< ZxOPT) then

X < Topt

Rebuild the entire CIencoding
fi
Insertt to the C, encoding

e S S

Substituting (5.16) in (5.15) we find the optimal encoding size
mem(Zopr) = 2V nmd.

Let us write this as a function of the problem parameters,
f(n,m,0) = mem(zopr) = 2V nmd.

and study the properties of this function.
Fact 5.2 Function f is monotonic in all three arguments m, /.

Fact 5.3 There are constanis, c,, c3, such that

if <%,m,€) < ¢ f(n,m,l),
0

if (n;” e) < cof (n,m, 0), (5.18)

e}

Zf (n,m, 5) < csf(n,m,¥l).

=0

PROOE Note that

i=0 i=0
= /1
vVnm ZO >

vaml € O(f(n,m,{)).

2—f

The proof for parameters and/ is identical. O

Lemma 5.4 Thespace requiremeiatf ICT, is at most

2f(n,m,0).

100 CHAPTER 5. COMPACT DISPATCH TABLES

PrROOF. From the algorithm invariant (5.17) it follows that

mem(z) = lx +nm/x

< (2x0pr) +nm/ (x;PT>

= 2<€xOPT + nm/$0PT)
= 2mem(Zopr) = 2f(n, m, (). O

Our next objective is to prove that the totaintime of ICT, is linear in f(n,m, ().
To do so, we will breakdown the sequence of insertions carried out by the algorithm into
phasesaccording to the points in time where rebuilding took place. No rebuilding occurs
within a phase, and all that is required is to maintain several plain dispatching matrices.
Hence, the total runtime of the insertions in a phase is linear in the encoding size at the
end of this phase.

The main observation is that rebuilding happens only when at least one of the problem
parameters is doubled. We distinguish between thiegsof rebuilds, depending on the
parameter which was doubled. We then show that the total runtime of rebuilds of the same
kind is linear inf(n,m, {).

Formally, phaseébegins immediately after phase1, and ends after the encoding was
built for thes™ time (the last phase ends when the program terminatesjnlet;, £;), i =
1,...,p, bethe problem parameters at the end of pha®bserve that the problem param-
eters can only increase, i.,,1 > n;, m;; 1 > m;, and¢,,; > ¢;. Phase finishes with
an encoding size of at mo8f (n;, m;, ¢;), therefore its runtime is linear ifi(n;, m;, ¢;).
Thus, the total runtime is linear in

p
> fnimi b). (5.19)
=1
We need to show that this sum is linearfi(r,, m,, £,).

Lemma 5.5 Invariant(5.17)is violated only wheat least on®f the problem parameters
is doubled, i.e., one of the following holds

Niy1 > 2N,
mii1 2 2mi, (520)
liv1 > 20;.

PROOF Letz; denote the slice size at the beginning of phadee.,

z; = % (5.21)
J

At the end of phaséone of the following conditions must hold
Tip1 > 21,

(5.22)

Tiy1 < 5T

5.5. INCREMENTAL VARIANTS FOR SI HIERARCHIES 101

From (5.21) and (5.22), we have

N1 > 4n;m;

Zi—i—l o gz ’
Mip1Mit1 Ml (5.23)
Cipv — 4
Since the problem parameters can only increase,
Nip1Mip1 = 4dngmg,
+1Mi+1 (5.24)

Ei-{-l Z 4617

which implies that at least one of the parameters was douhted.
Lemma 5.6 The totalruntimeof ICT, is linear in
f(ny,mp, £p).

PROOF Let {(Ny, My, Ly),..., (N, M, L,)} be the problem parameters of phases
wheren was doubled, i.elV;.; > 2N;. Therefore,

N,>2N, ;>...>27'N. (5.25)

Using Fact 5.3, the total runtime of these phases is linear in

Zle,MZ,L <ZfN M,, L,)

q
<2 (0o

€ O(f(Nyg, My, Ly)).

(5.26)

The same consideration applies to phases in which the number of methods or the number
of families was doubled. So, the runtime of the entire algorithm is the total runtime of the
three kinds of phases, which is linearfitvn,,, m,, ¢,). O

5.5.2 Algorithm ICT ; in a Single Inheritance Setting

The generalization td > 2 is mostly technical, as outlined next. Functiewem(z), the
space requirement of G&s defined in (5.14) is minimized when the slice size is

Topr = v/nm /L.
Let function f,; denote the optimal encoding size
fa(n,m, £) = mem(xopr) = dl+/1.

Algorithm ICT, will preserve the following invariant

i
% S xr S 2$OPT. (5.27)

102 CHAPTER 5. COMPACT DISPATCH TABLES

Lemma 5.7 The space requirement ¢€T, is at mos f,(n, m, £).
PROOF Similar to that of Lemma 5.40

Fact 5.8 There are constants, c,, ¢, such that
> n
Z fd <§7 m, E) S led(”? m, E)a
i=0
> m
Zfd (n7§7£) S CQfd(n7m7€)7 (528)
=0

Z Jfa (n7 m, ;) < c3fa(n,m,l).
=0

Lemma 5.9 Rebuilding only takes place whaileast onef the problem parameters is
doubled.

PrROOF Similar to that of Lemma 5.5 0
Lemma 5.10 The total runtime oflCT, is linear in fy(n,, m,, {,).

PROOFE Similarto Lemma5.6.0

5.6 Generalization of Compact Dispatch Tables for Mul-
tiple Inheritance Hierarchies

This section explains how to generalize the CT reduction as described in Section 5.4 to
the multiple inheritance setting. In a single inheritance hierarchy, there could never be
more than one most specific family member in response to a dispatch query. The fact that
this is no longer true in multiple inheritance hierarchies makes it difficult to apply the CT
reduction to such hierarchies. Even if the original families are appropriately augmented
to remove all such ambiguities, ambiguities may still occur in the master-families as they
are generated by the reduction.

We will therefore use a novel notion of generalized dispatching quergenoted
by g-dispatch(F’ ¢), which returnghe entire sebf smallest candidates, rather thaul
in case that this set is not a singleton. Formally,

g-dispatch(F’, t) = min(cand(F,t)). (5.29)

Generalized dispatching is a data-structure transaction rather than an actual runtime oper-
ation which must result in a single method to execute.

Consider for example the hierarchy of Figure 5.5.

5.6. COMPACT DISPATCH TABLES IN MI HIERARCHIES 103

Figure 5.5: A small example of a multiple inheritance hierarchy with two families

The figure shows two families of methods, and F,,,

Fa = {A7 B}7

R {AC) (5.30)

The dispatching matrix of these two families is depicted in Figure 5.6a. Note that the
results of all dispatching queries on typesand E (for example) are the same. The
corresponding rows in the table are identical and can be compressed. Figure 5.6b shows
a representation of the dispatching matrix obtained by merging together all identical rows
and an auxiliary array of pointers to all different rows specimens.

ab -
AlAlA Al o ab Al ®n ab
Ble|A Bi\A A B| & @A [alA
Clalc Clel >5|A C|l© B |B|A
Dlie|c D| o AlC D |{B,C} {cy|Alc
Elslc E| BlC E | BciB]|C
Flalc Fl< Flc

() (b) (©)

Figure 5.6: (a) The dispatching matrix of Figure 5.5, (b) the matrix compressed using an
auxiliary array of pointers, and (c) the matrix compressed using an array of set-labels

This compressed representation can be understood in terms of the master-family
F'=F,UF ={AB,C}.

The auxiliary array represents all the possible results géreralizeddispatch on this
master-family. For example,

g-dispatch(F’, D) = g-dispatch(F", E) = {B, C}.
Therefore, th® andE entries in the auxiliary array point to the same row specimen whose
label is the se{B, C}.

In total there are four different results of generalized dispatching with respéct to
Family F’ therefore partitions the types in the hierarchy into four sets, as shown in Fig-
ure 5.6¢. The figure shows the same compressed representation of the dispatching matrix,

104 CHAPTER 5. COMPACT DISPATCH TABLES

where the results of generalized dispatch are used to label row specimens instead of point-
ers in the auxiliary array.

In order to derive bounds on the quality of the CT compression in the multiple inher-
itance setting we need to estimate the number of distinct rows in chunks. The difficulty
is that the result of a generalized dispatch is a set rather than a singleton, and hence this
number might be exponential in the family size. To show that this is not the case, we
first define the notion of a partition imposed by a family, and then show the size of this
partition is at mosR« times the size of the family, whede< x < n is a (usually small)
metric of the complexity of the hierarchy.

5.6.1 Family Partitionings

Given a partially ordered set of typds and a family of implementations’ C 7, the
partitioning of 7 by I, also called théamily partitioningdue toF’, is

VF = {Tl,...,Tn},

such that all types impartition 7; have the same generalized dispatch result. In other
words, types:, b € 7 are in the samepatrtition 7, € VF if and only if

g-dispatch(F, a) = g-dispatch(F,b). (5.31)

Figure 5.7 shows the family partitioning of the familiés, F, of (5.30) and their
master-familyf” = F, U F,.

Figure 5.7: The family partitionings of the familids, F, of (5.30) and their master-
family I/ = F, U I,

TypesD andE, for example, are in the same partitiorviF” sinceg-dispatch(F’, D) =
g-dispatch(F",E) = {B, C}. The partitionings are

VF,={{A,C,F},{B,D,E}},
VE, ={{A,B},{C,D,E,F}}, (5.32)
VF' = {{A},{B},{C,F},{D,E}}.

5.6. COMPACT DISPATCH TABLES IN MI HIERARCHIES 105

Figure 5.8: Theoverlayof VF, andV F, of Figure 5.7

Figure 5.8 overlay¥’ F, andV F,. The dotted lines are the partitions'GfF,, whereas
the full lines are the partitions 67 F,.

In comparing Figure 5.7c with Figure 5.8, we see that the partitioNig can be
obtained by a simple overlay of the two partitioningg, andV F,. We will next prove
that this was no coincidence.

Given two partitioningsr, 7/, theiroverlayr - 7’ is the coarsest partitioning consistent
with both 7 and#’. Constructively, the overlay is obtained by intersecting all partitions
of 7 with all partitions ofr’:

mon' ={T:NT; | T,en,T;en'}. (5.33)
For example, the overlay & F, andV F; of (5.32) is

VE, - VE, = {{A, C, F} N {A, B}, {A, C, F} N {C, D,E, F},
{B,D,E}ﬂ {A, B},{B,D, E} ﬁ{C,D, E, F}} (5.34)
= {{A}’ {C7 F}v {B}’ {Dv E}}

Lemma5.11 VF, - VF, = V(F, U Fy) for all Fy, Fs.

PrROOEF Itis awell known fact that for every partitioningthere is a binargquivalence
relation whose set of equivalence classes are the same as the partitioningtead of
proving that the partitionin§/ (£, U F») andV F - V F; are equal, we will prove that their
equivalence relations are the same.

On the one hand, typesb are in the equivalence relation of
V(F U Fy)

if and only if they have the same generalized dispatching results with respEct td+
(see (5.31)), i.e.,

g-dispatch(Fy U Fy, a) = g-dispatch(F; U F», b). (5.35)

106 CHAPTER 5. COMPACT DISPATCH TABLES

On the other hand, the overlay partitioningF; - V F5, is defined by intersecting all par-
titions of V F; with those ofV F;, (see (5.33)). Therefore, typesb are in the equivalence
relation of V F} - V F; iff the following two conditions hold

g-dispatch(Fy, a) = g-dispatch(Fy, b),

g-dispatch(Fy, a) = g-dispatch(Fy, b). (5.36)

We must show that (5.35) holds iff (5.36) holds. Formally, using the definition of gener-
alized dispatch (5.29), we must show that

min(cand(F U Fy, a)) = min(cand(F; U Fy, b))
&
min(cand(F,a)) = min(cand(Fy, b)) A
min(cand(F;, a)) = min(cand(Fs, b)).

(5.37)

Since two sets of candidates (for the same family) have the same smallest elements if and
only if they are equal, our objective is to prove (see the definition of candidates in (5.1))

(Fy U Fy) Nancestors(a) = (F7 U Fy) N ancestors(b)
=
F) Nancestors(a) = F; N ancestors(b) A

F, Nancestors(a) = Fy N ancestors(b).

(5.38)

Given two setsX, Y, theirsymmetric differences defined as
XAY=(XUY)\(XNY).
Observe that
ZNX=ZNY o ZN(XAY)=0. (5.39)

By combining (5.38) and (5.39) we find that we need to prove that

(F1 U Fy) N (ancestors(a) A ancestors(b)) = 0
=
Fy N (ancestors(a) A ancestors(b))

F> N (ancestors(a) A ancestors(b))

(5.40)

0 A
0.

The above trivially holds since for all sel§ Y, 7,

(Xuy)nz=10
<~
XNZ=0A
YNZ=0. O

5.6. COMPACT DISPATCH TABLES IN MI HIERARCHIES 107

5.6.2 Memory Requirements of the Reduction

As in the single inheritance version, the CT reduction partitions the fan#li@go dis-
joint slicesFy, ..., Fy, and generates for th& slice the master-family”/ by merging
the families in this slice. To answer tigeneralized dispatchingueryg-dispatch(F,),

whereF' € F;, we first (recursively) answer the quegydispatch(F7, ¢), in the collection
of master-families{ /7, ...,] }. This recursive call returns one of the partitionsS\af;.

The next step is to find the unique containing partitior’var.

To understand this better, recall thatC F/. To apply Lemma 5.11 note that there
exists a sef such thatt} = F'U X, and hence

VF =V(FUX)=VF-VX.

Therefore, every partition 6 F! is contained in a partition oF . A matrix A; with |V F|

rows andF;| columns is used to map each of the partition&/df! to a partition ofV F,

forall F € F,. MatricesA,, ..., A, are nothing other than the dispatching data structure
of the CT reduction. (Clearly, there is an additional data structure which the recursive call
uses.)

To bound the size of these matrices, we need to boutid. In single inheritance, the
root of each partition correspond to a different family member, and therg¥are < | F|.
An easy, but not so useful bound in multiple inheritanceyig'| < 2!71.

A better bound is given by defining the complexity of a hierarchy, and then showing
that

IVF| < 2k]|F|. (5.41)

Using slices withr families in each, the total memory of matricés, . . ., A, is

k k k
Z|VF{| X |Fi| = Z|VF{] Xz < xZZMFﬂ < 2kl

=1 =1 =1
The recursive equations then become

mem; (n, m, {) = nm, (5.42)

memg1(n, m,f) < 2kl - x + memgy(n, m/x,t).

By using2«x/ instead of/, the analysis of the previous section holds.

Corollary 5.12 Lety = (nm)/(2x¢). In a hierarchy whose complexity is CT, per-
forms dispatching inl dereferencing operations, and reaches a compression factor of at
leastly!~1/¢ (when using a slice size of /).

In other words, in a hierarchy whose complexityisthe space requirements of €T
in the multiple inheritance setting is worse than the single inheritance setting by a factor
of at most(2x)'~1/4,

108 CHAPTER 5. COMPACT DISPATCH TABLES

5.6.3 Hierarchy Complexity

Definition 5.13 The complexity of a hierarchy is the minimal numbesuch that there
exists partitioning o/ into sets7 ¢, ...,7 ., and an orderingr; of 7,7 = 1,..., k, sSuch
that for every type € 7, the setdescendants(t) N 7, is an interval inm;.

Clearly, the complexity of a hierarchy is 1 if there exists an orderirmg 7 in which
descendants of any type defineiaterval. All single inheritance hierarchies have com-
plexity 1 since in a simple preorder the descendants of any type are consecutive.

Figure 5.9 is a multiple inheritance hierarchy of complexity 1. Within each type we
write its position inr.

Figure 5.9: An example of a multiple inheritance hierarchy of complexity 1

Figure 5.10 shows the family partitioning of the family= {A, B, E} in the hierarchy
of Figure 5.9. Observe thg¥/ /| = 5.

Figure 5.10: The family partitioning of the familf’ = {A,B,E} in the hierarchy of
Figure 5.9

Since the complexity of this hierarchy is 1, the descendants of each type define an
interval. Therefore the family” defines the three intervals depicted in Figure 5.11.

The intervals in Figure 5.11 partition the types integgments (We will show that
there are at most|F'| segments.) Types in the same segment have the same set of can-
didates and therefore belong to the same partition. So we conclude that the number of

5.6. COMPACT DISPATCH TABLES IN MI HIERARCHIES 109

E
B
A
4D & | | RUVERESYN LN e
NN ! ! e N T N T 7 N7
A C F G D H E I B

Figure 5.11: The intervals of the family = {A, B, E} in the hierarchy of Figure 5.9

partitions is at most the number of segments, which in turn is at 2468t In our exam-
ple,

IVF|=5<6=2|F|
Lemma 5.14 |V F| < 2x|F| for each familyF.

PROOF We need the following fact, whose proof is elementary.

A set off intervals partition any consecutive set into at m2gt- 1 segments. Out of
these segments at m@gt— 1 are contained in one interval or moréSee illustration
in Figure 5.11.)

Let f = |F|. Recall (Definition 5.13) the partitioning af into sets7, ..., 7, with
their respective ordering. Létbe fixed. We write the list of members of the $gf,
enumerated in its respective order

Consider a type € 7,;. The result ofg-dispatch(F,t) is uniquely determined by
the subset of all types € F, such that the is among the descendant 8f From
Definition 5.13, we have that the descendants are consecutive in theTist Bamily F’
defines thereforg intervals (which may be empty) in this list. These intervals partition
the list into at mos2f + 1 segments such that the resultgatlispatch(F, ¢) is uniquely
determined by the segment©fThese segments give the restrictiorhof to 7 ;.

We have thus obtained@ F'| < x(2f + 1). To obtain a tighter bound we need a
more careful counting. Let us remove fram all types which are not descendants of
any of the members of'. The remaining types are divided Byinto 2f — 1 segments.
Generalized dispatching on the removed types returns the empty set, irrespectivbef
total number of equivalence classesvit’ is thereforex(2f — 1) + 1 < 2xf. O

We are unaware of any non-exponential method for findinipstead we use the PQ-
trees heuristic [137] which gives aqpper-bouncbn . On a benchmark of 19 large mul-
tiple inheritance hierarchies, the median value on that bound was 5, the average was 6.4,
and the maximum was 18.

Remark 5.15 The actual partitioningZ ¢, ..., 7 . is not required in order to apply the

CT reduction; only the integet is needed for determining the slice size. We found that in
practice the single inheritance analysis closely models even hierarchies which use multi-
ple inheritance heavily. (Therefore there is no need even to<find

110 CHAPTER 5. COMPACT DISPATCH TABLES

5.7 Experimental Results

In this section we compare the theoretical prediction on the algorithms with their em-
pirical performance. Our benchmark comprises 35 hierarchies totaling 63,972 types,
70,680 messages and 418,839 methods. Out of these, there were 16 single inheritance hi-
erarchies with 29,162 types, 12 multiple inheritance hierarchies with 27,728 types, and 7
multiple dispatch hierarchies with 7,082 types.

This data-set includes all hierarchies previously used in the literature in benchmarks
of dispatching algorithms. However, prior to running the experiments, all degenerate
families, i.e., families of size one, were pruned from the input. The reason for doing so
is that sending a message whose family is degenerate requires no dispatching, and is the
same as static procedure call. (In dynamically typed languages there is an earlier step,
which isequivalentto a subtyping test, in which it is made sure that the message is valid
for the receiver type.)

We stress that by eliminating degenerate families, compression beocooneslifficult
for the CT schemes. The reason is that this pruning reducesnbathd ¢ by the same
number. Therefore, the optimal compression factae (nm)/¢, which we aimed at
reaching, becomes smaller. On the other hand, the compression fastdi-efimination
schemegnm)/w may or may not decrease.

Table 5.2 gives the essential properties of the pruned hierarchies. The first two row
blocks in the table correspond to single inheritance (SI) and multiple inheritance (MI) hi-
erarchies. The last block is for hierarchies drawn from multi-dispatch languages. (We re-
gard each multi-dispatch query as several independent single-dispatch queries on each of
the arguments, as done in the first step of the major algorithms for multi-dispatching [137].)

The first two data columns in the table give the values @ndm for each of the
hierarchies in the data-set. We see that the hierarchies span a range of sizes: the number of
types is between 107 and 8,793 while the number of messages is between 131 and 14,575.
A more detailed description of the data-set, including the source of the hierarchies and
their respective programming languages is available elsewhere [137].

The column entitleds gives the memory requirement of the dispatching matrix, mea-
sured in millions of cells. We see that this matrix can be huge. Suppose that each cell uses
four bytes (an assumption we make henceforth), then this matrix consumes about 160MB
of memory in the MI: JDK 1.3.1 hierarchy and about 500MB in the MI: IBM SF hierar-
chy.

The next column in the table, entitle;, gives the number of non-null entries in
the dispatching matrix, measured in thousands. The column indicates that this matrix is
sparse: In most cases, 90% or more of its cells are empty. We shall use this column as a
baselinefor comparison of the CT algorithms, since it shows the memory requirement of
anoptimalnull-elimination scheme such as VFT on single inheritance hierarchies. Note
that in hierarchies such as MI: JDK 1.3.1 and MI: IBM SF the potential compression is
by a factor of 300 or more. But still, the VFTs may consume a lot of space: 1-2MB on
some single inheritance hierarchies.

The column entitleq% gives the number of method implementations, which ranges

5.7. EXPERIMENTAL RESULTS 111

(nm)

Hierarchy n m o 2 & | E
Visualworks1 7741 1,170 0.91| 79.14 462 1
Visualworks2 1,956| 3,196 6.25| 289.67| 13.58| 1
Digitalk2 535 962 051 72.27 3.33| 1
Digitalk3 1,357 | 2,402 3.26 | 362.11 944 | 1
IBM Smalltalk 2 | 2,320| 4,335| 10.06| 204.97| 16.29| 1
%)_ VisualAge 2 3,241| 6,529| 21.16| 594.98| 26.21| 1
% NextStep 311 499 0.16| 16.24 212 1
5 | ET++ 371 296 0.11] 12.20 141 1
3 | SI:JDK 1.3.1 6,681| 4,392| 29.34| 128.26| 23.82| 1
Z | SI: Corba 1,329| 222| 030 6.94| 259 1
§ SI: HotJava 644 690 0.44| 23.86 291 1
Sl: IBM SF 6,626 | 11,664| 77.29| 287.38| 88.28| 1
SI: IBM XML 107 131 0.01 1.30 059 1
Sl: Orbacus 1,053 980 1.03| 18.66 382 1
Sl: Orbacus Test| 579 368 0.21 5.67 239 1
SI: Orbix 1,278 535 0.68| 10.90 290 1
Self 1,802 | 2,459 4.43| 234.04| 21.75| 3
Unidraw 614 360 0.22 8.11 233 2
LOV 436 663 0.29| 14.09 2.84| 11
= | Geode 1,318 | 1,413 1.86| 122.27 9.52| 18
% MI: JDK 1.3.1 7,401| 5,724| 42.36| 140.91| 28.68| 9
S | MI: Corba 1,699 396 0.67| 13.58 3.20| 7
S | MI: HotJava 736 829 0.61| 24.90 340 7
2 | Ml: IBM SF 8,793| 14,575| 128.16| 390.35| 116.15| 12
8 | MI: IBM XML 145 271 0.04 2.33 095| 3
® | MI: Orbacus 1,379| 1,261| 1.74| 24.82| 5.00| 4
MI: Orbacus Test 689 379 0.26 7.49 275| 4
MI: Orbix 2,716 786 2.13| 22.44 3.70| 4
=z | Cecll 932 | 1,009 0.94| 72.89 421| 5
S | Dylan 925 428 0.40| 70.38 1.78| 3
S | Cecil- 473 592 0.28| 16.06 236| 5
g. Cecil2 472 131 0.06| 17.17 056| 5
S | Harlequin 666 229 0.15] 2311, 102| 8
S | Vor3 1,660 328 0.54| 15.44 1.86| 5
2 | Vortex3 1,954| 476| 0.93| 305.50| 2.50| 7

Table 5.2:Essential parameters of the pruned hierarchies in our data-set

between 562 and 116,152. This column also sets a lower bound on the memory used by
an optimal duplicates-elimination compression scheme. Comparing this column to the
previous one, we learn that duplicates-elimination is potentially much better than null-
elimination. However, it is much more difficult to come close to optimal duplicates-
elimination than to optimal null-elimination. We shall use this column as another com-
parison standard for the performance of the CT algorithms.

The final column entitled shows an upper bound enwhich was found by our PQ-
tree$ heuristic [137]. (Recall that we do not have an efficient algorithm for computing

4We used the slow PQ-trees heuristic instead of the fast order-preserving heuristic in order to obtain a

112 CHAPTER 5. COMPACT DISPATCH TABLES

In single inheritance hierarchies= % = 1. The median of in the remaining hierarchies
Is 5. The hierarchy whose topology seems to be the most complex is Geode, followed by
MI: IBM SF, LOV and then JDK 1.3.1.

The implementation of the various CT schemes was run on 900Mhz Pentium Il com-
puter, equipped with 256MB internal memory and controlled by a Windows 2000 oper-
ating system. On this machine, the runtimes for generating the encoding (without actu-
ally copying the values into matrices) of the first four schemes, (@fough CTF) were
0.7 Sec, 1.4 Sec, 2.1 Sec and 2.9 Sec. Since our data-set included in total 418,839 meth-
ods we find that the time per implementation is measured in microseconds. For example,
we found that the creation tinyger implementatiomanged between 0.3 and 1uBec in
CT, in single inheritance hierarchies (the median being/(56c). These times increase
in multiple inheritance hierarchies: the range being 1.1 to/5@éc; the median being
2.4 uSec.

Figure 5.12 shows the memory used by the first four CT schemes relative to the
baseline in the 35 hierarchies in the data-set. Memory usage of the CT schemes were
obtained using the empirically fourtokstslice size (which may be different than the
prescription of column 2 of Table 5.1).

The figure shows that compared to thetimal null-elimination, CT, is better in 6
hierarchies, CJin 13 hierarchies, Cfin 15 hierarchies, and GTin 16 hierarchies. In a
few cases, the improvement is by an order of magnitude from the baseline. We also see
that CT; is at most one order of magnitude worse than this idealized baseline.

We can also learn from Figure 5.12 that the incremental improvement by the series of
CT schemes is diminishing. In fact, examining the actual memory requirements, we find
that the median incremental improvements are; &er CT,: 44%, CT, over CT;: 18%,
and CT; over CT;: 8%. This finding is consistent with the theoretical prediction.

The figure also plots another idealized algorithm, i.e., the optimal duplicates-elimination
scheme, which uséicells. We see that this ideal is about one order of magnitude better
than the various CT schemes. Finally, we see a certain correlation betwednhe series
of CT schemes, as predicted by the theoretical analysis. Whenw the CT schemes
outperform even an optimal null-elimination scheme.

We now turn to comparing the actual performance of the various CT schemes with the
theoretically obtained bounds.

In single inheritance hierarchies, the upper bound on the memory requirement are
given by the fourth column of Table 5.1. Figure 5.13a shows the memory requirement
relative to these values. We see that in all schemes and in all hierarchies, the memory re-
guirement is significantly smaller than the upper bounds. Also, the extent of improvement
of CT, over the upper bound increases with

Corollary 5.12 provides the upper bounds in multiple inheritance hierarchies depend-
ing on their complexity:. Figure 5.13b shows the memory, relative to these upper bounds,
of the actual CT performance. Again, we see that the extent of improvement,aier
the upper bound increases with Interestingly, in comparing Figure 5.13b with Fig-

better upper bound. We will see that, in practice, it is better tasusel to find the slice size, so the speed
of the heuristic is irrelevant.

5.7. EXPERIMENTAL RESULTS 113

1000% 1
o ’,_./‘

17 33

100% 1

10% 1]

1% 3 |

Figure 5.12: Memory used by GTCT;, CT,, CT; and optimal duplicates-elimination
(0) relative to optimal null-eliminationy — marked as the 100%); hierarchies are sorted

in ascending memory used by €T

ure 5.13a, we see that the improvement of the implementation upon the upper bound is
much greater in multiple inheritance vs. single inheritance hierarchies.

A possible explanation for this seemingly better performance in multiple inheritance
hierarchies is exaggerated upper bounds. Examining Corollary 5.12, we see that the upper
bounds increase with. Since our heuristics only finds an upper approximatiowr,at
could be that the true upper bounds are actually smaller, and hence the improvement upon

the upper bound is not as great.

Figure 5.13c tries to test this hypothesis, by comparing the performance on multiple
inheritance hierarchies with the upper bounds obtained by assuting (as in single
inheritance hierarchieS)We see that the improvement upon the upper bounds computed
thus is almost the same as in single inheritance hierarchies (Figure 5.13a). Such a simi-
larity could not be explained by an overestimation<of

The reason that the CT algorithms perform better than the theoretically obtained

SIn fact, we used the bound for single inheritance in Table 5.1, which is smaller by a fa¢fr)of /¢
than the bound for multiple inheritance in Corollary 5.12.

114 CHAPTER 5. COMPACT DISPATCH TABLES

100%

75% —

o @ . AN N @
Nl @ © D> @ A
> NN N & .
&N sCF & F o & Q'\Q\\ © & S e@s
S S A g S R N PSR
& & 9N W@ gt 9@
5 @

25%

> & N N 9 @ ¢ & O O
PG Y e N o @S T S P
&« @&&WL & « o 0\5\){\\6 O ,Z;\Q‘Q Vg N & S
SO .
& T TN
Q\‘.

Figure 5.13: The memory requirement of CTT;, CT, and CT; relative to the theo-
retically obtained upper bounds in single inheritance hierarchies (a), multiple inheritance
hierarchies where the upper bound was computed us{byj and multiple inheritance hi-
erarchies, where the upper bound is computed as in single inheritance hierarchié} (

(©)

5.7. EXPERIMENTAL RESULTS 115

bounds is that the analysis of the CT reduction bounded the size of a master-family by the
sum of sizes of its constituents, i.e.,

U Fl <> IR

FeF; FeF;

|| =

In fact, especially when the families are large, the probability of finding shared elements
may be significant, and the master family is likely to be smaller. As a reSulthe
number of implementations after the reduction, may be much smaller than the original
value/. For example, withe = 29 for CT, in Digitalk3, the CT reduction transforms

the problem(n, m, () = (1357,2402,9444) to (1357, 83,4616), i.e., the number of im-

plementations decreased by a factor of more than 2. Our analysis assumed (see (5.11))
however that’ = /.

This effect increases also with slice size, which is the reason that choosing a slice size
greater than the theoretical prescription may improve the performance of the reduction.
In IBM SF, for example, the theoretical analysis suggestedithat= 30 as optimal slice
size for CT,. However, by using instead a slice size= 70, we were able to further
reduce the number of cells from 3.3M to about 2.4M.

Figure 5.14 compares the actual memory used by thes€ieme with the theoretical
prediction (5.14) in the Digitalk3 hierarchy. (The graphs of other hierarchies and higher
order schemes are similar.) We see that the extent by which the empirical performance is
superior to the theoretically obtained bound increases with the slice size.

1800000
1600000 |
1400000 -

1200000 -
1000000 -
800000 -

— Ix + (nm)/x
CT2

—_

o

600000 -
400000 -
200000 -

memory requirements

0 TTTTT T T T T I T T T T T I T IT T T T I T T T I T T TTTITT Tl

2 7 1217 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97
slice size

Figure 5.14: Space requirements vs. slice size in the single inheritance hierarchy of Dig-
italk3 for CT, and its theoretical upper bound (5.14)

116 CHAPTER 5. COMPACT DISPATCH TABLES

5.8 Conclusions and Open Problems

The incremental algorithm described in Section 5.5 is in many ways the pinnacle of this
chapter. This algorithm assumes the single inheritance, dynamically typed, and dynamic
loading model, denoted SDTDL. A prime example for the model isSNaLLTALK
programming language. Note that the VFT method is unsuitable in an SDTDL model.

Curiously, even thoughava is in essence a statically typed language, the implemen-
tation of theinvokeinterface bytecode instruction is a very close match of this
model. To see this recall that all implementations of a method definedimexface
must reside irclass es, and that these classes take a tree topology. The locations of
these implementations in this tree are however totally unrelated, and additional imple-
mentations can be introduced as a result of dynamic class loading. Even though there is a
possibility of using static information of the interface type, many implementations of the
invokeinterface bytecode instruction assume an SDTDL model.

Incorporating the algorithm into a runtime system requires careful attention to details,
including selecting a heuristic of determining the optimal slice size, which might perform
better than the theoretical value, a wise strategy for background copy to avoid stagna-
tion, tweaking and fine tuning of the partitioning algorithm, etc. We leave this empirical
evaluation to continuing research.

Also, the incremental algorithm can be generalized to the multiple inheritance setting,
but there are subtle issues in the theoretical analysis of the performance of this general-
ization.

Observe that the static algorithm for multiple inheritance hierarchies, actie¢ésm
space wher = lgm. Type slicing [137] however uses only(x¢) cells, while achiev-
ing O(lglgn) dispatching time. There is therefore a reason to believe that the tradeoff
offered by our technique can be improved, especially for higher valués of

Chapter 6

Two-Dimensional Bi-Directional Object
Layout

Chapter Summary

C++ object layout schemes rely on (sometimes numerous) compiler generated fields. We describe
a new language-independent object layout scheme, which is space optimal, i.e., objects are con-
tiguous, and contaimo compiler generated fieldsher than a single type identifier. As in C++

and other multiple inheritance languages such as Cecil and Dylan, the new scheme sometimes
requires extra levels of indirection to access some of the fields. Using a data set of 28 hierarchies,
totaling almost 50,000 types, we show that the new scheme improves field access efficiency over
standard implementations, and competes favorably with (the non-space optimal) highly optimized
C++ specific implementations. The benchmark includes a new analytical model for computing
the frequency of indirections in a sequence of field access operations. Our layout scheme relies
on whole-program analysis, which requires about 10 micro-seconds per type on a contemporary
architecture (Pentium Ill, 900Mhz, 256MB machine), even in very large hierarchies.

A common argument raised by proponents of the single inheritance programming
model is that multiple inheritance incurs space and time overheads and inefficiencies on
the runtime system [24,94]. A large body of research was targeted at reducing the multiple
inheritance overhead in operations such as dynamic message dispatch and subtyping tests
(see e.g., [136-138] for recent surveys). Another great concern in the design of runtime
systems for multiple inheritance hierarchies is efficient object layout. To this end, both
general purpose [113] and C++ language specific [53, 68] object layout schemes were
previously proposed in the literature.

The various C++ layout schemes are not space-optimal since they introduce (some-
times many) compiler generated fields into the layout. They are also not time-optimal
since access to certain fields (in particular, those defined in virtual bases) requires sev-
eral memory dereferences. This thesis revisits the object layout problem in the general,
language-independent setting. Our new object layout scheme is space optimal, i.e., ob-
jects are contiguous, and contaiao compiler generated fieldglence, in terms of space,
it is superior to C++ layout schemes. It is also superior in terms of field access efficiency

117

118 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

to the space-optimdield dispatchingechniqué employed by many object oriented lan-
guages.

We say that the layout isvo dimensional, bi-directionasince all objects can be
thought of as being laid out first in a two-dimensional matrix, whose rows (also called
layeryg may span both positive and negative indices. The layout algorithm ensures that
the populated portion of each such layer is consecutive, regardless of the object type. The
particular object layout in one-dimensional memory is a cascade of these portions.

A data set of 28 hierarchies, totaling almost 50,000 types, was used in comparing the
field access efficiency of the new scheme with that of different C++ specific layouts. Our
analytical cost model shows that in this data set, the new scheme is superior to the standard
C++ layout and to the simple inlining algorithm [53]. Even though the new layout is not
C++ specific, it competes favorably in this respect with aggressive inlining [53], arguably
the best C++ layout scheme.

To better understand the intricacies of object layout, consider Figure 6.1a, which de-
picts a small single inheritance hierarchy.

negative positive

offsets " offsets
(R T ()
®) () &) SNONORO
(@) (c)

Figure 6.1: A small single inheritance hierarchy (a), a possible object layout for this
hierarchy (b), and a multiple inheritance hierarchy in which there is no contiguous layout
for all objects (c)

W > W > W >
N
R
Bk
EH
EREREIRERE
-] BlE
i EHar
¢

E

w

(b)

A possible object layout of the types defined in this hierarchy is shown in Figure 6.1b.
The fields ofA; are laid out just afteR. The layout o8, adds its own fields in increasing
offsets. All types inheriting fronA; andB; will have positive directionality. Types,
andB, are laid out in negative offsets. This should also be the directionality of any of their
descendants. Typés andB; and all of their descendants have positive directionality.

Figure 6.1b demonstrates a degenerate case of the two-dimensional bi-directional lay-
out scheme, in which there is only one layer. This layer is populated either in negative
or positive offsets. In the general case, there are multiples layers, which may use for the
same object type both positive and negative offsets, or even be empty.

Consider now the multiple inheritance hierarchy of Figure 6.1, obtained by adding
multiple inheritance edges from, to A; andAs;. Here and henceforth, inheritance is

LIn the field dispatching technique we encapsulate fields in accessor methods.

6.1. DEFINITIONS 119

assumed to behared(virtual in the C++ jargon). Thus, in the figure, tyjBg has a
singleR sub-object. We believe that repeated inheritance, i.e., whereBtypas twoR
sub-objects, is a rarity, or as one wrote: “repeated inheritance is an abomirfation”.

With the addition of multiple inheritance, a layout fBs becomes difficult, since at
the same positive offsets immediately followiRgve expect to find both the fields &f
and the fields ofA;. This difficulty is no coincidence, and is in fact a result of the strong
conformance requirement (or fixed offsets [113]) which we implicitly made:

The strong conformance requirement: Every type must be laid out in the
same offset in all of its descendants.

If the layout ofA;, A, andA; is required to be contiguous, then the fields of each of these
types must be laid out adjacentRo Since the layout oR in memory has only two sides,

then it must be that at least two Af, A, andA; are laid out at the same side Rf This

Is not a problem as long as these two types are never laid out together, as is the case in
single inheritance. The difficulty is raised in multiple inheritance, specifically, when there

is a common descendant of these two types.

Thus, we see that it is sometimes impossible to maintain the strong conformance re-
quirement and contiguous object layout. Our new scheme resolves the conflict by sacri-
ficing the strong conformance requirement. In particular, each object is laid out in one or
more layers, where each layer uses a bidirectional layout. The above difficulty is removed
by placing (say) typ@s in a different layer.

We note that separate compilation discovers too late that two base types compete
for the same memory location, i.e., after the layout of these base types was determined.
For this reason, our layout scheme, just as all other optimizing layouts, relies on whole
program analysis.

Outline Pertinent definitions are given in Section 6.1, which also lists some of the stan-
dard simplifications of the object layout problem. Section 6.2 describes the criteria used in
evaluating object layout schemes, using these to place our result in the context of previous
work. The actual layout, which comes in three versions, is described in Section 6.3. Sec-
tion 6.4 presents the algorithm for computing the actual layout. Section 6.5 describes the
data-set used in the benchmark, while Section 6.6 gives the experimental results. Finally,
conclusions and directions for future research are given in Section 6.7.

6.1 Definitions

Leading to a more exact specification of the problem, this section makes precise notions
such as a hierarchy, incomparable types, and introduced and accessible fields in a type.

A hierarchyis specified by a set of types, n = |7|, and a partial orderg, called
the subtype relatiorwhich must be reflexive, transitive and anti-symmetric. dgte 7
be arbitrary. Then, it. < b holds we say that is asubtypeof b and thath is asupertype

2words of an anonymous reviewer to [68]

120 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

of a. If neithera <b nor a > b holds, we say that the types dareeomparable Also, if
there does not exigtsuch thatu <c¢=<b andc # a, ¢ # b, then we say that is achild
of b and that is aparentof a.

A hierarchy issingle inheritancef eacha € 7 has at most one parent, andiltiple
inheritanceotherwise.

The set of ancestors of a typec 7 is ancestors(a) = {b € 7 | a <b}. We denote
the number of ancestors atby 0,. Note thata € ancestors(a).

Types in a hierarchy maytroducefields, which can be thought of as unique names
or selectors. We assume that there isfiettl overriding i.e., that the same field name
can only be used once in each type. Although C++ (and other languages) allow a derived
class to reuse the name ofpavate field defined in a base class, our assumption is
trivially satisfied by simple renaming.

Stated differently, our demand is that no run time dispatching process is required to
select the particular “implementation” of a field name. This is precisely the case in stati-
cally typed languages, where the field name and the static object type uniquely determine
the introducing class.

The problem of object layout in dynamically typed languages is not very interesting
and excluded from the domain of discourse. In languages su8vasLTALK , fields
access is restricted to the methods of the defining object. With this restriction, the strong
conformance requirement does not need to be safisfidte object layout problem then
becomes trivial, even with the face of multiple inheritance. If however a dynamically
typed language supports non-private fields, then there must be a runtime check that the
accessed field is defined in the object. Such checks are related to subtyping tests and
even to a more general dispatching problem which received extensive coverage in the
literature [136—138].

For simplicity, we assume that all fields are of the same size. For a tgpg, let |¢|
denote the number of fields introducedtinThe accessibldields of a type include all
fields introduced in it and in any of its proper supertypes.

Given a type hierarchy, thebject layout problenis to design dayout scheméor the
objects of each of the types in the hierarchy, and a method for accessing at runtime the
accessible fields of each type. Specifically, given a fieldnd an object address of
typet, the runtime system should be able to compute the addres$ of The selectof
Is a compile time constant, whiteis supplied only at runtime.

6.2 Previous Work

A layout scheme is evaluated by the following criteria.

1. Dynamic memory overheadhis is extra memory allocated for objects, i.e., mem-
ory beyond what is required for representing the object’'s own fields. Ideally, this
overhead is zero. However, holes in a noncontiguous object layout contribute to this

3In fact, even the weak conformance requirement (defined later in Section 6.2) is not satisfied.

6.2. PREVIOUS WORK 121

overhead. Another overhead of this kind are compiler generated fields, e.g., virtual
function table pointersPTRS) in C++.

Note that the semantics of most object oriented languages dictates that the layout
of each object must include at leaste type identifier This identifier is used at
runtime to identify the object type, for purposes such as dynamic message dispatch
and subtyping tests. This identifier can be conveniently thought of as a field defined
in a common root type (e.g., tyge in Figure 6.1), and therefore is not counted

as part of the dynamic memory overhead. However, if a scheme allocates multiple
type identifiers, as is the case with the C++ standard layout, then all but the first
identifier contribute to this overhead.

2. Field access efficiencyThis is the time required to realize the field access oper-
ationo.f . Ideally, fields can be accessed in a single machine instruction, which
relies on a fixed offset (from the object base) addressing mode. Layout schemes
often rely on several levels of indirection for computing a field location in memory.

It is common that all fields introduced in a certain type are laid out consecutively.
Sincef is supplied at compile time, the tygéin which f was introduced can

be precomputed. The main duty of the runtime system is to find the location in
memory in which the fields of are laid out int, the type ofo.

3. Static memory overheadThese are the tables and other data-structures used by
the layout which are shared between all objects of a certain type. This overhead is
usually less significant than the dynamic memory overhead, and therefore it seems
worthwhile to maximize sharing. On the other hand, retrieving the shared informa-
tion comes at the cost of extra indirections, and may reduce field access efficiency.

4. Time for computing the layouthis is the time required for computing the layout,
which could be exponential in some schemes.

Object layout in a single inheritance hierarchy can simultaneously optimize all the
above metrics. As can be seen in Figure 6.1b, both static and dynamic memory overheads
are zero. Field access efficiency is optimal with no dereferencing. Also, the computation
of the layout is as straightforward as it can be.

A trivial layout scheme for multiple inheritance which maintains the strong confor-
mance requirement is that the layout of each type reserves memalf fmids defined
in the hierarchy. Static memory overhead, time for computing the layout, and field access
efficiency are optimized. However, dynamic memory overhead is huge since each object
uses memory of siz&,_-|t|, regardless of its actual type, which usually has far fewer
accessible fields.

Pugh and Weddell [113] investigated more efficient layout schemes which still ful-
fill the strong conformance requirement. The dynamic memory overhead of their main
bidirectional object layout scheme is in one case study only 6%, compared to 47% in a
unidirectional object layout. The authors also showed that the problem of determining
whether an optimal bidirectional layout exists is NP-complete.

At the other extreme stands what may be cdiield dispatchindayout scheme, which
is employed by many dynamically typed programming languages including Cecil [26]

122 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

and Dylan [120]. In this scheme, the layout of types obtained by iterating (in some
arbitrary order) over the sehcestors(t), laying out their fields in order. Since the strong
conformance property is broken, we encapsulate fields in accessor methods. If a field
position changes in a subtype, we override its accessor. The dynamic memory overhead
in this scheme is zero.

Dispatching on accessor methods can be implemented by arfield dispatch matrix
which gives the base offset of a type in the layout of any of its descendants. This static
memory overhead can be reduced if the matrix is compressed by e.g., techniques used for
method dispatching (see e.g., [137] for a recent survey). A different implementation is
found in the SmallEiffel compiler [135], in which a static branch code over the dynamic
type of the object finds the required base offset.

The main drawback of field dispatching is in reduced field access efficiency. In the
matrix implementation, field access requires at least three indirections in the simplest
version, and potentially more with a compressed representation of the matrix.

An interesting tradeoff between the two extremes is offered by the memory model of
C++ [93]. C++ distinguishes betweefirtual andnonwirtual bases. For non-
virtual bases, C++ uses a relaxed conformance requirementt, ltetts € 7 be such
thatt, is a nonvirtual ~ base oft,, andt; is an arbitrary subtype af.

The weak conformance requirement: The offset oft; with respect ta; is
fixed in all occurrences af, within t5 < t,.

In other words, although the offset @fis not the same in all of its descendants, it is fixed
with respect to any specific descendantregardless of where that descendant is found.
Consequently, to find the location of within ¢5 it is sufficient to find the address of
within 3.

The weak conformance requirement can be maintained together with object contiguity
in many multiple inheritance hierarchies, specifically those with no virtual-bases. How-
ever, since atype is not always located at the same offset, it is necessary to apply a process
calledthis -adjustment [123] in order to access a field introduced in a supertype. For
example, a method @ cannot be invoked on an object of tyfge without first correcting
the pointer to the object, coercing it to type

Thethis -adjustment model incurs many penalties other than the time required for
the addition. For example, the runtime system must apply checks before a pointer
can be corrected. Also, a conversion from an array of subtypes to an array of supertypes
cannot be done constant time. Moreover, an object may contain multiple type-identifiers,
(VPTRs in the C++ jargon) contributing to dynamic memory overhead. Also, the point-
ers to the same object may have different values which is a serious hurdle for garbage
collectors (and for efficient identity testing).

In hierarchies with virtual bases, even the weak conformance requirement cannot be
satisfied together with object contiguity. In these cases, C++ videsl base pointers
(VBPTRs) to tie memory segments of the same object. Gil and Sweeney [68] give a

4We are not so interested in the textbook [124] difference between the two. Instead, we say that a type
is a virtual base if two or more of its children have a common descendant.

6.2. PREVIOUS WORK 123

detailed description 0fBPTRs. We only mention tha BP TR can be stored directly in

the objects, as in the “standard” C++ implementation, contributing to dynamic memory
overhead, or moved to the static memory, at the cost of increasing field access time. Also,
in order to be able to access fields at constant time, an implementation must store (a
potentially quadratic number offiessentiaVBPTRs. We note that referencing fields
throughVBPTRs also requireshis -adjustment, and that a virtual base does have a
VPTR.

Gil and Sweeney [68] proposed several optimizations of the standard C++ layout,
which were then empirically evaluated by Eckel and Gil [53], whose main yardstick was
dynamic and static memory overhead. The main optimization which contributes to field
access efficiency isimple-inlinewhich tries to reduce the number of virtual bases by
conforming transformations of the hierarchyAggressive-inlinedoes the same, using
a maximal-independent set heuristic as procedure for finding a close to optimal set of
transformations. Theidirectional object layoubptimization reduces dynamic memory
overhead but does not contribute to field access efficiency.

For the purpose of illustration, Figure 6.2 depicts a type hierarchy and its aggressive-
inline C++ layout. The same hierarchy will be used below in Section 6.4 for demon-
strating the new two-dimensional bi-directional layout. A C++ programmer is allowed to
denote some of the inheritance edgesiesal . In the figure, inheritance edgéB, A)
and(C, A) are virtual so thaF has a singlé\ sub-object. The virtual edges that wémne
linedin the aggressive-inline layout are marked in bold, while the other non-inlined virtual
edges are dashed. The cells with a dot in Figure 6.2b repr&$€hRs (VBPTRs were
not drawn since they can be either shared in a class or duplicated in all of its instances).

Fields of type T

[=] Type-id (VPTR)

olajala
| [o [2|]
o] o [=
B

FE
EE

[-TcTc] [-Ta]
[H] [-]c] [-]A]
[-|A[D[-]E]I]
L-1o][=]alp] [-E]

L-lcle]-[H]K]|[-]A]

— Non-virtual edge I'|H|'|A|D|'|E|||L”'|Cl

L-lo[m|[-]a[D][-]E]]

- = «» Non-inlined virtual edge

ZEIrAxAse T OMMmMmOOm>

[-IH[-]A[D]-[EJI]L]-]J[M[N][-]|C]

—p |nlined virtual edge

(@ (b)

Figure 6.2: A type hierarchy (a) with its aggressive-inline C++ layout (b)

124 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

Our two-dimensional bi-directional scheme incasdynamic memory overheabh
thisrespectitis at least as good as any other layout scheme, and strictly better than all C++
implementations (which may include more than MfTR). The most interesting crite-
rion for comparison with C++ and field dispatching is therefore field access efficiency.
We shall see that the our new scheme competes favorably even with the highly optimized
and language specific aggressive-inline layout scheme.

Our results indicate that the time for computing the new layout is small—about 10
uSec per type (see Section 6.6). We also find that the static memory overhead is small
compared both to field dispatching and various C++ techniques.

The new layout isiniform, in the sense that (unlike C++) the runtime system does not
need any information on the static type of an object pointer in order to access any of its
fields. Consider an objectand a fieldf . Then, the sequence of machine instructions for
the field access operatianf depends only on the selectorand is the same regardless
of the type ofo. This is in contrast to languages such as C++ in which, depending on the
static type ofo, access to fieldl is either direct, or through indirection.

6.3 Two-Dimensional Bi-Directional Object Layout

In our two-dimensional bi-directional scheme, each field defined in the type hierarchy has
a two-dimensional addregg, A). Coordinate/, 1 < ¢ < L, is the field'slayer, whereL

Is the number of layers used by the type hierarchy. (The assignment of types into layers
Is the subject of Section 6.4.) Coordinakeis an integral offset of the field in its layer.

We say that the layout is bidirectional since this offset may be either positive or negative.

All fields introduced in the same typeare laid out consecutively: Their layer is the
same a¥;, the type’s layer, while their offset is fixed with respect4g, the offset of
the type. This section describes the actual object layout, which has three versions: the
simple and not so efficiemanonicallayout, which is included for purpose of illustration,
the general purpossompactlayout, which we expect to be used in most cases, and the
highly-optimizedinlined layout which is applicable in some special cases.

In the canonicallayout each object is represented as a pointerltayers Dispatch
Table(LDT) of size L. Entryi, i = 1,..., L, of the LDT points to the™ layer of the
object.

The canonical layout is demonstrated in Figure 6.3(a) for the Easéb. The object
depicted in the figure represented by a pointdo its LDT, which stores pointers to
layersL,, L3, andL4. The type of the object is such that it has no fields from the second
and the fifth layers. Hence the corresponding entries of the LDT are null.

In general, layers are two directional, and may store fields with both negative and
positive offsets. Such is laydl; in the figure, with offsets in the rangeo, ..., +2.
However, the type of the object depicted has no fields with positive offsets in Iayer
Similarly, layer L, has no fields with negative offsets.

We can see in the figure that each of the layers is contiguous. More precisely, if
an object has a field at a certain layer in offaet> 0, then it also has fields in all

6.3. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT 125

Yy

+2||-S|-7|-6|-5|-4|-3|-2|-1|0 "0 |+1
3

vy

l)"l) +

L

!

|-6|-5 -4

+2

0 |+1 +3

+4| I.ﬁ

-5

-4

3

+1

+Z|+3II-8

K]

-6

-5

L

4

3

2

1

1

+2

+3

+4|

L

1 4 3 4

(a) (b)

Figure 6.3: The canonical (a) and the compact (b) two-dimensional bi-directional layout
of an object from a 5-layer hierarchy. Laydrs and L5 are empty in the depicted object.

offsets0, ..., A — 1. By placing the layers and the LDT next to each other we obtain a
contiguous object layout. The pointers from the LDT to the layers can then be stored as
relative offsets.

A compiler algorithm for producing the runtime access code in the canonical layout is
presented in Algorithm 6.1. Take note that the typthe layer/;, and the offsetg\; and
A¢ are computed at compile time. ginglememory dereference is required to compute
the fieldaddress

Algorithm 6.1 An algorithm for generating field access code in the canonical layout
Givenf, a name of a field of typent , and a pointeip to an object which uses the
canonical layoutgenerate the code sequence (using pseudo-C++ notation) for accessing
fieldf inp.
1: Lett be the type in whichh was defined
Let /; be the unique layer af// ¢, is a positive integer
Let integerA,; be the offset of
Let A¢ be the offset of within its type //A; is a non-negative integer
Output
int *layer _ptr = ((int *)p)| 4 —1];
int &r = layer ptr[A, + A¢];

It is important to notice that the occupied entries in each layer depend only on the
objecttype Therefore, an offset-based LDT is identical in all objects of the same type
and can be shared. Tlvempactversion of object layout is obtained by employing this
sharing and by letting the object pointers reference the first layer directly, which tends to
be the largest in our algorithm for assigning fields to layers.

Figure 6.3b gives an example of the compact layout of the same object of Figure 6.3a.
In the figure we see the same three non-empty layarst; and L. However, the object
pointerp now points to offset 0 in layek,. At this offset we find th@bject type identifier
which is a pointer to the shared LDT. Notice that the size of layewas increased by
one to accommodate the object type identifier. Also, there are now only four entries in the
LDT, which correspond to layers,, . . ., Ls.

Algorithm 6.2 is run by the compiler to generate the code sequence for accessing
a field in the compact layout. If the compiler determines that the field is in the first

126 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

Algorithm 6.2 An algorithm for generating field access code in the compact layout
Givenf, a name of a field of typent , and a pointeip to an object which uses the
compact layoytgenerate the code sequence (using pseudo-C++ notation) for accessing
fieldf inp.

1: Lett be the type in whicli was defined

2. Let/; be the unique layer af// ¢, is a positive integer
3: Let integerA, be the offset of
4: Let A be the offset of within its type //As is a non-negative integer
5. If ¢, = 1then
6: Output

int & = ((int Mp)[A, + Ar];
7. else
8: Output

int *pl = *((int *)p);

int layer _offset = p1l[¢, —2];

int &r = p[layer _offset + JAVIRE WAV
9: fi

layer, then the field can be accessed directhg-memory dereferences are required for
computing its address. If the field however falls in any other layer, then memory must be
dererenced once to find the LDT, and then again to find the layer offset. Also, in this case,
the addressing mode for the final field access is slightly more complicated since it must
add compile- and runtime- offsets.

The LDT in the example of Figure 6.3 includes only four entries, all of which are
byte-size integers (assuming of course that the object size is less than 256 bytes). The
entire LDT can be represented as a single 32 bit words. ifiliveed layout is obtained
from the compact layout by inlining the LDT into the object’s first layer. At the cost of
increasing object space, inlining saves a level of indirection in fetching LDT entries. Note
that even if the LDT is stored inside the object, each object must include at least one type
identifier for purposes such as subtyping tests and dispatching. Therefore, even in this
simple example, the inlined layout uses more space than the compact layout.

6.4 Computing Type Addresses

This section is dedicated to the algorithm for assigning field addresses. The main con-
straint to maintain is that all layers are contiguous in all types. It is always possible to
find such an assignment, since each field can be allocated its own layer (as done in field
dispatching).

Our objective is an assignment which minimizgshe number of layers. One reason
for doing so, is that the memory required for LDTslisx n. LDTs are source for static
memory overhead in the compact layout, and dynamic memory overhead in the inlined
layout.

However, our most important motivation is reducing tikelihood of LDT fetches

6.4. COMPUTING TYPE ADDRESSES 127

or in other words, inefficiency of field access. If the number of layers is one, then all
fields can be retrieved without any dereferences. We note that if the number of layers is
small, then an optimizing compiler might be able to pre-fetch and reuse layer addresses
to accelerate field access.

Note first that each layer has a positive and a negagwei-layer and that these semi-
layers are independent for the purpose of allocation. To understand the constraints of
allocation better, consider Figure 6.4a which gives the object layout for our running ex-
ample.

SL SL

A
B
c
D

E

F:
G:
H:

I

J

K

L
M:
N:

N

g

3

2

LB RE ™
= NG CICI EY
#le[-[a[c[H]L]+[p[1]+
DLECEBRIE ™

¢m[JE[-TAJc[H[LIN]+[D] 1]+

+

@) (b) ()

Figure 6.4: The two-dimensional bi-directional object layout of the running example (a),
the allocation of types in it to semi-layers (b), and the conflict graph with its coloring (c)

We see in the figure that the hierarchy uses a total of two layers and three semi-layers.
The first layer has at offset O the object type identifier and a positive and negative semi-
layers. The second layer uses only the positive semi-layer. The arrows in the figure
indicate the place where the semi-layer may continue.

Figure 6.4b shows the allocation of types to semi-layers which generates this layout:
Seven typeg\, C, F, H, K, L, andN are in semi-layer 1 (positive side of the first layer).
Semi-layer 2 (negative side of the first layer) includes five tyg®sE, G, J, andM.

Only D andI are in semi-layer 3 (positive side of the second layer). The layout ofNype
for example, makes use of all three semi-layers, while the layot oes just semi-
layers 1 and 3.

Notice the following points:(i) Semi-layers 1 and 2 comprising the first layer are
in a fixed offset. Semi-layer 3 occurs at different offsets in different typg@y.Each
type is always placed in the same location in its layer. For exanmpis,located in
the first location in semi-layer 2 in the layouts of all of its descendagid; J, L, M,
andN. (iii) The same location in the same semi-layer can be used for different types. For
example, the first location of semi-layer 1 stores also the fiel@sothe layout ofF, and
the fields ofG in the layout ofK. (iv) Types are allocated to semi-layers in descending
subtyping order. For example, we see that typeS, H, L andN are placed in this order
in semi-layer 1 in the layout oft and thatA > C > H > L > N.

The general question is whether two arbitrary types € 7 can be allocated to

128 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

the same semi-layer, and what should their relative ordering in that semi-layer should
be. Suppose first, without loss of generality, that b. Then, whenevet appears, so
doesh. Therefore, with the absence of other constraints, we can allocateb into the

same semi-layer, andmust be placed aftérin this semi-layer. If howeves andb are
incomparable, then they could be allocated to the same semi-layer, and even to the same
location in the level, as long as they do not occur together in the layout of any third.type

In other words, the allocation is allowed as longiandb have no common descendants.

Figure 6.4c shows theonflict graphof our running example, where two types are
connected by an edge if they are incomparable, yet have a common descendant. We see
in the figure that no edges are incidentAanThis is becausa is the root, and as such is
comparable with all types in the hierarchy. Also, no edges are incident on the keaves
andN. The edge betweed andE , for example, is due to their common descendant

A node coloring of the conflict graph provides a legal allocation. We of course seek a
minimal coloring of this graph. Figure 6.4c gives a coloring of the conflict graph of the
running example. A total of three colors are used: White nodes are allocated to semi-
layer 1, grey to semi-layer 2, and black to semi-layer 3.

Algorithm 6.3 shows the general procedure for address allocation. Using a graph
coloring heuristic, the algorithm computes the number of layers for the layout. Also,
for each type in the input hierarchy the algorithm returis its layer and\,, the base
offset in the layer at which its fields are allocatedAlf > 0, then fields are allocated in
ascending addresses. Otherwiss,in the negative semi-layer, and field are placed in the
addresses below;,.

Lines 1-10 compute the edges in the conflict graph. In the main loop, we consider the
ancestors of each candidate. There is a conflict between any two of its ancestors if they
are incomparable. The runtime of the inner loop should (empirically) be close to linear,
since the average number of ancestors in our hierarchies is small.

Next (lines 11-12) we compute the conflict graph and a coloring of it. We use a simple,
greedy heuristic for finding this coloring. (We color nodes with larger degree first, using
the first available color.) A favorable property of this heuristic is that the color groups
tend to come out in descending order, ile;'(i)| > ¢ ' (i + 1)|fori =1,...,s — 1.

Since fields in the first layer can be accessed in a single indirection, the first layer should
be as large as possible.

The next command block computes the layer of each typad its (positive or nega-
tive) offset within this layer. Lines 14—19 compute the total size of types which preécede
in its semi-layer. After computing the layer number (line 20) we turn to making the nec-
essary corrections to the offset. In general, positive semi-layers use offsdts+2, . . .,
while negative semi-layers use offsetd, —2,... (lines 21-22). However, layer 1 is
special since it contains the type identifier at offset O (lines 23—-24).

6.5 Data Set

For the purpose of evaluating the multi-layer object layout scheme, we used an ensemble
of 28 type hierarchies, drawn from eight different programming languages, and spanning

6.5. DATA SET 129

Algorithm 6.3 Produce the compact two-dimensional bi-directional layout of a hierarchy
Given a hierarchyZ and =, return the number of layers, and compute; and A; for each
typet € T

1. Let E — 0 // E is the set of edges in the undirected conflict graph

2: Forall t € 7 do// Consider all possible common descendants

3: Forall p1,ps € ancestors(t) do// p; andps have a common descendant

4; If p1 Apeandp; %~ ps then// p; andps are incomparable
5: If {p1,p2} & E then// A new conflict edge found

6: E — EU{{p1,p2}}

7 fi

8: fi

9: od
10: od

11: LetG «— (7, E) Il G is the graph of conflicts between types
12: Let¢ : 7 +— [1,...,s] be a coloring of the nodes ¢t

13: For all t € 7 do// Compute the offset and the layertof
14: A, < 0// Compute the total size of proper ancestors in the same semi-layer as
15: Forall p € ancestors(t), p # ¢ do

16: If ¢(p) = ¢(t) then// Ancestorp is in the same semi-layer as
17: At — At + |p‘

18: fi

19: od

20: {4 < [¢(t)/2] Il Layerl hosts colorl — 1 and 2!
21: If ¢(t) mod 2 = 0 then// Even colored objects are laid out in negative semi-layers

22: Ay — —Ay — 1 /1 Offsets of negative semi-layers start-at

23: elseif¢(t) = 1then

24: Ay — Ay + 1 // Offset 0 in layer 1 is reserved for the type-identifier
25: fi

26: od

27: Return [s/2]

almost 50,000 types. The first 27 hierarchiegre used in our previous benchmarks. A
detailed description of their origin, respective programming language, and many of their
statistical and topological properties can be found elsewhere [136, 137]. (Even though
multiple inheritance of fields is not possible JavA, the JAVA hierarchies are still use-

ful in characterizing how programmers tend to use multiple inheritance.) To these we
added Flavors, a 67-type hierarchy representingrtbli-inheritance coref the Flavors
language [98] benchmark used by Pugh and Weddell [113, Fig. 5].

Together, the hierarchies span a range of sizes, from 67 types (in IDL and Flavors) up
to 8,793 types in MI: IBM SF, the median being 930 types. The hierarchies are relatively

SIDL, MI: IBM XML, JDK 1.1, Laure, Ed, LOV, Cecil2, Cecil-, Unidraw, Harlequin, MI: Orbacus
Test, MI: HotJava, Dylan, Cecil, Geode, MI: Orbacus, Vor3, MI: Corba, JDK 1.18, Self, Vortex3, Eiffel4,
MI: Orbix, JDK 1.22, JDK 1.30, MI: JDK 1.3.1, and MI: IBM SF.

130 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

shallow, with heights between 9 and 17. Most types have just one parent, and the overall
average number of parents is 1.2. In these and other respects, the hierarchies are not very
different from balanced binary trees [53].

The number of ancestors is typically small, averaging less than 10 in most hierarchies.
Exceptions are the Geode and the Self hierarchies, which make an extensive use of multi-
ple inheritance. In Geode, there are 14 ancestors in average to each type, and there exists
a type with as many as 50 ancestors. Self has 31 ancestors in average per type. The
topology of Self is quite unique in that almost all types in it inherit from a type with 23
ancestors. Table 6.1 below gives (among other information), the number of types in each
hierarchy, and the maximal and average number of ancestors.

6.6 Experimental Results

This section presents the results of running Algorithm 6.3 on our data set. Since this al-
gorithm depends on a graph-coloring heuristic (Line 12), we would like first to be assured
by the output quality. We remind the reader that if a graph has a clique of:stben

it cannot be colored by fewer thancolors. Although it is not easy to find cliques in
general graphs, some cliques can be efficiently found in conflict graphs. Considera type
and its set of ancestorsicestors(t). Let P, C ancestors(t) be a set of types which are
pair-wise incomparable. Then any, ¢, € P, are in conflict, and the sd®, is a clique

in the conflict graph. Finding a maximal set of incomparable nodes in a hierarchy is a
standard procedure of finding a maximal anti-chain in a partial order [126].

Table 6.1 compares the number of colors and layers with the predictions of the lower
bound thus found.

Let w, = max{|FP;| | P, C ancestors(t) is a set of pair-wise incomparable types
l.e., w; IS the size of the maximal anti-chain among the ancestors ofhen,w =
max;e7{w;} IS a lower bound on the number of colors (or semi-layers), an@®@]| is
a lower bound on the number of layets We see in the table that> w only in seven
hierarchies: Flavors, Ed, LOV, MI: Orbacus Test, Ml: HotJava, Geode and MI: Corba. In
these seven cases— w + 1, so the number of colors was off by at most one from the
lower bound. Further, as the next two columns indicate, the situation that the number of
layers is greater than the prediction of the lower bound, occurs in only three hierarchies:
Ed, MI: HotJava and MI: Corba.

Itis also interesting to compare the number of colors and the number of layers with the
maximal number of ancestors, denoted- max(6,). As expected, the number of colors
IS never greater than the maximal number of ancestors, and is typically much smaller than
it. The number of entries in the LDT is even smaller, since every two colors are mapped
to a single layer.

The maximal number of layers in the field dispatching technique is exag¢tijnce
each layer is a singleton. The field dispatch matrix can be compressed using method
dispatching techniques, such as selector coloring [44,118]. A lower bound on the space
requirement of selector coloring is x . We therefore have that the static memory of
our layout scheme x L is superior to that of the field dispatch matrix compressed using

6.6. EXPERIMENTAL RESULTS 131
Hierarchy(7, <) [n=1|7] [w? [s® | [w/2] | [5/2] | max(6;)¢ | avg(L,)" | avg(6;)®
Flavors 67 3 4 2 2 13 1.6 4.9
IDL 67 2 2 1 1 9 1.0 4.8
MI: IBM XML 145 5 5 3 3 14 1.5 4.4
JDK 1.1 226 2 2 1 1 8 1.0 4.2
Laure 295 3 3 2 2 16 1.1 8.1
Ed 434 12| 13 6 7 23 3.2 8.0
LOV 436 | 13| 14 7 7 24 3.5 8.5
Cecil2 472 8 8 4 4 29 2.0 7.4
Cecil- 473 8 8 4 4 29 2.0 7.4
Unidraw 614 3 3 2 2 10 1.0 4.0
Harlequin 666 | 14| 14 7 7 31 1.9 6.7
MI: Orbacus Test 689 3 4 2 2 12 1.3 3.9
MI: HotJava 736| 14| 15 7 8 23 2.0 5.1
Dylan 925 3 3 2 2 13 1.1 55
Cecil 932 6 6 3 3 23 1.7 6.5
Geode 1,318| 21| 22 11 11 50 5.1 14.0
MI: Orbacus 1,379| 11| 11 6 6 19 1.6 4,5
\Vor3 1,660 6 6 3 3 27 1.6 7.5
MI: Corba 1,699 6 7 3 4 18 1.3 3.9
JDK 1.18 1,704| 12| 12 6 6 16 1.2 4.3
Self 1,802| 24| 24 12 12 41 10.7 30.9
Vortex3 1,954 8 8 4 4 30 1.7 7.2
Eiffel4 1,999| 15| 15 8 8 39 2.2 8.8
MI: Orbix 2,716 6 6 3 3 13 1.1 2.8
JDK 1.22 4,339 14| 14 7 7 17 1.5 4.4
JDK 1.30 5,438| 15| 15 8 8 19 1.5 4.4
MI: JDK 1.3.1 7,401 21| 21 11 11 24 1.5 4.4
MI: IBM SF 8,793| 13| 13 7 7 30 2.3 9.2

8the maximal size of an anti-chain in the ancestors of any typ&”

bthe number of colors (or semi-layers) used by Algorithm 6.3

‘max{6, |t € T}

d% EtGT Ly

e% ZtGT 0y
Table 6.1:Statistics on the input hierarchies, including the number of colors and layers found by
Algorithm 6.3 compared with the maximal anti-chain lower bound

selector coloring.

The next two columns of Table 6.1 give another comparison of hash-table implemen-
tation of the LDT with a hash table implementation of the field dispatch matrix. We see
that the number of layers which each object uses is typically small. No more than 3.5 in
all but the Self and Geode hierarchies. In all hierarchies, we see that the average number
of ancestors is much greater than the average number layers. This shoi} &lat
gorithm 6.3 is successful in compressing multiple types into layers, and consequently
that(ii) the LDT places weaker demands than the field dispatch matrix on static memory.

The theoretical complexity of Algorithm 6.3 3(n?), since lines 2—-3 may iterate in

132 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

certain hierarchies over a fixed fraction of all possible type triplets. The runtime of the
simple greedy graph-coloring heuristici¥n?). In practice however, the algorithm runs
much faster. By applying some rather straightforward algorithmic optimizations, e.g.,
considering in line 2 only types which have more than one parent, the run times were
reduced even further.

On a Pentium Ill, 900Mhz machine, equipped with 256MB internal memory and run-
ning a Windows 2000 operating system, Algorithm 6.3 required less than 10 mSec in 19
hierarchies. Seven hierarchies required between 10 mSec and 50 mSec. The worst hi-
erarchy was MI: IBM SF which took 400 mSec. The total runtime for all hierarchies
was 650 mSec, which gives on average:38c of CPU time per type. The runtime of
C++ aggressive-inline procedure on the same hardware is much slower. For example, ag-
gressive inline of MI: IBM SF took 3,586 mSec, i.e., about 9 times slower. Simple inline
of MI: IBM SF took 2,294 mSec, which is still much slower.

The most important criterion for evaluating a layout scheme is field access efficiency.

Since the hierarchies were drawn from different languages and were not associated
with any application programs, we were unable to directly measure the actual cost of field
access in the various layout schemes. We can however derive other metrics to compare
the costs of the new layout technique with that of prior art.

For example, the number of layers used by a given type, gives an indication on the
number of different dereferences required to acedighe object fields. The correspond-
ing metric in C++ is the number of virtual bases, which can be accessed only by derefer-
encing aVvBPTR.

Figure 6.5 compares the average number of layers of the new scheme with that of
the standard C++ implementation, the simple inlined implementation and the aggressive
inlined implementation. In making the comparison we bear in mind that the new scheme
is both language-independent and space-optimal—properties which the C++ schemes do
not enjoy.

We see in the figure that with the exception of Self hierarchy (which as we men-
tioned above has a very unique topology), the new layout scheme is always superior to
the standard- and simple-inlined implementation of C++. Moreover, the new scheme is
superior or comparable with the aggressive-inline layout scheme, with the exception of
four hierarchies: Ed, LOV, Geode and Self. Comparing rireximal-rather than the
average-number of layers yields similar results.

Table 6.2 shows the extra dynamic memory consumed by the various C++ layout
schemes, specifically forPTRs.

Curiously, the four hierarchies in which the new scheme does not perform as well, Ed,
LOV, Geode and Self, are exactly the hierarchies in which the C++ schemes, including
the highly optimized aggressive inline waste the most amount of dynamic memory.

We also offer a more sophisticated theoretical model for comparing the performance
of various schemes of object layout which involve indirection to access various fields.
Suppose that a certain field was retrieved from a certain layer. Then, a good optimizing
compiler should be able to reuse the address of this layer in retrieving other fields from
this layer. Even in the standard C++ layout, the compiler may be able to reuse the address

6.6. EXPERIMENTAL RESULTS 133

10.0
8.0 B C++: Standard \
B C++: Simple inline
| OC++: Aggressive inline
6.0 OTwo-Directional Bi-Directional
\

4.0

(TTTTTTD

Sy

n
H
2.0 4 [H g
o] '
El H I =: =
i en [S
HHEH | - :-r-:
GHIHH |H HH B
L2, 1H 1 B i i
0.0 T L H [1
. 1 1 H 1 H [! I
i Al i
(LT \T » \ | H I H = :'n-“ 1
= . H I 1 1 H =1 H 1 H I
[%] I
S 2503 g o » o H WE (E 1E A e (6
T > X 2 c & 28 I H H ' [[l 1 o
L52225358%8 2358 J illimcl i
4 = T 2 2 3 0 0 3 28 S & = = H i
O@m=233g %2002 o5 & 3 8% 98 o
- I 3% 3] 20 5SS 2T 3V g g
s - 3 w g g5 3858 %° ° 8 8 g € ¢ E @ o «
oy e c & T o o S £ 8 ¥ o X o
[*] T s = = O 2 v ¢ 2 2 ¢ o < o
I = = = o £ s 72 6 = O L 2 m 0
o] (o] = S 4 2 > 0 IR 249 2
= S I = a4 5 o = N o X E
= = g » N @& S
= © o s @
= 8 g i
:S° 0
8 & <
o
=
=

Figure 6.5: Average no. of layers in different hierarchies

of a virtual base to fetch additional fields from this base.

For a fixed typet, and for a sequence df field accesses, we would like to com-
pute A,(k), the expected number of extra dereferences required to access these fields.
Since much empirical data is missing from our ensemble of hierarchies, we were inclined
to make two major simplifying assumptions:

1. Uniform class sizeThe number of fields introduced in each type is the same. Al-
though evidently inaccurate, this assumption should not be crucial to the results.
We do expect that most classes introduce a small number of fields, with a relatively
small variety.

2. Uniform access probabilityThe probability of accessing any certain field is fixed,
and is independent of the fields accessed previously, nor of the type in which the
field is defined. This assumption is clearly in contradiction toghaciple of lo-
cality of reference
However, as we shall see, locality of reference improves the performance of layout
schemes. It is not clear whether this improvement contribute more to any specific
scheme.

Thed, ancestors of are laid out inL; different layers or virtual bases, such that layer

134 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

Hierarchy Average Median Maximum
C++ | S-In| A-In | C++ | S-In | A-In | C++ | S-In | A-In
Flavors 34| 32| 24 3 3 2 9 8 5
IDL 19| 16| 1.2 2 2 1 3 2 2
MI: IBM XML 28| 28| 20 2 2 1 9 9 6
JDK 1.1 21| 20| 1.8 2 2 2 4 4 3
Laure 39| 32| 23 4 3 2 8 7 5
Ed 52| 50| 4.2 4 4 4 16 16 12
LOV 56| 55| 4.6 5 5 4 17 17 13
Cecil2 46| 44| 34 3 3 3 17 15 9
Cecil- 46| 43| 35 3 3 3 17 15 9
Unidraw 14| 14| 14 1 1 1 4 3 3
Harlequin 36| 32| 27 2 2 2 21 19 16
MI: Orbacus Testf 25| 21| 1.7 2 2 1 8 6 5
MI: HotJava 29| 29| 27 2 2 2 17 17 15
Dylan 20| 19| 13 2 2 1 7 6 5
Cecil 3.7| 35| 27 3 3 2 16 13 8
Geode 99| 95| 83 9 9 7 32 31 27
MI: Orbacus 28| 26| 2.2 2 2 1 13 12 11
\Vor3 46| 42| 35 4 3 3 17 14 11
MI: Corba 26| 23| 1.7 2 2 1 14 12 10
JDK 1.18 19| 19| 1.7 2 2 1 14 13 12
Self 212|212 211 22 22 22 26 25 25
\Vortex3 44| 38| 34 3 3 3 18 15 11
Eiffel4 3.7| 34| 3.1 2 2 2 20 17 16
MI: Orbix 15| 14| 13 1 1 1 7 7 6
JDK 1.22 24| 23| 21 2 2 2 16 15 14
JDK 1.30 24| 23| 21 2 2 2 17 17 16
MI: JDK 1.3.1 23| 23| 20 2 2 1 23 22 21
MI: IBM SF 58| 58| 3.6 6 6 3 16 16 13
Total 42| 40| 3.3 - - 22 32 31 27
Median 32| 30| 24 2 2 2 16 | 145 11
Minimum 14| 14| 1.2 1 1 1 3 2 2
Maximum 212212 211 22 22 22 32 31 27

Table 6.2:No. of VPTRs using standard C++ layout, simple inline (S-In), and aggressive inline
(A-In)

(virtual base) has#, (i) ancestors. The first layer can always be accessed directly. Access
to afield in layeri in stepk requires a dereference operation, if that layer was not accessed
instepsl, ...,k —1.

Let X,(:), i = 2,..., L, be the random binary variable which is 1 if a field of level
was not referenced in any of the stdps. ., k. Then,

Prob[X, (i) = 1] = Exp(X,(i)) = (1 - 9'59—(:)) :

Additivity of expectation allows us to sum the above o¥eobtaining that the expected

6.6. EXPERIMENTAL RESULTS 135

number of levels (other than the first) which were not referenced is

Using the linearity of expectation, we find that the expected number of referenced levels,
l.e., the number of dereferences is simply

(1t
— ([—1) — _ v
Ay(k) = (L—1) ; (G) . (6.1)
Averaging over an entire type hierarchy, we define
1
Ak) == Ai(k) (6.2)
" ier

Figure 6.6 gives a plot ofi(k) vs. k in four sample hierarchies in the layout schemes
field dispatching, standard C++ layout, simple inline (S-Inline), aggressive inline (A-
Inline), and our two-dimensional bi-directional layout (TDBD). ValuesAxfk) were
computed using (6.1) and (6.2) in the respective hierarchy and object layout scheme. For
field dispatching, we sék (i) = 1.

IBM SF Eiffel4

o 8 7 A
] o |
g7 86l e Field
E’ 6 § 5| Dispatching
25 ©
S g4y
s 4 5,
g3 g
S 2 224
g g S-Inline
] 1 z 1 D
<o L O S B S A s S B

1 3 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25

No. of field accesses No. of field accesses
Geode Vor3
” 10 B 2 74
g 9 3
2 g *"" Field S69 e
I . . e
5 Dispatching Sl e Field
27 T 5
°© <
g 6 3 4
5 5 Gt 5 34
g- 44 . S-Inline g
S 3l L = TDBD <5
& 24 o == : =
5 T A-Inline S 14
<>(14. >
oI T e e e B L L S e e A <o
1 3 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25
No. of field accesses No. of field accesses

Figure 6.6: Average no. of dereferences vs. no. of field accesses in four hierarchies

It is interesting to see that in all hierarchies and in all layout schemes, the expected
number of dereferences is much smaller than the number of actual fields accessed. Itis
also not surprising that (k) increases quickly at first and slowly later. As expected, the

136 CHAPTER 6. TWO-DIMENSIONAL BI-DIRECTIONAL OBJECT LAYOUT

new scheme is much better than field dispatching. The graphs give hope of saving about
75% of the dereferences incurred in field dispatching. (Note however that the model
does not take into account any optimizations which runtime systems may apply to field
dispatching.)

The other, C++ specific techniques are also more efficient than field dispatching. We
now turn to comparing these with our scheme. In the Vortex3 hierarchy the new scheme
dramatically improves the expected number of dereferences compared to any of the C++
layout schemes. The new scheme is also the best in smakgues in the Eiffel4 hier-
archy, and is comparable to aggressive inline with greater valugs ahother typical
behavior is demonstrated by MI: IBM SF, in which the new scheme is almost the same
as aggressive-inline. In the Geode hierarchy which is one of the two hierarchies in which
the two-dimensional bi-directional scheme cannot find a good partitioning into a small
number of layers, we find that aggressive inline gives the best results in terms of field
access efficiency. Still, even in this hierarchy the new scheme is better than the standard
C++ implementation and the simple-inline outline heuristic.

6.7 Conclusions and Open Problems

The two-dimensional bi-directional object layout scheme enjoys the following proper-
ties: (i) the dynamic memory overhead per object is a single type-idenfifjethe static
memory per type is small: at most 11 cells in our data set, but usually only around 5
cells, (iii) small time for computing the layout: an average of/ASec per type in our

data set, andiv) good field access efficiency as predicted by our analytical model: the
new scheme always improves upon the field dispatching scheme and on the standard C++
layout model. Even compared to the highly optimized C++ layout, after performing ag-
gressive inline, the new scheme still compares favorably.

We note that the new scheme does not relyttos -adjustment, and in the few hi-
erarchies where the aggressive-inline of C++ won, it was with the cost of large dynamic
memory overheads, e.g., as much a8/PITRs on average in the Self hierarchy.

The one-dimensional bi-directional layout of Pugh and Weddell's [113] realizes field
access in a single indirection, but it may leave holes in some objects. In comparison, our
two-dimensional bi-directional layout has no dynamic memory overheads, but a field ac-
cess might require extra dereferences. In the Flavors hierarchy Pugh and Weddell reported
6% dynamic memory overhead (assuming a single instance per type). Our scheme uses
only two layers for this hierarchy, and the probability that a field access would require
extra dereferences is only 0.19.

Directions for future work include empirical study of frequencies of field accesses,
and further reducing the static memory overheads. In dynamically typed languages where
fields can be overloaded, the layout algorithm must color fields instead of types. Em-
pirical data should be gathered to evaluate the efficiency of the layout algorithm in such
languages.

Chapter 7

Efficient Algorithms for Isomorphisms
of Simple Types

Chapter Summary

Thefirst order isomorphism problers to decide whether two non-recursive types using product-
and function-type constructors, are isomorphic under the axioms of commutative and associative
products, and currying and distributivity of functions over products. We show that this problem
can be solved i (n log® n) time andO(n) space, where is the input size. This result improves
upon theO(n?logn) time andO(n?) space bounds of the best previous algorithm. We also de-
scribe anO(n) time algorithm for thdinear isomorphism problerwhich does not include the
distributive axiom, thereby improving upon ttén log n) time of the best previous algorithm for

this problem.

It is a matter of basic high school algebra to prove the equality

((ab)(ab)> &) _ 2t pbe”, (7.1)

Yet, as we shall see in this chapter, a systematic and efficient production of such a proof
is non-trivial. With the familiar perspective of viewing multiplication as product-types,
exponentiation as function-types, and variables as primitive-types, (7.1) becomes an in-
stance of a simple, i.e., non-recursive, type isomorphism problem. In its turn, type iso-
morphism has close connections to category theory [19, 122] and intuitionistic logic [79].

The isomorphism variant which concerns us here is characterized by commutativity
and associativity of products, and currying and distributivity of functions over products.
This variant has practical interest in the context of the search for compatible functions
in function librariest (A detailed treatise of this application can be found in Di Cosmo’s
book [39], which discusses also extensions to second order types and the ML type theory.)

More formally, we consider the set of first order isomorphisms holding in all models
of the lambda calculus with product-types (surjective pairing), function-types, and unit

!Besides being sufficient for the proof of equations such as (7.1).

137

138 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

types, as defined by the followirggneral grammar
ro=T | = | 7T—=7 | 7x71 |

whereT is the unit type;r stands for an arbitrary primitive-type; denotes a function-
type, andx denotes a product-type.

In defining the isomorphism relation we shall use the following seven axiom schemas.

(A.1) AxT=A

(A2) A-T=T

(A.3) T A=A

(A.4) AxB=BxA (Commutative)
(A5) Ax(BxC)=(AxB)xC (Associative)
(A46) (AxB)—-C=A— (B—C) (Currying)
(

A7) A—-(Bx(C)=(A—B)x(A—C) (Distributive)

(Here and henceforth, the range of variablesB and C' is any type expression in the
general grammar.)

For a long time, the problem of deciding first order isomorphisms of simple types was
thought to require exponential time [19]. It was recently shown [32] that the variant of
our interest can be decided@(n?logn) time andO(n?) space, where is the length of
some standard representation of the two input types. The main contribution described in
this chapter is an improvement of this resultie log® n) time andO(n) space. We also
give algorithms usin@(n) time and space for important special cases.

The arithmetic version of these seven axioms (substituting multiplication, exponenti-
ation, and the constant one, far, — andT) was proved to be complete for the Carte-
sian closed categories [19, 122]. Since the models of the lambda calculus with unit,
product- and function-types are exactly the Cartesian closed categories [19], the set is
also complete for the type isomorphisms we examine. Through the Curry-Howard iso-
morphism [79], these isomorphisms are also equivalent to equational equality in positive
intuitionistic logic so the same axioms apply there too (again, with appropriate notational
changes).

Besides their theoretical connections, type isomorphisms can be used as a means of
searching large program libraries. Specifically, the desired type of a function is used as
a search key and functions with isomorphic types are returned as candidates. A famous
example [116] shows that even the simple function, folding a list, can be implemented
with many different types, varying argument order and the use of “Curried” style. Em-
ploying type isomorphisms in the search will retrieve all compatible function implemen-
tations. Moreover, the isomorphism proof can often automatically generate bridge code
converting the functions found to the desired type. It was even argued [10] that type
isomorphisms can be employed in proof reuse.

Second order isomorphisnasigment first order isomorphisms with universal quanti-
fiers, as invA.A — A =VB.B — B. Universal quantifiers make second order isomor-
phisms more effective in searching program libraries since they are necessary to capture
parametric polymorphism. While some of the issues of second order isomorphisms are
similar (some of the space sharing techniques are applicable), they are known to be graph

7.1. THE FIRST ORDER ISOMORPHISM PROBLEM AND ITS VARIANTS 139

isomorphism complete [11, 39] and we do not attempt to decide them in this work. A
different system of type isomorphisms is that of the core ML language. It is known [38]
that second order isomorphisms are insufficient to describe these, although the addition
of one more axiom suffices.

Recursivevariants of the type isomorphism problem at our hand were also consid-
ered in the literature. In the Mockingbird project the recursive type system comprised of
product- and function-types [8,9, 111]. Gil [67] describes how algorithms for polynomial
equality can be used for deciding isomorphism in the “algebraic type system”, i.e., the
recursive type system comprising of union- and product-types.

The more general isomorphism problem, for a non-recursive type system which in-
cludes product-, uniorand function-types is equivalent to Tarskisgh school algebra
problem[125]. Such a system does not have a finite and complete set of axioms. Nonethe-
less, there exists a (non-polynomial) algorithm for determining isomorphism [73]. There
also exists a (non-polynomial) algorithm for deciding isomorphism in the recursive “al-
gebraic type system” [67]. Finally, we should mention that adding empty and sum types
breaks down the relationship between the equational theory and type isomorphisms [63].

outline The first order isomorphism problem and its variants are defined in Section 7.1.
Section 7.2 gives the intuition for solving this problem. More specifically, this section
describes how previous work used reduction systems in order to obtain normal forms
which are more easily compared. Sections 7.3—7.9 present different stages of our main
algorithm for the first order isomorphism problem. The pieces are then put together in
Section 7.10. Finally, Section 7.11 mentions some open problems and directions for future
research.

7.1 Definitions: The First Order Isomorphism Problem
and Its Variants

Here we concentrate on first order isomorphism and two restricted variants (product and
linear isomorphism). We now make the necessary definitions in order to give a precise
statement of the problem and its variants.

Next we define four successive theories of isomorphism of types.

Definition 7.1 LetEquality be the theory of equality of types defined as the set of propo-
sitions obtained by the deductive closure of the axiom schema

(A.0) A=A (Reflexive)

140 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

and the following four inference rules.

B—A symmetry

A= AB’:BC: ¢ transitivity
/114 X:CB’:CB:X% congruence ok
AAH:CB’:C — DD congruence of-

Thus,Equality is the usual theory of equality, sometimes denoted/d#5[32].

Definition 7.2 Let Product be the theoryEquality augmented with axiom schemdsi—
A.5. LetLinear be the theoryProduct augmented with axiom schemB6. LetFirst be
the theoryLinear augmented with axiom schem@ar.

Theory Product adds the unit axioms to the theory of equality as well as the rules
of commutative and associative products. The currying axiom is added in thieesy.
Finally, First is the theory of first order isomorphisms, which is often referred to in the
literature asl'h! ;- [19, 20, 39].

WhenT does not occur in the input, it is convenient to use theory variants which do
not include the unit axioms.

Definition 7.3 Let Product™ be the theorEquality augmented with axiom schemdst
and.A.5. LetLinear™ be the theoryroduct™ augmented with axiom scherdat. LetFirst™
be the theoryinear augmented with axiom schema?.

Definition 7.4 (Axiom instance) Aninstance of an axiomi is the result of a consistent
substitution of all the variables inl by type expressions of the general grammar.

For example(a — (T x b)) xc = ¢ x (a — (T x b)) is an instance of the commutative
axiom A.4.

Definition 7.5 (Derivation sequence)Let © be a theory, e.g.9 = Equality, or © =
First™. Then, the sequence = 77,..., 7, = 7,, is called aderivation sequenca O if
fori =1,...,m, 7, = 7/ is either an instance of an axiom & or the result of applying
one of the four inference rules on previous equalities. For typeswe write© - 7 = 7/
when there exists a derivation sequence ending with the equality’.

Let 7 and 7’ be two given types. We use the notatien= 7’ as an abbreviation
for Equality - 7 = 7.

Definition 7.6 Thefirst order isomorphisnproblem is to decide wheth€irst - 7 = 7.

7.1. THE FIRST ORDER ISOMORPHISM PROBLEM AND ITS VARIANTS 141

The first order isomorphism problem has been known to be decidable for over a decade [19,
122]. Previous to our work, the best known bound W& logn) time usingO(n?)
space [32]. Our main result is in reducing the time ©(n log”n) time and the space
to O(n).
One of the difficult issues in obtaining an efficient algorithm for the problem is dealing

with the commutative and associative nature of product (axidmsand.A.5). Concen-
trating on this we define the product isomorphism problem.

Definition 7.7 Theproduct isomorphismproblem is to decide whetheroduct - 7 = 7/.

We apply the standard abbreviation of using ffisymbol to denote (an associated to
the left) product of severaérms i.e., fork > 2,

iliﬂ-:(«~<(T1><7'2)><73>~--><Tk>, (7.2)

When the commutative and associative axioms apply, we shall write products without
parenthesis. Consider, for example, the following product:

abracadabra. (7.3)

(Lower case, sanserif letters denote here and henceforth primitive-types. We shall use the
arithmetical and type notations interchangeably. No confusion will arise.) An instance of
the product isomorphism problem variant is to determine whether the above is isomorphic
to

carrabadaba. (7.4)

One may be tempted to attack the problem by bringing each product into a unique sorted
normal form, which in this case is

aaaaabbcdrr. (7.5)

In this chapter we show that the product isomorphism problem is decidable in linear
time? This result is based on the observation that it can be determined that (7.3) and (7.4)
are isomorphic without using a super-linear sorting procedure, but rather by employing
an algorithm formulti-set comparisanMore generally, to determine Whethﬁrfz1 A;is
Isomorphic to]'[f:1 By, the multi-set comparison algorithm checks whether there exists a
permutationr such thatd, ;) is isomorphic taB;.

This product isomorphism variant was not considered previously as such in the lit-
erature. Palsberg and Zhao [111] gave(am?) time algorithm for arecursiveproduct
iIsomorphism problem, defined by the addition of a grammarrule- pa.7 wherea is
a type variable, and a folding/unfolding axiom

(A.8) pa A = Al(pa.A)/al.

2Jha (personal communication, September 2002) reports on independent discovery of an algorithm for
this sub-problem, with similar complexity bounds, published in [81].

142 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

(As usual, the notationl[B/«| stands for a type expressiohwhere each occurrence
of « is replaced byB.) This result was later improved @(n logn) time [80] using a
reduction to the problem of finding size-stable partitions of a directed graph.

We note that the recursive product isomorphism problem is not a simple a general-
ization of our product isomorphism problem. The reason is that isomorphism between
recursive product-types should be defined in terms of their infinite unfoldings which are
regular trees. To reason about these infinite structure, inductive variantoiitelience
of x andcongruence of- inference rules must be used. It was found (Palsberg, personal
communication) that the combination of these variants with the folding/unfolding axiom
and the unit axiomsd.1-4.3. gives rise to an inconsistent system. These axioms were
therefore omitted from the recursive product type systems. It remains a challenge to find
a reformulation of the inference rules in Definition 7.1 which is consistent with all ax-
ioms.A.1-A4.8.

More difficult than the product isomorphism problem is the problem variant defined
by theLinear theory, which adds the currying axiom.

Definition 7.8 Thelinear isomorphisnproblem is to decide whethemear - 7 = 7',

Polynomial time results for this problem were known before those of the first order
problem. Linear isomorphism can be decided in linear spacedndog® n) time [6].
Although not previously mentioned, both algorithms [32, 80] improve the running time
to O(n logn). We advance the state of the art by showing that linear isomorphism is also
decidable in linear time.

Linear isomorphism combined with the folding/unfolding axiom may generate prod-
ucts with an unbounded number of terms, which makes it difficult to apply the standard
algorithms for recursive type isomorphisms. Consider, for example, the type

pa.(a —). (7.6)
The following equality is an instance of the folding/unfolding axiom
po(a— a) =a— (pa.(a — a)).

Repeated use of the folding/unfolding axiom proves that type (7.6) is isomorphic to

a— (a—>---—>(ua.(a—>04))---).

Finally, by using the currying axiom we can produce a product with any number of terms.

The final step toward solving the first order isomorphism problem is to deal with
the distributive axiomA.7. As we shall see, the difficulty in doing so is that a naive
application of this axiom may lead to an exponential blowup of the input types.

7.2 Intuition: Reduction Systems and Normal Forms

Isomorphism proofs are usually based upeduction systemgroducing a normal form
representation of the input, which can be more easily compared. We assume that types

7.2. INTUITION: REDUCTION SYSTEMS AND NORMAL FORMS 143

use a standard expression-tree representation in memory, and thatleaapplication
in the reduction system is implemented as a transformation of this data structure.

For example, the reduction system of Rittri [116] has seven rules

R.1 TxA = A

R.2 AxT = A

R.3 T—-A = A

R.4 AST = T (7.7)
R5 Ax(Bx(C) = (AxB)xC

R6 A—(B—C) = (AxB)—C

R7T A—-(Bx(C) = (A—-B)x(A—-0C)

Rittri proved that the rule®.1-R.7 are confluent and terminating. Therefore, by repeated
application of the rules the input types are reducedrioranal form

In the degenerate case in which one or both of the inputs is reducBdttee input
types are isomorphic if and only if they both reducelio (This intuitive statement is
given a formal proof in Section 7.3.) Otherwise, the normal forms do not contain the
symbolT. Furthermore, these rules can always simplify the structure of the right operand
of —, unless it is a primitive-type.

An algorithm for deciding first order isomorphism is to recursively compare the re-
sulting normal forms: two nodes are isomorphic if they are of the same kind (product or
function) and their operands are isomorphic. In function-nodes the comparison of argu-
ments is straightforward: the left (right) operand of one node must be isomorphic to the
left (right) operand of the other. In comparing product-nodes however we must solve an
instance of the product polymorphism problem to check whether the terms of one node is
pair-wise isomorphic to some permutation of the terms of the other node. If this compar-
ison is not done carefully it adds to the complexity of the problem.

An even more serious inefficiency factor is that the system (7.7) (specifically, the dis-
tributive ruleR.7) may introduce an exponential blowup in the size of the representation.
RulesR.1-R.6 do not increase the representation size. However, each applica@#om of
creates a duplicate copy of the subtree whose rodt iRepeated applications may pro-
duce a very large normal form representation. In the sequence of {ypes defined
by X, = aandX; = (b;c;)* for i > 0, we have thatX,, = bf”—lcf(i*1 and suc-
cessive applications of this rule to each occurrenc& ofi = n — 1,...,1, will lead to
exponentially many copies @fin the normal form ofX,,.

If graphs, rather than trees, are used to represent types, then an applica®on of
can be implemented bgharingthe node representing. This sharing can be thought of
as an application of a slightly different transformation

(¢ = B) x (a« — C)

o A : (7.8)

A—>(B><C):>{

where a newly introduced symbolic variabieis represented as a pointer to the data-
structure representation of type

Rittri [117] observed that using (7.8) ensures a polynomially sized representation of
the normal form: Each application of transformation (7.8) adds one edge to the graph.

144 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

The application reduces the nesting level of theode, and this nesting level cannot be

increased by the other rules. We obtain that the space of the graph normal fo(m¥is

by noticing that initially there are at mostproduct-nodes, and that even though addi-
tional product-nodes may be created®y, these nodes cannot take part in the other two
rules.

To see that the representation can indeed by quadratic, consider the following example
(written using the arithmetical notation):

(b1 (b2 . (bnfg(bn,lbgn)am)a“ .)a> al, (7.9)

whose normal form is

bp3ear ... pAry A (7.10)

n—1

This normal form consumes quadratic space if derived by appligngstarting at the
inner most parenthesis.

Remark 7.9 Deriving (7.9) starting at the outer-most parenthesis, yields the representa-
tion

bt ... b, (7.11)

wherea; = a;, anda; = a;«;,_1 fori = 2,...,n. Note that(7.11)requires only linear
space wherea&’.10)is quadratic.

Having bounded the space explosion, Rittri stopped short of giving a polynomial time
algorithm for the problem. By noticing that the graph representation is acyclic, and by
using a variant of Rittri's normal form, Considine [32] was able to reduce the runtime
to polynomial. We should note that Considine’s rules were different than Rittri’s in that
rule R.6 was applied in the opposite direction. The resulting normal form is such that in-

D
stead ofABP | it uses the equivalent representat@(nélB)C) . Thus, strictly speaking,

his normal form did not use product-nodes, other than in the upper most level. How-
ever, the alternative representation must still deal with the difficulties of associativity and
commutativity as in the more familiar representation of products.

Considine’s algorithm partitions all nodes in the directed acyclic graph (DAG) rep-
resentation of the input types into equivalence classes, such that all nodes in the same
equivalence class are isomorphic. This partitioning is built in a bottom-up traversal of the
DAGs, while maintaining a hash table mapping each node into the unique identifier of
its equivalence class. The most difficult task in this traversal was to determine whether
product-nodes are isomorphic. Two key properties made Considine3$logn) time
andO(n?) space result possible:

1. Expansion of product-type€onsidine showed that his normal form, which in-
cludes complete expansion of product-types, is such that each product consists
of no more tham terms.

7.2. INTUITION: REDUCTION SYSTEMS AND NORMAL FORMS 145

2. Sorting product termsSince the graph is acyclic, terms in product-types must
have been visited and classified by the bottom up traversal before the product
itself. Each product-node is first normalized by sorting the identifiers of the
equivalence classes of their terms. The fact that the order of terms is completely
determined by this sorting makes it possible to empldyaah-consingech-
nique to produce a unique identifier for each product-type, thereby partitioning
product-type nodes into equivalence classes.

Our algorithm uses the same bottom-up classification of nodes into equivalence classes.
However, the reduction of space@jn) and of time toO(n log” n) are made possible by
breaking away from the above principles. Specifically, the new algorithm is characterized

by:

1. Application of R.7 to “outer-most” functions first. As demonstrated in Re-
mark 7.9 the space is kept linear if the distributive rule is applied starting at
the outer-most parenthesis.

2. Unexpanded product-type3he expansion of product-types leads to quadratic
time and space. Instead, we describe a graph based representation, which keeps
the space linear, and show that unexpanded products can still be efficiently com-
pared.

3. Unsorted product termslsomorphism of product-nodes is decided by a proce-
dure which can be thought of as hashing or range compaction, rather than sorting.
A similar procedure is used to partition the multi-sets of products in each stage
of the traversal into their equivalence classes.

Road map Our algorithms employ four successive normal forms, all of which can be
computed in linear time and space. Each normal form stands for a “simpler” isomorphic
representation, obtained by exhaustively applying some of the rules (7.7).

The normal formnfr, described in Section 7.3, is computed by applying riRes-
R.4 to remove (essentially) all occurrenceslafWe further show in this section, thatty
makes it possible to completely ignore the unit axioms in the main algorithms.

The normal formnf,, which takes care of theurrying axiom, is the subject of Sec-
tion 7.4, where we show how linear isomorphism can be reduced to product isomorphism.

To solve the product isomorphism problem, we need a procedure for comparing long
products without sorting their terms. Section 7.5 develops this procedure as part of a
general algorithm for multi-set partitioning. Section 7.6 then gives the concrete algorithm
for the product isomorphism problem. In the algorithm #ssociativerule R.5 is first
applied to produce the normal fornf,. The normalized types are then compared in a
bottom-up traversal, while invoking the multi-set partitioning algorithm at each level.

Section 7.7 then shows how an exhaustive application adigtebutiverule R.7 pro-
duces the normal formf,. A linear space encoding forf,, called theP /F-graph, is also
described in this section. Unexpanded products inRAE-graph form aree structure
such that each product inherits the terms of its parent. Section 7.8 employs multi-set par-
titioning in comparing unexpanded products in this tree structure. Section 7.9 fine-tunes

146 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

this procedure to its application in a bottom-up classification of the nodes d? the
graph. Finally, we present our main algorithm for deciding first order isomorphisms of
simple types in Section 7.10. Section 7.11 lists some open questions.

7.3 Eliminating Unit Types

This section describes a linear time and space algorithm for eliminating the unit axioms.
Algorithm EliminateUnits receives as input two types:andr’, both conforming to
thegeneral grammardescribing arbitrary first order types.

General Grammar

=T | = | 7—7 | 7XT

The output comprises two typesando’, such that
First-7 =7 < First” o =¢'.

(At the end of this section we show that a similar claim can be made for thedmiss
andProduct.) The details are in Algorithm 7.1.

Algorithm 7.1 EliminateUnits (r,)

Given two types andr’ conforming to the general grammar, return either (i) a decision
whetherFirst = 7 = 7/, or (ii) two typeso, o’ conforming to the no-unit grammar such
thatFirst 7= 7" < First™ -0 = 0o'.

1: 0 « nfp(7)

2: ¢ «— nfp(7)

3 1fo=T and ¢ =Tthen

4: return true I/l Typesr and 7’ are isomorphic

5. elseifo =T or o =T then

6: return false /I Typesr and 7’ are not isomorphic
7: else

8: return (o,0)

9: fi

If either of 7 or 7 is isomorphic tdI' then the algorithm returns a decision whethiest -
7 = 7' (lines 4 and 6). Otherwise, i.e., when betlandr’ are not isomorphic t&’, the
algorithm returns two types ando’ such thaFirst - 7 = 7/ < First™ F 0 = ¢’ (line 8).
Both ¢ ando’ conform to the followingno-unit grammayin which the symboll' never
occurs.

No-Unit Grammar

Ti=x | T—T TXT

7.3. ELIMINATING UNIT TYPES 147

The crux of the algorithm is the transformation of the inputs into their normal form in
lines 1 and 2. For a type, its normal formnfr(7) is a type isomorphic te, i.e.,First -
7 = nfr(7), wherenfr(7) is either the typel or it conforms to the no-unit grammar.

The following is an algorithmic definition of the normalizing functiofy..® The func-
tion recursively traverses the tree representing the input type, while applyingRules
R.4 whenever possible.

T ifr=T

T ifr=x
fr(7) = 7.12
nfr(7) Rus(nfp(re), nfr(m) i 7 =70 x 7 (7.12)

R 4(nfy(r,),nfp(n)) fr=7,—7

After the children of a node have been simplified by the recursive calls, fundiiomay
invoke, depending on the node type, one of two auxiliary functions to simplify the node
itself. The first such function applies the product-unit rulBsl(andRR.2).

o if o,=T Il apply ruleR.1
Ry 5(04,0) =} 04 if o, =T /I apply ruleR.2 (7.13)
o, X 0, oOtherwise

The other auxiliary function applies the function-unit rul@s{ andRR .4).

o if o, =T /Il apply ruleR.3
R34(04,05) = q T if o, =T Il apply ruleR.4 (7.14)
o, — 0p Otherwise

Let |7| denote thesizeof a typer, defined as the number of nodes in the standard
abstract syntax tree representation-oMany of our proofs emplogtructural induction
which is essentially induction on the input size. In the inductive step, we shall rely on the
type decomposability propertyf || > 1 (i.e.,7 # z andt # T) thenr is represented
as a type-operator node with two children representing typesd,, such thafr| =
7l + || + 1.

Lemma 7.10 Letr be a type which conforms to the general grammar, and letnfr (7).
Then, (i) the invocationnfr () requiresO(|7|) time, (ii) |o| < |7|, (iii) ¢ = T or o
conforms to the no-unit grammar, aifie) Product - 7 = o.

PrROOF All parts are proved by structural induction. The inductive base= 1, is
covered by the first two cases & x andT = T) in (7.12). Both these cases execute
in constant time, and their output is identical to their input. Moreover, this output either
conforms to the no-unit grammar or'ls

3Here and henceforth, we use the same notation fondginmal form and for the (algorithmic) function
which given a type, generates and returns its normal form. No confusion should arise as a result of this
overloading.

148 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

In proving the inductive step we use the inductive hypothesis and the decomposability
property. For(i) we note that only a constant amount of work is carried out prior to and
after the recursive calls (i.e., iR; » and Rs 4). Noting thatR, , and R; 4, do not create
new nodes proves the inductive step(iof. The inductive step ofiii) is carried out by
checking that the output ok, » and Rs 4 satisfies(iii) whenever their input does. Part
(iv) is proved by noting that functionB; » and R 4, only apply rules conforming to the
axiomsA.1-4.4. O

Lemma 7.10 proves the correctness of Algorithm 7.1 in the cases it terminates in
line 4. Next we would like to prove that when the algorithm terminates in line 6 then
andr’ are indeed not isomorphic. Note that the algorithm terminates in line 6 if and only
if eitherc = T ando’ # T or the reverse. Therefore we must prove tliatannot
be isomorphic to any type which conforms to the no-unit grammar. We will use the
technique of abstract interpretation [35] for doing so.

For a typer define the abstract interpretation functieq(7) as follows

1 ifr=T

0 if r==x
i = 7.15
isr(7) isp(7,) -ist(m) f7=7, %X ()
isT(7) fr=7,—-mn

Note thatist(7) returns either 0 or 1. We next prove that(7) is 1 precisely whenfr(7) =
T (hence the namgr).

Lemma 7.11 nfp(7) = T < isp(7) = 1.

PROOF By examining the definitions affr, R, » and R34, we see thahfr(7) = T if
and only if one of the following holds

1. r=T.
2. 7 =1, x 7, Wwherenfr(7,) = T andnfr(r,) = T.

3. 7 =1, — 7, Wherenfy(7,) = T.

Thereforenfr(7) = T ifand only ifisp(7) = 1. O
Lemma 7.12 First - 7 = 7/ = isp(7) = isp(7)

PROOF By induction on the length of the derivation sequenceFioét — = = 7.
Recall that each equality in the derivation sequence is either an instance of an axiom or
an application of one of the inference rules on previous equalities.

The induction base is that there is precisely one such equality 7/, which must
be an instance of an axiod.0,...,.A.7. We can easily check in each of the axioms

7.3. ELIMINATING UNIT TYPES 149

thatist(7) = ist(7’). For example, ifr = 7’ is an instance ofd.7. thent = 7, —
(1 X 7.) and7’ = (1, — 1) X (7, — 7). We have

ist(7) = ist (70 — (1 X 7)) = ist(n X) = is7(7) - isp(7e),
and
ist(7) = ist (T =) X (7o = 7)) =is7(70 — 1) - is7(70 — Te) = is7(7) - i57(70).

To prove the induction step we examine the last step of the derivation sequence. If
this step is an axiom instance, then the same considerations as in the induction base ap-
ply. Otherwise one of the following inference rules was applied: symmetry, transitivity,
congruence ok, or congruence of-. We can easily check each of inference rules by
using the inductive hypothesis. For instance, suppose that the congruence xweasf
applied:

Ta = Tby Te = Td

Ta X Te = Tp X Tqg

By the inductive hypothesis, we have that(7,) = ist(7) andist(7.) = ist(74). There-
fore, we can deduce that

is1 (7, X 7o) = i871(70) * i87(7e) = is7(1) - isT(74) = i8T(TH X T4).

O

Corollary 7.13 Let o be a type conforming to the no-unit grammar. Thers not iso-
morphic toT, i.e.,Firstt/ 0 = T.

PROOF Assume by contradiction th&irst - o = T. Then, by Lemma 7.13s1(0) =
isp(T). Sinceo conforms to the no-unit grammar, we have thgt(c) = 0, which
contradicts the fact thatr(T) = 1. O

Finally, we will prove the correctness of Algorithm 7.1 in the cases it terminates in
line 8, i.e., we need to show that

First = 7 = 7’ & First™ - nfp(7) = nfp (7).

The<= direction follows directly from Lemma 7.1¥) combined with the facts th&irst™ C
First andProduct C First.

Lemma 7.14 Let7 and 7’ be two types conforming to the general grammar. Then,
First- 7 = 7/ = First™ - nfp(7) = nfp (7).
PROOF By induction on the length of the derivation sequenceiaft - = = 7/, whose

final step must be the equality= 7’. In the induction base, this equality must be instance
of one of the axioms4.0, ..., A.7. If 7 = 7' is an instance ofd.3, thent = T — 7,

150 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

andr’ = 7,. We see thahfr(7) = nfr(7’), and henceirst™ nfp(7) = nfp (7). A
similar consideration and conclusion applies i 7’ is an instance of axiomd.0—A4.2

Suppose that = 7’ is an instance of the commutative axiofM, i.e.,7 = 7, X 7
andr’ = 1, x 7,. We have

HfT(T) = Rlyg(nfT(Ta), HfT(Tb))7
nfT(T') = Rl,Q(HfT(Tb>7 nfT(Ta))‘

If eithernfr(7,) = T ornfy(7,) = T thennfr(7) = nfp(7'), thereforeFirst™ - nfp (1) =
nfr (7). Otherwise

HfT(T) = nfT<Ta) X l’lfT(Tb),

nfr(7") = nfp(m) X nfp(7,),

and the commutative axiom.4 proves thafirst™ - nfr(7) = nfr (7). A similar, though
more laborious, consideration proves the same induction base in the case-thats an
instance of4.5—-A.7.

In the induction step, we focus on the case that the final equality was obtained by one
of the inference rules: symmetry, transitivity, congruence pbr congruence of>. (The
case that this equality is an axiom instance is identical to the induction base.)

Consider, for instance, the inference rule for congruence.ofThent = 7, x 7,
andr’ = 7. x 1;. The inductive hypothesis is thaitst™ - nfr(7,) = nfy(7.) andFirst™ -
nfr(7,) = nfr(ry). We need to show thatirst™ + nfr(7, x 7)) = nfp(7. X 74), Orin
other words, that

First™ - RLQ(nfT(TQ),HfT(Tb)) = Rl’g(nfT(Tc), nfT(Td)). (716)

Examining definition (7.13) oR, , we see that the proof must distinguish between several
cases, depending on whether the arguments to this functidh.are

To make this distinction, we apply Lemma 7.12, obtaining ikfa{7,) = T if and
only if nfp(7.) = T, andnfr(7,) = T if and only if nfr(7;) = T. (The lemma condition
is met by the inductive hypothesis and the fact #ieft— C First.)

Consider the case thafr(7,) # T andnfy(7,) # T. Then, (7.16) takes the form
First™ - nfp(7,) X nfp(n) = nfr(7.) X nfp(ry).

The derivation sequence for this can be obtained by concatenating the derivation se-
guences of the inductive hypothesis and a single application of the congruerci-of
ference rule. The other cases of (7.16) are simpler, since the desired derivation sequence
is one of those of the inductive hypothesis.

The induction step in the case the final equation is an instance of any of the other
inference rules is carried out similarlya

It is straightforward to check thatdf conforms to the no-unit grammar, thefy (o) =
o. We therefore have:

7.4. LINEAR ISOMORPHISM 151

Corollary 7.15 Suppose that bothand 7’ conform to the no-unit grammar. Then,

Firstk 7 =7 & First F7=1".
Much in the same fashion we can show

Corollary 7.16 Suppose that bothand 7’ conform to the no-unit grammar. Then,

Linear - 7 = 7' < Linear” -7 = 7/,
Product - 7 = 7' < Product™ 7 = 7',

7.4 An Algorithm for the Linear Isomorphism Problem

In this section we show a linear time and space reduction of linear isomorphism to product
isomorphism. The inputs are two typesind7s’ conforming to the no-unit grammar. The
algorithm outputs are two types ¢’ such that

Linear -7 =17 < Product” F o = ¢’.

Noting thatLinear™ adds tcProduct™ the currying axiom4.6), the algorithm converts
the inputsr and7’ into a normal form in which all curried functions are brought into an
equivalent un-curried representation. This is achieved by recursively applying the anti-
currying ruleR.6 to 7 and7’. The result then conforms to the un-curried grammar, in
which the patter’d — (B — () is not allowed.

Un-curried Grammar

Ti=x | Tz | T—=(Tx7) | TXT

Algorithmically, the normal form is computed using functiofy.

x if T =x
nf.(7) = < nf.(7,) x nf.(7) if7=1,xm (7.17)
Rg(nfe(7,),nfe(m)) fr=71,—m7

If a node represents a function-type, then functignchecks whether the return type of
this function is another function type, and if so, applies the anti-currying rule.

(04 X 01) = 09 if 0y =01 — 09 /Il apply ruleR.6

. (7.18)
O, — Op otherwise

R6(0a,0b) = {

Lemma 7.17 Let 7 be a type conforming to the no-unit grammar, anddet nf.(7).
Then,(i) the callnf.(7) executes ifD(|7|) time; (i) Linear™ + 7 = o; (iii) |¢| = |7|; and
(iv) typeo conforms to the un-curried grammar.

152 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

PrROOF Parts(i), (i), and(iii) are proved by structural induction, following the outline
of the proof of Lemma 7.10.

In proving (iv) we note that there are two restrictions in the un-curried grammar. The
first is that there are no occurrenceslaf This follows from the assumption thatcon-
forms to the no-unit grammar.

The second restriction is that the return type of all function-types is not a function-
type. We show thatf.(7) conforms to this restriction by induction on the depth of the
recursive calls ohf.. The inductive base is the first case of (7.17) and is trivial. In the
inductive step we must show that the return type of a function cannot be a function itself.
A node corresponding to a function-type can be generated bgnly in the third case
of (7.17). This node itself is generated by the invocatityio,, ;). Examining (7.18)
we see that the return type of this noderjsprecisely whenr, is not a function-type. If
howevero, is a function-type, i.e.q, = 01 — 05, then recall that, was computed by a
recursive application aif.. Therefore, by the inductive hypothesis, the return type of
the current node is not a function-type

It follows from Lemma 7.1{i) that if the normal formsif.(7) andnf.(7") are isomor-
phic by applications of the commutative and associative axioms, theard ' are also
iIsomorphic by application of the commutative, associative and currying axioms, i.e.,

Product™ - nf.(7) = nf.(7') = Linear -7 =171". (7.19)

The remainder of this section is dedicated to proving the converse, i.e., that after the types
where brought to their un-curried normal form, all that is required in deciding isomor-
phism is to apply the commutative and associative axioms. The proof is similar in spirit
to that of Andreev and Soloviev [6].

Lemma 7.18 Linear™ + 7 = 7/ = Product™ F nf.(7) = nf.(7').

PROOF The proofis by induction on the length of the derivation sequenteeér~ +
7 = 7/, and follows the same outline as the proof of Lemma 7.12.

The induction base is that = 7’ is an instance of an axiom.0,...,.A4.6. This
cannot be one of the unit axion4.1,...,.A.3 since by assumptiof does not occur
in the input. In the case that the reflexive axiom.() was applied, it is trivial to see
thatnf.(7) = nf (7).

In the case that this axiom was the commutative axidm), thenr = 7, x 7, andr’ =
Ty X T,. Itis easy to see thaif.(7) = nf.(7,) X nf.(7) andnf.(7") = nf.(7,) X nfe(7,).
Therefore Product™ F nf.(7) = nf.(7’). Similar consideration apply when this axiom
was the associative axiomi(5).

The last axiom to consider is the currying axiofr6. In this caser = (7, X 7,) — p
andr’ = 1, — (m, — p). There are two cases to consider:

1. Typep is not a function-type Examining the definitions (7.17) and (7.18), we
find that

nf.(7) = nf.(7") = | nfe(7,) x nf.(7)| — nfe(p).

7.4. LINEAR ISOMORPHISM 153

2. Typep is a function-typeln this case we find the maximéalsuch thaty can be
written as

P:P1—>(p2—>"'(Pk—1—>Pk;)"').

Note that, by definitionp; is not a function-type. Let

¢ = nfe(p1) X (nfc(P2) X+ X (nfe(pr—2) X nfo(pr_1)) >

It is then easy to check that

nf.(7) = [(ch(Ta) X nfc(Tb)) X Qi| — nf.(pr),

nf.(7') = [nfc(ra) x (nfy(m) x g)} — nf.(pr).

In both cases we have thatoduct™ + nf.(7) = nf. (7).

To prove the induction step we examine the last step of the derivation sequence. If
this step is an axiom instance, then the same considerations as in the induction base ap-
ply. Otherwise one of the following inference rules was applied: symmetry, transitivity,
congruence of, or congruence of». The only difficulty is with the congruence rule
of —. Consider an instance of this inference rule:

Ta = Toy Tc = Td

Ty — Te =Tp — Ty

By the inductive hypothesis, we have tiabduct™ - nf.(7,) = nf.(7,) andProduct™
nf.(7.) = nf.(74). We would like to prove tharoduct™ + nf.(7, — 7.) = nf.(7, — 74).

Note that sincé®roduct™ + nf.(7.) = nf.(74), their root nodes have the same type,
i.e., bothnf.(7,.) andnf.(7,;) are product-types, function-types, or primitive-types. There
are two cases to consider:

1. Typesuf.(7.) andnf.(7,) are both not function-type&Ve find that

nf.(r, — 7.) = nf.(7,) — nf.(7.),

nfe (7, — 74) = nf.(1,) — nf.(74).

2. Typesf,(r.) andnf.(7,) are both function-typed.etnf.(7.) = 0 — pandnf.(7;) =
o — p'. SinceProduct™ + nf.(7.) = nf.(74) we have thaProduct™ F o = ¢’
andProduct™ F p = /. Itis then easy to check that

nfo(ra = 70) = | nfe(ra) x o] — nfe(p),

nf, (1 — 74) = [nfC(Tb) x g’} — nt.(p).

In both cases we have thtoduct™ + nf.(7, — 7.) = nfe(1, — 74). O

154 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

7.5 Multi-set Partitioning Algorithms

For the purpose of processing product-nodes in which the terms are unsorted, we need a
linear time procedure for comparing multi-sets. More generally, we develop in this section
an algorithm for partitioning a collection of multi-sets of integers into equivalence classes.
This algorithm runs irO(n) time, wheren is the size of the input representation, while
using temporary (uninitialized) storage whose size is the maximal input value. Cai and
Paige [21] review other linear-time algorithms for partitioning multi-sets.

Definition 7.19 (Compact integer partitioning)

Given integersuy, . .., a,, wherea; € [1,n] fori = 1,... n, thecompact integer parti-
tioning problemvs to partition the input into its equivalence classes, i.e., all equal integers
will be in the same partition (and only them).

The output partitioning is presented with respect to the input: Each equivalence class
is produced as a list of indices,, . .., i, such that;,, = --- = qa;,,. The partitioning
into equivalence classes is thus represented as a list of lists of indices.

Lemma 7.20 Compact integer partitioning can be solveddn) time andO(n) space.
PROOF A standard bucket sort algorithm usinguckets achieves these bounds.

More general than compact integer partitioning is the case that the input range is not
restricted to the rang@, n).

Definition 7.21 (Broad integer partitioning)
Given integers.y, . . ., a,, Wherea; € [1,U] fori = 1, ..., n, thebroad integer partition-
ing problemis to partition the input into its equivalence classes.

To deal with this problem, we first reduce the input range.

Definition 7.22 (Renaming) Let U be an arbitrary domain and &t C U, |I'| = n.
Then a partial functiof : U — [1,n| is arenamingof ' if 2 is defined orl" and for
anya,b e T,

a# b= Qa) # Qb).

Algorithm 7.2 finds a renaming function for a sequence of integers drawn from the
range[l, U]. The algorithm uses the standard trick of inverse pointers to maittéin
access time into a sparse uninitialized array of arbitrary size. Note that main loop invari-
ant: After processing indek thenQ[«;] = ¢t andU[t] = a;, for somel € [1, ¢].

Renaming makes it possible to generalize Lemma 7.20.

Lemma 7.23 Broad integer partitioning can be solvedd(») time andO(U +n) space.

7.5. MULTI-SET PARTITIONING ALGORITHMS 155

Algorithm 7.2 Rename(ay, .. ., a,)
Given the sequence,,...,a,, wherea; € [1,U], i = 1,...,n, return (i) ¢ =
|{ai,...,a,}| and (ii) a renaming function represented as an affay, ..., U], such
thatQ)[a;] is a unique integer in the rangk ¢|. The values of the other entries Qfare
arbitrary.

1: Q <« new int[U]// An uninitialized array of siz&/

2: U « new int[n] // The inverse mapping d?

3: £ < 0/l ¢is the current number of distinct values in the input

4: Fori=1,...,n do/l Compute?|a,]

5.t « Q[a;] I/ t may be arbitrary if the value af; is new
6: If 1 <t<(andalso U[t] = a,then
7 nexts: // No new mapping sinag = a; for somej < 4
8. elsel/l Create a new mapping entry
9: ¢ — ¢+ 1/ Anew distinct input value

10: Qla;] <« ¢ /] Store the mapping entry

11 U[l] < a; Il Record the inverse pointer

12: fi

13: od

PROOF After applying Algorithm 7.2, we apply eenaming process.e., the replace-
menta; «— (a;) fori = 1,...,n. The problem is then reduced to compact integer
partitioning. O

A more general partitioning problem is when the input consists of ordered pairs.

Definition 7.24 (Pair partitioning) Given a collectiol’ of n pairs of integers

<a1,b1>, ey (an,bn),

wherea;, b; € [1,U] fori = 1,...,n, thepair partitioning problemis to partitionI" into
its equivalence classes.

Lemma 7.25 The pair partitioning problem can be solved @(n) time andO(U + n)
space.

PROOF Apply broad integer partitioning first om, . . ., a,, to obtain an initial parti-
tioning of I'. Each of the resulting equivalence classes is then refined by broad integer
partitioning with respect to thg’s. O

Renaming with pair partitioning is also easy. Each pair is replaced by the index of
its equivalence class. In fact, every partitioning algorithm gives rise to a corresponding
renaming.

Lemma 7.25 can be generalized further.
Lemma 7.26 (Tuple partitioning) Given a collection” of n tuples ofk integers each,

where each integer is drawn from the rangeU], it is possible to partitiorl" into its
equivalence classes, M(nk) time andO(U + n) extra space.

156 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

PROOF Similarto Lemma 7.25, however, instead of two passes we nowApesses.
The input to the first pass is the entire collectionand the output is a partitioning ©f
according to the first element of each tuple.

The output of passis a partitioning ofl* satisfying the following invariantall ele-
ments in the same partition have an equdlrefix, i.e., the same firgtintegers in their
tuples. Pass: refines each partition by applying broad integer partitioning according to
thei" element of each tuple. Since broad integer partitioning is performed in linear time,
the running time of a pass is linear in the sum of partition sizes, which is exaetlyl|.

Thus the total running time i@ (nk).

At the end of thek™" pass the tuple partitioning problem is solved. Broad integer
partitioning requires (reusablé)(U + n) space. In addition, onl®(n) space is required
for storing the current partitioning af in the form of indices to the input array

Notice that the time requirement in the above is linear in the size of the input, not the
number of tuples. Also, observe that the algorithm for the tuple partitioning problem is
in factincrementain the sense that in th&' pass we only examine thi# integer in each
tuple.

Corollary 7.27 (Incremental tuple partitioning)

LetI" be a collection of: tuples ofk integers each, where each integer is drawn from
the range(1, U]. Then, it is possible to incrementally partitiénin & passes where th&'
component of each tuple is specified intipass, inO(n) time for each pass an@(U +

n) extra space.

A more challenging situation occurs in the case that the input consists of unordered
tuples, rather than tuples. Next we will show that multi-set partitioning can also be solved
in time linear in the size of the input.

Definition 7.28 (Multi-set partitioning) Given a collectionl’ of multi-sets of integers
drawn from the rangél, U], themulti-set partitioning problems to partitionI" into its
equivalence classes.

Lemma 7.29 Multi-set partitioning can be solved i®(n) time andO(U + n) space,
wheren is the sum of sizes of all multi-sets.

PROOF First, Algorithm 7.2 is invoked to rename all integers in the input to fit the
range[l,n|. The next step is to sort the multi-sets. However, if each of these is sorted
independently the running time would not be linear. Instead, we concatenate the sets
together, prefixing each input integer with the identifier of its multi-set. All the multi-sets
can then be sorted by a single application of a radix sort.

We stress that we sort tienamedntegers, not the initial multi-sets. This process is
known aswveak sor{109]. Weak sort is possible in linear time since the renaming process
IS not order preserving.

Next, the ordered multi-sets are partitioned according to size. Each such partition is a
collection of ordered multi-sets of equal size; in other words, each partition is a collection

7.6. PRODUCT ISOMORPHISM 157

of tuples of equal size. All that is left is to solve the tuple partitioning problem, employing
Lemma 7.26 in each partition

7.6 An Algorithm for the Product Isomorphism Problem

After units are eliminated, product isomorphism theory has only the commutative and as-
sociative axioms. These axioms allow products to be reordered until the two types match.
Thus product isomorphism is in essence a series of multi-set partitioning problems. In
this section we use the algorithms described in the previous section for these problems
in developing arD(n) time and space algorithm for product isomorphism. This algo-
rithm receives two types; and7’, conforming to the no-unit grammar, and determines
whetherProduct™ + 7 = 7/,

The algorithm begins biflattening all productsn the input, so that it conforms to the
following product grammar.

Product Grammar

o=z | p—p

Note that we have extended theconvention (7.2) to include products with a single term.
Thus, in this grammar

H(m) = x. (7.20)

Recall that by assumption the input cannot be isomorphiE,tbence the start symbpl
denotes products of at least one term. Each of these terms is either a primitive-type or a
function-type.

Consider, for example, the following type, which will serve as a running example,

((@xb)—c)— ((d x (e xf)) x (g— (hx |))> (7.21)

Figure 7.1 shows the expression tree of this type before and after flattening.

Algorithmically, the flattening process is carried out by computing the normal form
defined by the functiomf,. This function receives a type conforming to the no-unit
grammar, and exhaustively applies the associative Rule The output is a type con-
forming to the product grammar.

[1(x) ifr=x
nf,(7) = { [[(nfa(7e) — nfa(7)) fr=7.—m7 (7.22)
nf, (7,) &< nf, (1) if7=1,xm Il apply ruleR.5

158 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Figure 7.1: An abstract syntax tree of type (7.21) before (a) and after (b) flattening

The operatiom< denotes the concatenation of the terms of two products, i.e.,

k

K k
[T= 1T =~ 1T~
i=1 i=1

i=k'+1

Lemma 7.30 Let 7 be a type conforming to the no-unit grammar, anddet nf, (7).
Then,(i) the callnf,(7) executes irO(|7|) time; (i) |o| < 2|7]; (i) typeo conforms to
the products grammar; an@v) Product™ -7 =¢

PROOF Trivial by structural induction. Pafiv) is proved by interpretin§[nodes with
conventions (7.2) and (7.20) and noting that only the associativeRilevas applied in
the definition ofnf, (7). O

The flattened representation makes it easier to decide product isomorphism. The fol-
lowing lemma shows how this decision might be carried out.

Lemma 7.31 Letr andr’ be two types conforming to the product grammar. TiReoguct™
7 = 7’ if and only if one of the following three statements holds:

1. Typesr and7’ are equal to the same primitive-type

2. Typest and 7’ are function-types, i.egx = p; — ps and 7 = p| — b,
andProduct™ - p; = p} andProduct™ - py = pj,.

3. Typest and 7’ are product-types with the same number of terms, t.e=
[\, 0: andr’ = [, o}, and there exists a bijection : [1,k] — [1, k], such

that Product™ - o; = a;(i) forall 7,1 <i < k.

PROOF Direction< is trivial. Direction=- is done by induction on the length of the
derivation sequence &froduct™ -7 =17". O

7.6. PRODUCT ISOMORPHISM 159

The product grammar produces abstract syntax trees in which function- and product-
types occur alternately on the path from the root to any leaf. We can thus define a height
for each tree node, so that product (function) types are always represented by nodes of
odd (even) height.

Definition 7.32 (Height) Lett be a type conforming to the product grammar. Then, the
heightof a type, denotedl(7), is the length of the longest path fronto any leaf, i.e.,

0 ifr=x
hr) =< 1+maxt_ h(o;) ifr=][", 0 (7.23)
1+max?, h(p;) ifT=p1— pa

Edges in Figure 7.1b were stretched so that nodes of the same height are drawn at
the same level. Observe that product-types always have odd heights and function-types
always have even heights. This can be easily proved by induction on the product grammar.

Lemma 7.33 Let 7, 7’ be two types conforming to the product grammar. Then,
Product™ 7 = 7" = h(7) = h(7').

PROOF Trivial by structural induction om and7’ using Lemma 7.31.0
Theorem 7.34 Product isomorphism can be decidedn) time and space.

PROOF Consider the types represented by all of the nodes of the tree representations
of 7 and7’. We will label each of these types with an identifier drawn from the
range(1, n], such that two types are isomorphic if and only if they have the same identifier.

Since two types cannot be equivalent unless their heights are the same, identifiers
may be assigned in ascending order of heights. 7l éte the set of all types of height
The setlj is the set of primitive-types. The algorithm starts by pasdingo the broad
integer partitioning algorithm. A renaming process then yields unique identifiers for all
primitive-types.

The processing df,, : > 1 depends on whetheris even or odd. It is even, then
types inT, correspond tar symbols in the grammar of the normal form, i.e., function-
types. Equivalence among these are discovered using pair partitioning algorithm.

If however. is odd, then the types ii, are products, i.ep symbols. We apply the
multi-set partitioning algorithm to find all equivalence classes among these.

In both even and odd levels, we apply a renaming process that assigns identifiers to
types in the current level, starting at the first unused identifier.

Each node is passed to a partitioning algorithm at most twice, first in the partitioning
of nodes in its height, and then as component of its parent. Therefore the total input size
in all invocations of partitioning algorithms is linear, and hence the total runtime of our
algorithm is linear. O

The above algorithm is applicable also in the case that types use a DAG rather than
a tree representation. The runtime in this case is linear in the number of ploddke
number ofedgesf the graph.

160 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES
7.7 TheP/F-graph

To generalize the linear isomorphism algorithm to deal with the first order isomorphism
problem, we now introduce the normal fouify in which thedistributive rule’R.7 is not
applicable. As noted in Section 7.2, an exhaustive application of this rule may lead to a
representation of exponential size. TREF-graph, described in this section, is a linear
size representation of the normal fortfy.

Let 7 and7’ be two arbitrary types conforming to the product grammar. The problem
is to determine whethef¥irst™ - 7 = 7’. (The assumption that the inputs conform to the
product grammar is safe since the normalizing functincan be applied in linear time
to flatten all products.)

Repeated applications of rul&6 andR.7 will bring each of the inputs to the normal
form defined by thdirst order grammar

First order Grammar

Q::zHg (k>1)

=z | o—x

Comparing the first order grammar and the product grammar we see that the deriva-
tiono ::= p — pisreplaced by ::= o — z, i.e., all functions must return a primitive-

type.

Algorithmically, this normal form can be generated by applying the normalizing func-
tion nfy, defined by

[1(x) if r=ux
nfy(7) = ¢ <k, nfy(0;) if 7 =11, 0o (7.24)

R6,7(Hfd(p1), PQ) if 7= P1 — P2

whereRg 7 is an auxiliary function, mutually recursive wiiltfy, which handles function
types:

[I(e—) if 7=z
Rex(0,7) = { >y Rez(0,09) if 7 =11, 0o I apply ruleR.7 (7.25)
RG,?((Q D Ilfd(m)),pz) if 7=p1 — po Il apply ruleR.6

Functionsnfy and Rs 7 musteagerlyevaluate their arguments to ensure that the distribu-
tive rule is applied in outer-first order (Remark 7.9). In other words, given a function
type p; — po, rule R.7 is first applied top; and only then tg,. This is the reason that
the call toRg 7 in (7.24) cannot commence befat& (p,) finishes.

We shall see that the definition &f; ; gives rise to a multiple-terms version of the
distributive transformation (7.8). In this version, an input npde Hle o; Is converted

7.7. THEP/F-GRAPH 161

to Hle(a — 0;) Wherea is represented as a pointer to the node corresponding to the
productp.

We now examine definitions (7.24) and (7.25) more formally. First, we show that the
value returned by these functions is isomorphic to their input.gltet an arbitrary type.

Lemma 7.35

First = 7 = nfy(7),
Firstt- 0 — 7= Rg7(0, 7).

PROOF We first note that since conforms to the product grammar, then exactly one
of the three cases in the definition of eithdy (7.24) or R 7 (7.25) must apply. The
lemma is then proved bgimultaneousstructural induction on. The induction base is
the first case in both definitions. By examining the second and third cases of (7.24) we see
that it immediately follows from the (simultaneous) inductive hypothesis that funafjon
returns a type isomorphic ta The distributive (currying) axiom and the same inductive
hypothesis show thak ; returns a type isomorphic t@ — 7 in the second (third) case
of its definition (7.25). O

Lemma 7.36 Typenf,(7) conforms to the first order grammar. Further,dfalso con-
forms to this grammar, then so dof&s - (o, 7).

PROOF Note that all types conforming to this grammar are products whose terms are
either primitive or function types. The proof is again carried out by simultaneous induc-
tion on the structure of. Again, the induction base is trivially given by the first case
of (7.24) and (7.25). The induction step is also easy: in the second case of both defini-
tion the returned value is simply a product of terms covered by the inductive hypothesis.
In the third case of these definitions the returned value is of a recursiv&gall, p2)
where|p,| < |7|. The proof is completed by checking that the first argument in both of
these recursive calls conforms to the first order grammar as required for satisfying the
inductive hypothesis.OJ

We stress thaif, (1) may be of size&)(n?), as indeed happens in example (7.10). The
reason for this blowup is in the third case®f ;: the concatenatiop < nfy(p,) creates
a new product node whose list of terms are the concatenation of two lists of terms: that
of o andnfy(p;). Note that the terms themselves are not duplicated, but a new list of
terms must be created. The reason that we cannot reuse the two existing lists of terms is
thatp can be shared among independent recursive calls due to the second Easevad
havek independent calls of the fori; ; (g, ai).

In order to give the linear space and time bounds for the normalization process, we
describe asharedrepresentation of types in the first order grammar. Instead of the usual
expression tree, we shall use a special rooted acyclic graph. We use tHe t&rgraph
since the nodes in it are eithBx-nodes (representing product-types)ienodes (repre-
senting function-types).

162 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

A P-nodev has a fieldp(v) storing the non-empty set of pointers to term nodes.
Terms are eitheF-nodes or primitive-types, which are encoded simply by identifiers in
the rangd1, n]. In addition,v has a fieldparent (v) pointing to anotheP-node, from
which v inherits additional terms.

An F-nodeu has a fielcarg (u), which is a pointer to th&-node storing the function
argument type, and a fielekt (u), which is a primitive-type specifying the function
return type.

P /F-graphs are further restricted by the demandplaaént edges define a tree over
the P-nodes called thproduct treg and denoted . The tree7 is rooted at a dummjp-
node, denote® |, which has no terms, i.es(P) = (. P-nodes are therefore initialized
with their parent field pointing atP | .

Definition 7.37 (Expanded terms) The expanded terms ofnodev, denoted(v), are
the union of terms of its ancestors in the product tree,g(e.), = ¢(v) U ¢(parent (v)),
wherep(P,) = ().

Consider, for example, Figure 7.2a which shows type (7.21) in the product grammar.
Figure 7.2b shows the result of applying algoritiNormalizeProduct (described
later) on this type.

Figure 7.2: (a) Type (7.21) in the product grammar, and (dpjtB'-graph representation.
Theparent edges are depicted in bold.

7.7. THEP/F-GRAPH 163

TheP-nodes in Figure 7.2b are:

P, = [1

Pl = PJ_ > H(a> b)

Py— P, s J[(Fy) (7.26)
P,= P; > [](9)

Piy= P, x [[(Fs Fe Fr,Fg, Fy)

We see that each term of R-node is either a primitive type (e.ga) or an F-node
(e.g.,F3). In addition to the set of terms, eagéhnode (excepP) inherits additional
terms via theparent edge. For exampl@arent (P,) = Pj3, i.e.,P, inherits the terms
of P3 which recursively inherits the terms &f,. Therefore, the extended termsiBf
are the union of the terms &t,, P53, andP | :

d(P1) = o(P4) Up(P3) Up(Py).

Algorithm 7.3 and Algorithm 7.4 present two mutually recursive routines, namely
NormalizeProduct and FunctionintoProduct , respectively. These routines
are storage-minded variants of functiom§ and R 7, respectively. Together, the two
describe a single pass traversal of an abstract syntax tree of a type conforming to the
product grammar. The output is a linear siZzedF-graph of an isomorphic type in the
first order grammar.

Algorithm 7.3 NormalizeProduct (1)
Given a typer conforming to the product grammar, returfPanodev of an isomorphic
type in the first order grammar.

1: v «+ new P-node //Initially parent (v) =P, ¢o(v) =0

2. If 7is a primitive-typer then

3 p(v) — {x}

4: else ifr is a product-typehen

5. Letkando;,i=1,... k besuchthat =[], o

6: Fori=1,...,kdo// Normalize all terms in the product
7: u; < NormalizeProduct (o;)

8: o(v) — p(v) U p(u;) Il Collect terms ofy;

9: od

10: else// 7 is a function-type

11: Letp; andp, be such that = p; — ps
12: u < NormalizeProduct (p;)

13: v < FunctionIintoProduct (u, p2)
14: fi

15: Return v

Lines 2-3 of Algorithm 7.3 correspond to the first case of functif lines 4-9 to
the second case, and lines 10-14 to the third. The union operation in line 8 correspond to
the concatenation operationin the second case af;.

Algorithm 7.4 follows the same outline as functiéd ;: lines 2-5 correspond to the
first case ofRg 7, lines 6-11 to the second, and lines 12-17 to the third. Again, the

164 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Algorithm 7.4 FunctionIintoProduct (u,T)
Given aP-nodeu and a type- (which is a product-type) retunn a newP-nodedescrib-
ing a type isomorphic to the function-type— 7, wherep is the type represented by the
P-nodeu.
1: v « new P-node //Initially parent (v) =P, o(v) =0
2. If 7is a primitive-typer then
3. w <« newF-node
arg (w) « u; ret (w) « x I/ w represents the type — =
p(v) — {w}
. else ifr is a product-typeéhen
Letk ando;,i =1,...,k, be such that = [\, o,
Fori=1,...,kdo// Normalize all terms in the product
u; < FunctionintoProduct (u,0;)
10: o(v) — @(v) Up(u;) Il Collect terms ofy;
11: od
12: elsel/ T is a function-type
13: Letp; andp, be such that = p; — ps
14: w < NormalizeProduct (p;)
15: parent (w) < u// Share the common argument
16: v < FunctionIintoProduct (w, p2)
17: fi
18: Return v

© o N g

union operation in line 10 correspond to the concatenation opetratiarihe second case
of R¢ 7. However, the concatenation operatierin the third case ofi; ; was translated
into an assignment to thearent field of w in line 15. This line is the crux of the two
routines, making the linear space representation possible.

Let us examine lines 12—-17 and the third cas&gf. Nodew represents type, and
nodew represents the produgt=<i nfy(p;). In line 14, we assighlormalizeProduct (p)
to w. Then, instead of adding the termswofo w (i.e., p(w) «— p(w) U p(u)) we point
theparent field of w to w in line 15. Therefore the expanded termsuofre equal to
those of the produat < nfy(p1).

The next lemma proves that algorithms 7.3 and 7.4 rupi(in) time and space.

Lemma 7.38 Let 7 be a type conforming to the product grammar, anddée aP-node
Then, the function calldormalizeProduct ~ (7) andNormalizeProduct (u,) ex-
ecute inO(|7|) time and space.

PrROOF Proved by mutually-recursive structural-inductionzarrhe induction base is
whenr is a primitive type. It is mundane to check that lines 2—3 of Algorithm 7.3 and
lines 2-5 of Algorithm 7.4 execute in constant time and space. In the inductionrsgep,
either a function or a product. The amount of time and space invested in addition to the
recursive calls is either constantrif= p; — ps or O(k) if 7 = Hle o;. Note that the
union in line 8 of Algorithm 7.3 and line 10 of Algorithm 7.4 can be computed in constant

7.8. TREE PARTITIONING 165

time since the terms af; are not shared (in contrast to the terms.ofhich are shared
among other calls).O

The following lemma shows that first order isomorphism of two types can be decided
by bringing each of these types into thBif F representation, and then traversing the two
graphs in tandem, comparing at each stage the expanded terms of the current nodes.

Lemma 7.39 Two nodes:, v in a P /F-graph represent isomorphic types if and only if
one of the following three statements holds:

1. Nodesu andwv represent the same primitive-type

2. Nodesu andv are bothF-nodesret (u) = ret (v) andarg (u) andarg (v)
(recursively) represent isomorphic types.

3. Nodes: andv are bothP-nodes and there exists a bijectianfrom ¢(u) to ¢(v),
such that every’ € ¢(u) (recursively) represents a type isomorphict@’).

PROOF Let T andr’ be the types. andv represent, respectively. Then, botlandr’
conform to the first order grammar. Rittri [116] proved that, in such a case (i.e., when
none of the ruleRk.1-R.7 can be applied), we have that

Firstk 7 =7 < Product™ 7 = 7.

Deciding the latter can be done using Lemma 7.31.

If the terms inP-nodes are expanded, then the size of the representation may increase
to O(n?) (as in (7.10)). With this expansion, the problem becomes an instance of prod-
uct isomorphisms, which, as explained in the previous section, can be solved in linear
time. We can thus obtain a simpig(n?) time and space algorithm for the first order
isomorphism problem, thereby improving upon thén?logn) best previous result. To
obtain a more efficient algorithm, we develop in the next two sections the machinery for
comparing unexpanded products.

7.8 Tree Partitioning

We need to further develop our partitioning algorithms to deal withritve-expanded
representation of products in the tree®»odes rooted a@ . The partitioning of these

nodes is tantamount to finding the type isomorphism relationships befv@edles: Two
P-nodes are in the same equivalence class of the partitioning wherphedederms of

the respective nodes are the same, which happens if and only if the types these two nodes
represent are isomorphic.

To understand this need better, consider again our running example type (7.21)

((axb)—>c)—>((dx(exf))x(g—>(hxi))>.

166 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Algorithm NormalizeProduct generated th® /F-graph representation of this type.
This representation is depicted again in Figure 7.3a below.

By definition, removing allF-nodes and the edges incident on them froR /&'-
graph will result in a tree. Figure 7.3b shows the tree thus obtained from Figure 7.3a.
As explained above, the extended terms of eBetode are computed by inheriting the
extended terms of its parent (see Definition 7.37). For example, treethodehe figure
inherits the terms of tree nod#;.

{Fs,Fe,F7,Fs,Fo} @

Figure 7.3: (a)P/F-graph representation in Figure 7.2b, and (b) its product-tree with the
multi-set of terms of each product.

Let us ignore th&'-nodes for now, and concentrate on a variant of the multi-set par-
titioning problem in which the multi-sets are defined by an inheritance tree. We will first
develop an algorithm for this variant. Still, we note that this algorithm does not com-
pletely solve the general problem of sorting the nodes Bf/&-graph into equivalence
classes. The reason is that the terms in the product-tree are not always known in advance.
In Figure 7.3b we see for example that the tdfgmin P, is not available upfront. We
need to process nod®; before we can be certain that this term is not isomorphic to, for
example, tern¥'g, which in turn depend upoR,. The next section will take care of this
subtlety by developing an incremental algorithm for the problem.

In this section, our concern lies with the simpler, non-incremental, setting, described
as follows: Given is a tre@ of n nodes such that a multi-sgfv) of integers is associated
with each noder € 7. Theexpanded multi-sedf a nodev is the union of multi-sets of

7.8. TREE PARTITIONING 167

the ancestors af, i.e.,

u=v

These expanded multi-sets will be in our applications the expanded terms (Definition 7.37)
of P-nodes.

Definition 7.40 (Tree partitioning) Given a treel , thetree partitionings the partition-
ing defined by the multi-set partitioning of the expanded multi-§éts) | v € 7 }.

Let A/ denote the total number of elements in multi-set$ote., M = > _|¢(v)]|.
We can assume that the integers in the input to the problem are condensed $0 thatv) =
[1,m]. (This condition can be ensured by a simple application of a renaming process.)

Figure 7.4a shows an example of a tree with- 8 nodes with their associated multi-
sets (only four of which are non-empty). In the examples= 4 distinct integers take part
in these multi-sets. The total number of elements in these multi-s&fs=s9.

{1,2,3,4} || {1,2,3,4,1,3,4}

Figure 7.4: A small multi-set tree (a) and its tree partitioning (b)

We have for nodeE andF, for instance,

p(E) =0
90(F> = {1’374}
»(E) =11,2,3,4}

o(F) ={1,2,3,4,1,3,4}

Figure 7.4b depicts the solution of the tree partitioning problem for the multi-set tree of
Figure 7.4a. We see that there are 5 partitions:

{A}, {H}, {B,C},{D,E, G}, {F}. (7.27)

The callout attached to each partition shows the expanded multi-set of all nodes in this
partition. For examplef1,2, 3,4} is the expanded multi-set of the partiti¢p, E, G}.

168 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

The naive solutionto the tree partitioning problem is by directly computing the ex-
panded multi-sets(v). In order to do so, we represent an expanded multi&etas an
integer arrayCount,[1, ..., m|.

Definition 7.41 Given an expanded multi-sgtv), itsarray-representatiodenotedCount,,
is an array over the indiceld, . . ., m|, such thalCount,[i| = k if integeri occursk times

in¢(v).

Array Count, can be easily computed from(v) and Count,, whereu is v’s parent.
After having obtained the arraySount,, the tree partitioning problem becomes the par-
titioning problem of these arrays, viewed @assized tuples. The total size of those
arrays isnm cells, while the time required for computing thentgnm + M) time since
we also examined all the terms(v). To conclude, the runtime of the iva solution

is O(nm + M) while usingO(nm) space.

We now present an algorithm for finding the tree partitioning whose total runtime
is O(M logm) using O(M) space. This algorithm relies on tldeal representation in
which, instead of associating a multi-set of integers with each node, a multi-set of nodes is
associated with each integer. (To simplify the complexity analysis we assume<hat .

This assumption is true in our application sifeenodes have a non-empty set of terms,
i.e.,|e(u)] >1.)

Definition 7.42 Afamily F;,i = 1,...,m, is a multi-set of nodes such thatiibccursk
times inp(v), thenv occursk times inF;.

In our example, four such families are defined:

Fl = {BaF7H7H}7

F2 = {8}7
o (7.28)
Fy = {D,F}.

Note thatd " | |F;| = M.

Given a tree7 and a multi-sef’ of its nodes, it is easy to define a partitioning of the
nodes of7 where the classification criterion is the number of occurrences of a ndde in
We shall however be interested in a more sophisticated such partitioning, déngted
in which the classification criterion is the number of times a node “inherits” membership
in . More precisely,

Definition 7.43 Letu, v be two nodes df , and letancestors(u) (respectivelyancestors(v))
be the set of ancestors of Then,u andv are in the same partition 0¥ F' if and only if

lancestors(u) N F| = |ancestors(v) N F.

7.8. TREE PARTITIONING 169

In our example, the four family partitionings induced by the families of (7.28) are:

VFE = {{A},{F,H},{B,C,D,E,G}},
VF, ={{A/H},{B,C,D,E,F,G}},

VF; = {{A H}, {F},{B,C,D,E,G}},
VF, ={{AB,C,H} {F},{D,E,G}}.

(7.29)

Note that all the nodes in a certain partition\f;, 1 < i < 4, have the same number of
occurrences of. For exampleCount.[1] = Count,[1] = 2. In fact, it is easy to prove
the following:

Lemma 7.44 Let F; be a family, and be a node of/, then

lancestors(v) N F;| = Count,[i].

The performance gain of the dual representation is due to the fact that the multi-
set of nodes in which a value participates is often a subtre€.ofFor example, the
partition{B, C,D, E,F, G} of VF; is a subtree rooted &t

Next we define théntersectionof two partitioningsP; and P, written asP; x P,
and show thaV F; x --- x VF,, is in fact the tree partitioning.

Definition 7.45 Let P, and P, be two partitionings. Then, theiintersectiondenotedP; x
P, is defined by

Py x Py={piNp2|p1 € Pi,p2 € P}

In other wordsP; x P, is obtained by intersecting each partition Bf with each
partition of /. For example, the intersection ®F; andV F; is

VF x VF, = {{A}, {F,H},{B,C,D,E,G}} x {{A,H},{B,C,D,E,F,G}}
= {{A},{H},{F},{B,C,D,E,G}}.

It is mundane to see that is commutative and associative.
Lemma 7.46 The partitioningV F; x --- x VF,, is the tree partitioning.

PROOF. Let P be the tree partitioning. Let,v € 7 be arbitrary. For a partitioning,
we writeu = v mod X to denote that, v belong to the same partition &f. Then we
need to prove that = v mod P if and only if

w=vmod VF| x --- x VE,,.

Suppose first that

u = v mod P. (7.30)

170 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Then, from the definition of the tree partitioning (Definition 7.40) we have that

¢(u) = o(v). (7.31)

It follows by the definition of the array-representati@ount|1, ..., m]| (Definition 7.41)
that

V1 < i < m e Count,[i] = Count,|i]. (7.32)

If Count, [i] = Count,[i] then, by Lemma 7.44ancestors(u) N F;| = |ancestors(v) N
F;|, so we may write

V1 < i < m e |ancestors(u) N F;| = |ancestors(v) N Fy|. (7.33)
From the definition of th&/ operator (Definition 7.43) we have that

V1<i<meu=vmodVF,. (7.34)
Finally, from the definition of the intersection of two partitionings (Definition 7.45)

u=vmod VF; X --- x VF,,. (7.35)

To show that (7.30) follows from (7.35) we trivially follow the above reasoning chain
in the reverse direction.

We now devise an efficient representation of family partitionings and a way to com-
pute their intersection. To this end, we describe belovsgnented-arragepresentation
of a family partitioningV F' which requiresD(|F'|) space. We also show how to intersect
two segmented-arrayd; and A,, which results in another segmented-arr&y which
representsi; x A, where

|As| < |Aq| + |Asf.

The trick is to consider a pre-order traversal of the tree, in which subtrees can be
simply encoded as intervals. Therefore, members of a famigfine intervals, which in
turn break the pre-order into segments. Thus, the partitiowihAgcan be encoded as an
array mapping those segments to their containing partition.

In our example, let the pre-order traversal be
7= (A,B,C,D,E,F,G,H).

As can be seen in Figure 7.5, the descendants of any given node form an interval. This
figure highlights the intervals of the descendants of n@alasdF:

descendants(B) = {B,C,D,E,F,G} = [B, G|,
descendants(F) = {F} = [F, F].
Consider now the family; defined by these two nodek; = {B, F}. In Figure 7.5

we see that the two intervals 6§,

Intervals(F3) = {[B, G|, [F, F|},

7.8. TREE PARTITIONING 171

A
\

' AlB|C|D|E|JF]G|H

A

Figure 7.5: The intervals and segments defined by fafijly- {B, F}

breakr into five segments
Segments(F3) = {[A, A}, [B, E], [F, F], [G, G], [H, H]}.

Consider any arbitrary such segment definedhyand letv range over the nodes of this
segment. Then, the multiplicity of the valden ¢(v) is the same, e.g., the multiplicity
of the value3 in the segmeniB, E| is 1. Thesegmented-arrayepresentation associates
a multiplicity to each segment. This multiplicity is called teegment descriptorThe
segmented-array of famill; is therefore

SegmentedArray (F3) = ([A,A] — 0,[B,E] — 1,[F,F| — 2,[G,G| — 1, [H,H] — 0),
and its family partitioning is
VFE; = {{A H} {F},{B,C,D,E,G}}.

Observe that each segment is contained in some partiti®Fgf and that two segments
with the same descriptor belong to the same partition. For example, both sede&thts
and[G, G] are contained in the partitiofB, C, D, E, G} of VF;. In fact, the union of those

two segments is exactly this partition. It is easy to check that this is no coincidence, i.e.,
the union of segments with the same descriptor is equal to some partitigjnand

vice versa.

More formally,

Definition 7.47 Let P be a partitioning of the nodes @f, and letr be a pre-order traver-

sal of 7. Then, asegmented-arrasepresentation of” is an array of segment records,
each record containing the segment starting and ending indices and a descriptor such
that:

1. The segments are distinct and cowel.e., the segments are a partitioningaf

172 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

2. Each segment is contained in some partitiorPofin other words, the segmented
array represents a finer-grained partitioning thah

3. Two segments have the same descriptor if and only if they are contained in the
same partition ofP.

4. The segments are sorted in an increasing order.

We will sometimes refer to a family partitioning ' as a segmented-array. No con-
fusion will arise.

A segmented-array representation of a family partitioritig can be created i@ (| F|)
time and space since the number of segments is lingaf|inViore precisely, a family’
defines at mogtF'| distinct intervals int, one for each distinct node ifi. These intervals
breakr into at mos|F’| + 1 segments.

Figure 7.6 depicts the segmented-array representations of the family partitionings
of (7.29).

ABCDEFGH
VF, |0 1 2|1
VF,| 0 1“=o=
VF,| 0 1 2|1]o0
vVF,| © 1‘2=1o

Figure 7.6: The segmented-arrays of the families of Figure 7.4a

The intersectionof two segmented-arrayB; and P,, whose sizes arg, and s,, is
carried out by merging their arraysan s; +s,) time into a single array of size at mostt+
s9. The descriptors of the segmentsiinx P, are therenamedpairs of descriptors of the
originating segments frorf?, and P, (using Lemma 7.25).

Figure 7.7 depicts the intersection of the segmented-arrdygpandV F; from (7.28).

The third row in the figure shows the intermediate stage in which the segments in the
intersection still use pairs of integers as descriptors. For exarfiplg, is the descriptor
of the segment containing nodBsC, D, andE. This descriptor was renamed to 1. Note
that the other segment (singleton wih with the pair descripto(1, 1) was also renamed
to 1.

We are now ready to state the principal result of this section describing the (non-
incremental) tree partitioning algorithm and its performance.

Theorem 7.48 There is arO (M log m) time andO(M) space algorithm solving the tree
partitioning problem.

7.9. INCREMENTAL TREE PARTITIONING 173

A BCDETFGH
VF, |0 1 21
VF, |0 1 0
Intermediate t
. 0,0 1,1 2,1(1,1]2,0
representation
8- renaming
VFxVF, | 0 1 21113

Figure 7.7: Computing the intersection of the two segmented-aWayisandV F;, de-
fined by Figure 7.4a.

PROOF Using Lemma 7.46, we wish to computer; x --- x VF,,. We therefore
build a balanced binary tree whose leaves are the segmented-&fays.., VF,,. In
each internal node we compute the intersection of the two segmented-arrays of its two
children. The segmented-array at the root of this tree represents the tree partitioning.

Consider the first level of this tree which contains the segmented-avtBys . . , V F,,,.
Recall that the size of the segmented-arkay, is 2|F;| + 1. Therefore, the size of the
entire first level is

m

S"@IF|+1) = 0(M).

i=1

In calculating the second level of the tree, we intersect pairs of segmented-airays
V F;,,, for odd values of. Recall also that the time (and space) for crealifig x V F;
isO(|F;|+|Fi+1]). Thus, the time (and space) for creating the second level is &4ain) .

In general, since all the segmented-arrays propagate to the root, we have that the total
size of all segmented-arrays at each tree level, and thus the work to generate the next
level, isO(M). Since the number of levels j$og, m| + 1, we have that the total time for
computingVFE; x --- x VF,, isO(Mlogm). O

For an example, refer to Figure 7.8 which depicts the balanced binary tree of the
families of (7.28). We see in the figure that the segmented-array at the root of this binary
tree, i.e.,.VF| x VF, x VF; x VF}, partitions the orderingr into 6 segments. The
segment of type® andE hasid = 2. This is also thed of the segment o6. Together,
these two segments represent the parti{ibne, G}. We have thus obtained the desired
partitioning (7.27) of the tree in Figure 7.4a.

7.9 Incremental Tree Partitioning

The tree partitioning problem (Definition 7.40) solved in the previous section does not
capture in full the intricacies of the bottom up classification into isomorphism classes of

174 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

A BﬁCﬁDﬁE F'GH

0 1 21
0 1
0 1 2]1

V|:1><VI:2><VI:3><VF4 Q

VF3><VF4

‘ ‘ VF,
0 1 2110}

VF

4

Figure 7.8: The balanced binary tree of the families of Figure 7.4

the nodes of & /F-graph. The difficulty is that the terms B-nodes in any given height
areF-nodes. Thes&'-nodes must be classified prior to the classification offheodes

in this height. The algorithm behind Theorem 7.48 however assumes that all multi-sets
members are directly comparable. It is applicable only in the case when all terms are
primitive-types.

In this section, we develop the algorithm which after having classified alPthedes
up to height:, will use this information to classify th&'-nodes in height + 1. The
identifier found in the classification of thesenodes must take part in the classification
of theP-nodes at height+ 2.

To this end, this section deals with a more general variant of the tree partitioning
problem, in which the multi-sets are supplied ipiacemeal fashianln this variant, the
different possible values of the multi-sets in the tree nodes are exposed in iterations. The
algorithm for this variant will add another logarithmic factor to the time complexity.

The requirements from a data structure for ith@emental tree partitioning problem
are best defined in terms of the dual representation.

Definition 7.49 Given a treel, anincremental tree partitioning data structunest sup-
port two kinds of operations, which might be interleaved:

1. Operationinsert (F}), whereF is a family, i.e., a multi-set of nodes 6t

2. Queryclassify (7}), whereT}, is a subset of the nodes @f. This query
returns the tree partitioning of , according to the families inserted so far. More
formally, let{F7, ..., F;} be the set of families inserted so far. Then, the query
returns the restriction oV F; x --- x VF} to the setl}. This restriction is
defined in the obvious manner, i.e., it is the partitioning obtained by intersecting
each partition of VF; x --- x VF; with T}, and ignoring all thusly obtained
empty partitions.

7.9. INCREMENTAL TREE PARTITIONING 175

To make the complexity analysis easier, we assume that thg Betsare disjoint,
that|J, T = 7 and that the data structure is never required to classify a node before its
parent.

These assumptions hold in our application: the set of ndgeis exactly the set
of P-nodes whose height &, and a familyF; is inserted after having discovered that
a certain collection oF'-nodes belong in the isomorphism class whose identifigt is
(These identifiers are allocated consecutively.)

Our main objective is to minimize the resources for processing the entire interleaved
sequence of data structure operations. The next theorem states the performance charac-
teristics of our incremental tree partitioning algorithm.

Theorem 7.50 Incremental tree partitioning can be solvedifM log m+n lognlogm)
time andO(M) space.

PROOF We use a lazy representation of an infinite complete binary tree, similar to
the binary tree of Theorem 7.48, The leaves of this tree are given by the infinite se-
quenceVF,VFE,...

Figure 7.9 shows (part of) this tree, after familiég’, . .., VF; have been inserted.

VleVszVstVF4

Figure 7.9: An embedding of seven families into an infinite balanced binary tree

This infinite tree is used to guide the computation of the intersection of the partitioning
which were inserted so far: we delay the intersection of partitionings in an internal node
until bothits children exist. Atemporary rootis a node in which the partitioning was
computed, but not in its parent.

In the figure the nodes at which partitionings were intersected are drawn with thicker
lines. Specifically, at this stage we have compwel, x VF,, VF; x VF,, VF| X
VF, x VF3 x VFy, andV E; x VFEg. There are three temporary roots in figure, which
are the nodes correspondingVid; x VF; x VF; x VF,, VFs x VFg andV Fr.

176 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Assume that a new familyy is inserted. We first calculate its segmented-aWay;,
and proceed to compute the following three intersections:

P1:VF8XVF7,
P2:P1><(V}715><VF’6)7
P3:P2X(VF1XVF2XVF3XVF4).

After this insertion we will have a single temporary root.

The total time for all insert operations, i.énsert (F}),...,insert (F,), is the
same as in the non-incremental tree partitioning problem, @éM logm) time us-
ing O(M) space.

The algorithm is lazy in the sense that we do not compute the intersection of the
temporary roots”, ..., P,. Instead, the classification of a sBt, i.e.,classify (7})
guery, is carried out by consulting the segmented-arrays at those temporary roots. Recall
that P; is represented as a sorted array of segment-identifier pairs (see Definition 7.47).
Since the size of this array is boundedbywe can support searches i in O(logn)
time. For each € T}, we search for the descriptor of the segment which contgiimsP,
fori=1,...,r.

After obtaining an--tuple of descriptors for alb € T}, we apply a tuple partitioning
algorithm to classifyl}. In order to keep the space linear, we cannot actually siafe
tuples of length-. Therefore, we will use thencremental tuple partitioning algorithm
Specifically, we will us¢7;| memory cells to find the first elements of the tuples, pass
them to the tuple partitioning algorithm, and proceed to find the second elements of the
tuples, etc.

Note that after; families were inserted, there are at m@sig, j| temporary roots,
so we always have that < [log, m|. Thus, the total time for computing thetuple
is O(rlogn) C O(logmlogn). The total time for theclassify (7)) query is there-
fore O(|T}|log mlogn), while usingO (M) space. Since every node= 7 can take part
in a classification query at most once, the total time for all classificatian&isog n log m).

The total time for all insertion operations and all classification queri@$id log m+
nlognlogm), while the total space usedd¥(M). O

7.10 Conclusion: An Algorithm for the First Order Iso-
morphism Problem

Having developed the algorithms for generating the linear BiZE representation, and

for efficiently comparing the multi-sets without actually creating them, we are ready

to describe the main result of this paper: an efficient algorithm for deciding first order
iIsomorphisms. In essence, the algorithm uses Lemma 7.39. A naive recursive application
of the lemma may lead to an exponential running time. To bound the time complexity,
we instead traverse the graphs bottom-up, classifying the nodes into their isomorphisms
equivalence classes as we do so.

The bottom-up traversal is guided by height, where all nodes of the same height are

7.10. FIRST ORDER ISOMORPHISM 177

processed together. Height is defined as in Definition 7.32. Algorithm 7.5 shows how
heights can be computed in linear time even in the non-expaitjdd yepresentation.

Algorithm 7.5 Height (v)

Given a node in aP /F-graph, ensure that(v') stores the height af for all nodesy’
reachable fromv and returm(v).

1: If v was visitedthen

2: Return h(v)

3: fi

4: markv as visited

5. If vis a primitive-typeor v = P then

6: h(v) < 0; return h(v) // Recursion base
7: fi

8: If vis anF-nodethen

9: h(v) < 1+ Height (arg (v)); return h(v)
10: fi

/I v must be an ordinar§?-node
11: h(v) < Height (parent (v))
12: For all u € ¢(v) do// recurse on all (non-expanded) terms
13: h(v) < max(h(v),1 + Height (u))
14: od
15: Return h(v)

Given a nodev, the algorithm uses a standard recursive depth first search to visit,
compute and store the height of every nedesachable from. Lines 8-9 deal with the
case that is anF-node. The recursive call in this case is onlyarg (u), sinceret (v)
must be a primitive-type.

Another easy case is thatis P,. Since there are no terms in this product-node,
its height is 0. Lines 11-15 deal with ordinaBrnodes. The height of such nodes
iIs one more than the maximum height of all expanded terms. The reason why in line
11 we do not add 1 téleight (parent (v)) is that the expanded terms include the
termse(parent (v)), and notparent (v) as a term.

Once the height of all nodes I/F-graph is computed, Algorithm 7.6 can be invoked
to partition these nodes into equivalence classes. We assume that unique identifiers, drawn
from the rangél, n], are given to all primitive-types. To process non-primitive-types, the
algorithm relies on the fact that nodes cannot represent isomorphic types unless they are
of the same kind and the same height. Accordingly, the node&s afe processed by
height.

The main data-structure used by the algorithm is incremental tree partitioning (see
Theorem 7.50). Nodes at odd height &erodes. The classification of these nodes is
carried out by querying this data-structure.

Lines 10-17 in the algorithm take care Bfnodes. Classification of these nodes
is carried out by a simple pair partitioning algorithm. We then generate identifiers for
each of the isomorphism classes. Rinodes take parts as termsPfnodes. We must
make sure that tw&'-nodes in the same isomorphism class are regarded as equal when

178 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

Algorithm 7.6 NodesPartitioning (G)

Given aP /F-graphG representing a type in the first order grammar, return a partition-
ing A of all the nodes of7 into equivalence classes, such that two nodes are in the same
class if and only if they represent isomorphic types.

1: Let Y be an incremental tree partitioning data-structure for the tré&obdes ofG
2. j « 0// The identifier of current isomorphism class

3: Letr be the root of7

4: | — Height (r)

5. For.=1,...,1do// Process the nodes by height

6: Let7,—{veG]|h(v)="1}

7: If vis oddthen// T, is a collection of P-nodes

8: A — AuUT.classify (7))

9: elsell T, is a collection of F-nodes
10: Partition7, using pair partitioning
11: Let the resulting partition b&, = C, U --- U Cy
12: A—AU{Cy,...,Cy}

// UpdateY

13: Fori=1,...,kdo/l Inserting a new family
14: j <« j -+ 1/l Process a new isomorphism class
15: Let F; be the multi-set oP-nodes with a term ir’;
16: T.insert (F;)
17: od
18: fi
19: od
20: Return A

comparingP-nodes in the next iteration. Line 15 defines the multifSeof P-nodes in
which isomorphid -nodes are terms. Note théf is a multi-set since -node may have
several terms belonging @G;. In line 16 the incremental tree partitioning data structure
is updated.

Lemma 7.51 If G hasn nodes andD(n) edges then, Algorithm 7.6 runs @ (n log® n)
time and while consumin@(n) space.

PrROOF We first note that computing the height as in Algorithm 7.5 requires linear
time, since every node and every edge is visited at most once.

The algorithm uses linear space, since the two main procedures it invokes: incremental
tree partitioning algorithm (lines 8 and 16) and pair partitioning (line 10) use linear space.

The running time of all the applications of the pair partitioning algorithif (s) (see
Lemma 7.25).

The total number of families insertedd¥n). Moreover, the total size of those fami-
lies is alsoO(n), and all the sets of classified nodes are disjoint. Therefore, using Theo-
rem 7.50, the total time of all the operations performed(as

O(M logm + xlog xlogm)

7.11. OPEN PROBLEMS 179

while usingO (M) space, where is the number of nodes in the product-tree (which is the
number ofP-nodes)yn is the number of families, antl is the total size of those families.
Since all the above parameters &@én), the total runtime isO(n log”n) using O(n)
space. O

The bottom-up node classification of Algorithm 7.6 can be used to solve the first order
isomorphism problem. To do so, we first create Bh&'-graphs of the two input types,
and then merge these graphs, by e.g., making their roots descendants oPanuele.
(The P, nodes of the respective graphs must be unified.) Algorithm 7.6 is then invoked
on the merged graph. The inputs are isomorphic if and only if these two roots are placed
in the same equivalence class.

Theorem 7.52 First order isomorphism can be decided @(n log®n) time andO(n)
space, where is the size of the input.

PROOF As noted above th® /F-graph representation uses linear space. Moreover,
bringing the input to this representation requires linear time.

The complexity of comparing inputs in the/F-graph representation is given by
Lemma 7.51. O

7.11 Open Problems

The only lower bound for the first order type isomorphism problem is the trivial informa-
tion theoretic linear time. An important research direction is to bridge this gap by either
reducing the time complexitf our main algorithm even further, or obtaining bettaxer
bounds

For exampledynamic fractional cascadin@5] might be used to decrease the running
time from O(nlog®n) to O(nlognloglogn). Recall that in the incremental tree parti-
tioning algorithm (Section 7.9)@assify query was implemented by conductimgle-
pendentogarithmic time searches ifi(log n) temporary roots. The fractional cascading
data structure makes it possible to use the result of each search in expediting the sub-
sequent search, bringing down the runtimelaissify (7}) to O(|T|lognloglogn).
Unfortunately, this representation makes it difficult to use the incremental tuple partition-
ing algorithm, and increases the spacéta logn).

Time complexity might be improved also by taking the perspective in which primitive
types are thought of as variables, while compound types are considered expressions over
these. Then, it follows from the fact that axiomdsl—A.7 are complete [19] that the first
order isomorphism problem is reduced to function identity. This identity might in turn
be checked by an appropriate random assignment to the variables, possibly leading to a
more time efficient, yetandomizedalgorithm for the problem. For example, if infinite
precision arithmetic is allowed, then, it might be possible to extend the type isomorphism
heuristics of Katzenelson, Pinter and Schenfeld [85], and check identity by assigning into
the variables values drawn at random from, say, the réihdé. We note however that

180 CHAPTER 7. ISOMORPHISMS OF SIMPLE TYPES

such a randomized algorithm does not yieldig@norphism proots does our determin-
istic algorithm.

Another interesting direction comes from the generalization in which type expression
trees may share nodes, i.e., the inpudliiected acyclic graptrather than a tree. This
situation occurs naturally in programming languages in which non-primitive types can be
named, and where these names can be used in the definition of more complex types.

Perhaps the most important problem which this chapter leaves open is efficient algo-
rithms for subtyping(of products, functions, or both) which include the distributive and
the currying axioms.

Chapter 8

Conclusions

The object-oriented OO) paradigm, and the OO languages that enable it, such as C++
andJavAa, has become the norm for software development. In this thesis, we have devel-
oped efficient algorithms for the core features of OO languages: subtyping tests, method
dispatching and object layoufThese algorithms havethe potential of reducing the

space and time overhead of any OO application.

The efficiency of these algorithms was demonstrated on a collection of huge hierar-
chies drawn from as many as eight different OO languages, with the purpose of making
our researchanguage independentWe have used the following thredficiency metrics
(i) space, (ii) query time, and (iii) time required for creation the encoding. We showed
significant space savings and fast creation time, usually without compromising the query
time metric [136—139]. Space savings can have a crucial impact on embedded appli-
cations, and can also reduce tio¢gal runtimedue to cache behavior and reduced page
faults. We could not measure such benefits to the total runtime because we are missing
two things:

1. an implementation inside a compiler for a certain language, and

2. a data-set ohpplicationsdrawn from that specific language. The hierarchies in our
data-set were drawn from various languages, and extracted frompnoigection
systemsather tharapplications

After filling these two gaps we will also be able to gather statistics on other metrics such
ascode space

Here are three important directions for future research:

Dynamic Benchmarks The presented algorithms could be incorporated into a compiler
such as Jikes RVM. Then it would be possible to gather statistics on dynamic bench-
marks as opposed to our static benchmarks which are missing runtime behavior. It
is also important to fine tune these theoretical algorithms to come close to the prac-
tical optimum rather than the theoretical one, using the gathered statistics.

For example, thencremental type slicingTS) scheme [137] can be used flakA’'s
subtyping tests, and thecremental compact dispatch tall€T) algorithm [138]

181

182

CHAPTER 8. CONCLUSIONS

for JavA’s invokeinterface instruction. It would also be interesting to con-
sider a batch version @lrva, i.e., where the whole program is known at compile
time and dynamic loading is prohibited. Such a close world assumption is reason-
able for embedded systems, and has been masteNERJY !, FLEX 2, MARMOT

3, andMANTA 4. For the batch variant?Q-encoding(PQE) [136] can be used

for subtyping tests, antype slicing(TS) [137] for dispatching. | am currently in
touch with Dominique Colnet from INRIA Lorraine, for implementing ttveo-
dimensional bi-directional TDBD) object layout scheme [139] in ttf®MALL EIF-

FEL environment [135].

New algorithms The ultimate objective of practical research of the implementation of

runtime environment of OO programs isuaified object modekhich would offer
significant improvements over current implementations. Such a model should sup-
port, in the multiple inheritance setting, subtyping, single- and multiple-dispatching
gueries, updates to the hierarchy, and a good object layout. Many examples of open
problems can be found in our papers [136—140], such as incremental dispatching
in the multiple inheritance setting and incremental multiple dispatching even in the
single inheritance setting.

New applications Partial orders are widespread throughout many disciplines. In com-

puter science they have importance in querying data-bases (e.g., finding transitive-
closure), programming languages (e.g., multiple inheritance), operating systems
(e.g., virtual time in distributed systems), computational linguistics, knowledge rep-
resentation, and machine learning. Our techniques for incrementally maintaining
the subtyping relation can therefore have applications in any of these fields.

Surprisingly, we have discovered that our techniques for method dispatch [137,138]
could be used for solving the first order isomorphism problem [140], a problem that
is unrelated to partial orders or OO languages. It would be interesting to find other
applications for techniques described in my thesis.

La Java -like synchronous Language for Embedded Controllers, developed by Fraunhofer Institute for
Autonomous Intelligent Systems

2a compiler infrastructure written idavA for Java, developed in MIT

3an optimizing compiler fodava, developed by Microsoft

4a native source-to-binadava compiler, developed in Vrije, Amsterdam

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. AGRAWAL, A. BORGIDA, AND H. V. JAGADISH, Efficient management of
transitive relationships in large data and knowledge base$roceedings of the
1989 ACM SIGMOD International Conference on Management of Data, J. Clif-
ford, B. G. Lindsay, and D. Maier, eds., Portland, Oregon, 31 May-2 June 1989,
ACM Press, pp. 253-262.

R. AGRAWAL, L. DEMICHIEL, AND B. LINDSAY, Static type checking of multi-
methods in Proceedings of the'®8Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Phoenix, Arizona, USA, Oct.
6-11 1991, OOPSLA91, ACM SIGPLAN Notices 26(11) Nov. 1991.

B. ALPERN, A. CoccCHI, S. FANK, D. GROVE, AND D. LIEBER, Efficient im-
plementation ofJAvA interfaces: invokeinterface considered harmlessn
OOPSLAO01 [103].

B. ALPERN, A. CoccHI, AND D. GROVE, Dynamic type checking in Jalape,
in Java Virtual Machine Research and Technology Symposium, J. Clifford, B. G.
Lindsay, and D. Maier, eds., Monterey, California, Apr. 2001, USENIX.

E. AMIEL, O. GRUBER, AND E. SMON, Optimizing multi-method dispatch us-

ing compressed dispatch tabjés Proceedings of the™Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications, Portland,
Oregon, USA, Oct. 23-27 1994, OOPSLA94, ACM SIGPLAN Notices 29(10)
Oct. 1994, pp. 244-258.

A. ANDREEV AND S. SOLOVIEV, A deciding algorithm for linear isomorphism of
types with complexit® (n log?(n)), Category Theory and Computer Science, 1290
(1997), pp. 197-209.

K. ARNOLD AND J. GOSLING, The Java Programming Languag€he Java Se-
ries, Addison-Wesley, Reading, Massachusetts, 1996.

J. AUERBACH, C. BARTON, AND M. RAGHAVACHARY, Type isomorphisms
with recursive typesTech. Report RC 21247, IBM Research Division, Yorktown
Heights, New York, August 1998.

J. AUERBACH AND M. C. CHU-CARROLL, The mockingbird system: A compiler-
based approach to maximally interoperable distributed programmiegh. Report
RC 20178, IBM Research Division, Yorktown Heights, New York, February 1997.

183

184 BIBLIOGRAPHY

[10] G. BARTHE AND O. PONS, Type isomorphisms and proof reuse in dependent type
theory; in Proc. of FOSSACS’01, vol. 2030, 2001, pp. 57-71.

[11] D. A. BAsIN, Equality of terms containing associative-commutative functions and
commutative binding operators is isomorphism compiat&d" International Con-
ference on Automated Deduction, Springer-Verlag New York, Inc., 1990, pp. 251—-
260.

[12] G. D. BATTISTA AND R. TAMASSIA, On-line planarity testingTechnical Report
CS-89-31, Brown University - Department of Computer Science, May 1989.

[13] ——, On-line graph algorithms with SPQR-treei® Automata, Languages and
Programming, 17 International Colloquium, M. S. Paterson, ed., vol. 443 of Lec-
ture Notes in Computer Science, Warwick University, England, 16—20 July 1990,
Springer-Verlag, pp. 598-611.

[14] G. D. BATTISTA AND R. TAMASSIA, On-line maintenance of triconnected com-
ponents with SPQR-treg&lgorithmica, 15 (1996), pp. 302-318.

[15] D. G. BoBROW, L. G. DEMICHIEL, R. P. ®&BRIEL, S. E. KEENE, G. KICZA-
LES, AND D. A. MooN, Common Lisp object system specificati®3J13 Docu-
ment 88-002R, June 1988.

[16] D. G. BoBrROW, K. KAHN, G. KICZALES, L. MASINTER, M. STEFIK, AND
F. ZpyBeL, CommonLoops: Merging Lisp and object-oriented programming
OOPSLA86 [104], pp. 17-29.

[17] K. S. BooTH AND G. S. LEUKER, Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithnids.Comput. Sys.
Sci., 13 (1976), pp. 335-379.

[18] V. BOUCHITTE AND M. MORVAN, eds.,International Workshop on Orders, Al-
gorithms, and Applications (ORDAL'94ho. 831 in Lecture Notes in Computer
Science, Lyon, France, July 1994, Springer Verlag.

[19] K. B. BRUCE, R. DI COosMO, AND G. LONGO, Provable isomorphisms of types
Mathematical Structures in Computer Science, 1 (1991), pp. 1-20.

[20] K. B. BRUCE AND G. LONGO, Provable isomorphisms and domain equations in
models of typed languages Proc. of the ¥ annual ACM symposium on Theory
of computing, ACM Press, May 1985, pp. 263-272.

[21] J. Cal AND R. PaIGE, Using multiset discrimination to solve language processing
problems without hashingrheoretical Computer Science, 145 (1995), pp. 189-
228.

[22] C. CAPELLE, Representation of an order as union of interval ordénsBouchitte
and Morvan [18], pp. 143-162.

[23] L. CARDELLI AND P. WEGNER, On understanding types, data abstractions, and
polymorphismACM Comput. Surveys, 17 (1985), pp. 471-522.

BIBLIOGRAPHY 185

[24] T. CARGILL, B. Cox, W. Cook, M. Loomis, AND A. SNYDER, Is multiple
inheritance essential to OOPPanel discussion at the Eighth Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA95) (Washington, DC), Oct. 1993.

[25] Y. CASEAU, Efficient handling of multiple inheritance hierarchjés OOPSLA93
[105], pp. 271-287.

[26] C. CHAMBERS, The Cecil language, specification and rationalech. Report TR-
93-03-05, University of Washington, Seattle, 1993.

[27] C. CHAMBERS AND W. CHEN, Efficient multiple and predicate dispatchinig
OOPSLA99 [108], pp. 238—-255.

[28] W. CHEN, V. TURAU, AND W. KLAS, Efficient dynamic look up strategy for multi-
methodsin Proceedings of the"™BEuropean Conference on Object-Oriented Pro-
gramming [56], pp. 408—431.

[29] N. H. CoHEN, Type-extension tests can be performed in constant, thaM
Trans. Prog. Lang. Syst., 13 (1991), pp. 626-629.

[30] T. COHEN AND J. Y. GIL, Self-calibration of metrics of Java methodsProceed-
ings of the 26' International Conference on Technology of Object-Oriented Lan-
guages and Systems, Sydney, Australia, Nov. 20-23 2000, TOOLS Pacific 2000,
Prentice-Hall, pp. 94-106.

[31] T. J. CONROY AND E. PELEGRI-LLOPART, An Assessment of Method-Lookup
Caches for Smalltalk-80 Implementationédddison-Wesley, Menlo Park,CA
94025, 1983.

[32] J. CoNSIDINE, Deciding isomorphisms of simple types in polynomial fiteeh.
report, CS Department, Boston University, April 2000.

[33] W. R. Cook, A proposal for making Eiffel type-safen Proceedings of the'S
European Conference on Object-Oriented Programming, Nottingham, UK, July
10-14 1989, ECOOP’89, Cambridge University Press, pp. 17-29.

[34] A. CORSARO ANDR. CYTRON, Efficient memory-reference checks for real-time
java, in Proceedings of 2003 Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’'03), San Diego, California, USA, Junell1-13 2003,
ACM, pp. 51-58.

[35] P. CousoT ANDR. CousoT, Abstract interpretation and application to logic pro-
grams Journal of Logic Programming, 13 (1992), pp. 103-179.

[36] B. J. Cox, Object-Oriented Programming - An Evolutionary Approaglddison-
Wesley, Reading, Massachusetts, 1986.

[37] P. DEUTSCH AND A. SCHIFFMAN, Efficient implementation of the Smalltalk-80
systemin 11" Symposium on Principles of Programming Languages, POPL'84,
Salt Lake City, Utah, Jan. 1984, ACM SIGPLAN — SIGACT, ACM Press,
pp. 297-302.

186 BIBLIOGRAPHY

[38] R. DI CosMo, Type isomorphisms in a type-assignment framewiorleroc. of
the 19" ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ACM Press, 1992, pp. 200-210.

[39] ——, Isomorphisms of types: frork-calculus to information retrieval and lan-
guage desigmBirkhauser, 1995. ISBN-0-8176-3763-X.

[40] P. F. DETZ, Maintaining order in a linked listin Proc. of the 14 Ann. ACM
Symp. on Theory of Computing, San Francisco, California, United States, 1982,
ACM Press, pp. 122-127.

[41] P. F. DETZ AND D. D. SLEATOR, Two algorithms for maintaining order in a list
in Proc. of the 1% Ann. ACM Symp. on Theory of Computing, New York, New
York, United States, 1987, ACM Press, pp. 365-372.

[42] M. DIETZFELBINGER, A. R. KARLIN, K. MEHLHORN, F. MEYER AUF DER
HEIDE, H. ROHNERT, AND R. E. TARJAN, Dynamic perfect hashing: Upper and
lower boundsSIAM J. Comput., 23 (1994), pp. 738-761.

[43] E. W. DIJKSTRA, Recursive programmingNumerische Mathematik, 2 (1960),
pp. 312-318.

[44] R. DixoN, T. MCKEE, M. VAUGHAN, AND P. SCHWEIZER, A fast method dis-
patcher for compiled languages with multiple inheritapiceProceedings of thes
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, New Orleans, Louisiana, Oct. 1-6 1989, OOPSLA89, ACM SIG-
PLAN Notices 24(10) Oct. 1989, pp. 211-214.

[45] K. DRIESEN, Selector table indexing & sparse arrgysn OOPSLA93 [105],
pp. 259-270.

[46] ——, Software and hardware techniques for efficient polymorphic caéishnical
Report TRCS99-24, University of California, Santa Barbara. Computer Science.,
July 15, 1999.

[47] K. DRIESEN AND U. HOLZLE, Minimizing row displacement dispatch tablés
OOPSLA95 [106], pp. 141-155.

[48] ——, The direct cost of virtual functions calls in C+4n Proceedings of the 1
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, San Jose, California, Oct. 6-10 1996, OOPSLA96, ACM SIGPLAN
Notices 31(10) Oct. 1996, pp. 306—323.

[49] K. DRIESEN, U. HOLZLE, AND J. VITEK, Message dispatch on modern com-
puter architecturesTechnical Report TRCS94-20, University of California, Santa
Barbara. Computer Science., Feb. 9, 1995.

[50] —, Message dispatch on pipelined processimsProceedings of the'™Euro-
pean Conference on Object-Oriented Programming, no. 952 in Lecture Notes in
Computer Science, Aarhus, Denmark, Aug. 7-11 1995, ECOOP’95, Springer Ver-
lag, pp. 253-282.

BIBLIOGRAPHY 187

[51] E. DUJARDIN, Efficient dispatch of multimethods in constant time using dispatch
trees Technical Report RR-2892, Inria, Institut National de Recherche en Infor-
matique et en Automatique, 1996.

[52] E. DUJARDIN, E. AMIEL, AND E. SMON, Fast algorithms for compressed mul-
timethod dispatch table generatioACM Trans. Prog. Lang. Syst., 20 (1998),
pp. 116-165.

[53] N. ECKEL AND J. Y. GiL, Empirical study of object-layout strategies and opti-
mization techniquesn Proceedings of the Y4European Conference on Object-
Oriented Programming, no. 1850 in Lecture Notes in Computer Science, Sophia
Antipolis and Cannes, France, June 12-16 2000, ECOOP 2000, Springer Verlag,
pp. 394-421.

[54] ECOOP 2003Proceedings of the 7European Conference on Object-Oriented
Programming no. 2743 in Lecture Notes in Computer Science, Darmstadt, Ger-
many, July 21-25 2003, Springer Verlag.

[55] ECOOP’91 Proceedings of the'5SEuropean Conference on Object-Oriented Pro-
gramming no. 512 in Lecture Notes in Computer Science, Geneva, Switzerland,
July15-19 1991, Springer Verlag.

[56] ECOOP’94 Proceedings of the'8European Conference on Object-Oriented Pro-
gramming no. 821 in Lecture Notes in Computer Science, Bologna, Italy, July 4-8
1994, Springer Verlag.

[57] ELLIS AND B. STROUSTRUR The Annotated C++ Reference Manu&ddison-
Wesley, Reading, Massachusetts, Jan. 1994.

[58] A. FALL, Heterogeneous encodingn Proceedings of International KRUSE’95
Conference: Knowledge Use, Retrieval and Storage for Efficiency, G. Ellis,
R. Levinson, A. Fall, and V. Dahl, eds., Santa Cruz, California, Aug. 1995, Depart-
ment of Computer Science, University of California at Santa Cruz, USA, pp. 162—
167.

[59] —, Sparse term encoding for dynamic taxonomie$roceedings of the Fourth
International Conference on Conceptual Structures (ICCS-96): Knowlegde Repre-
sentation as Interlingua, P. W. Eklund, G. Ellis, and G. Mann, eds., vol. 1115 of
LNAI, Berlin, Aug. 19-22 1996, Springer, pp. 277—-292.

[60] P. FERRAGINA AND S. MUTHUKRISHNAN, Efficient dynamic method-lookup for
object oriented languagesn Algorithms—ESA '96, Fourth Annual European
Symposium, J. az and M. Serna, eds., vol. 1136 of Lecture Notes in Computer
Science, Barcelona, Spain, 25—-27 Sept. 1996, Springer, pp. 107-120.

[61] P. FERRAGINA, S. MUTHUKRISHNAN, AND M. DE BERG, Multi-method dis-
patching: A geometric approach with applications to string matching problems
in Proc. of the 31 Ann. ACM Symp. on Theory of Computing, Atlanta, Georgia,
United States, 1999, ACM Press, pp. 483—491.

188 BIBLIOGRAPHY

[62] R. E. KLMAN, Polychotomic encoding: A better quasi-optimal bit-vector encod-
ing of tree hierarchiesin Proceedings of the ¥8European Conference on Object-
Oriented Programming, no. 2374 in Lecture Notes in Computer Science, Malaga,
Spain, June 10-14 2002, ECOOP 2002, Springer Verlag, pp. 545-561.

[63] M. FIORE, R. DI Cosmo, AND V. BALAT, Remarks on isomorphisms in typed
lambda calculi with empty and sum typ@s Proc. of the 1% Annual IEEE Sym-
posium on Logic in Computer Science (LICS’02), July 2002.

[64] M. L. FREDMAN, J. KOMLOS, AND E. SZEMEREDI, Storing a sparse table with
O(1) worst case access timé ACM, 31 (1984), pp. 538-544.

[65] H. N. GAaBow, J. L. BENTLEY, AND R. E. TARJAN, Scaling and related tech-
niques for geometry problemis Proc. of the 18 Ann. ACM Symp. on Theory of
Computing, Washington, DC, United States, 1984, ACM Press, pp. 135-143.

[66] J. GL AND A. ITAI, The complexity of type analysis of Object Oriented programs
in Proceedings of the 2European Conference on Object-Oriented Programming,
no. 1445 in Lecture Notes in Computer Science, Brussels, Belgium, July 20-24
1998, ECOOP’98, Springer Verlag, pp. 601-634.

[67] J. Y. GIL, Subtyping arithmetical types 27" Symposium on Principles of Pro-
gramming Languages, POPL01, London, England, Jan.17-19 2001, ACM SIG-
PLAN — SIGACT, ACM Press, pp. 276-289.

[68] J. Y. GIL AND P. SNEENEY, Space- and time-efficient memory layout for multiple
inheritance in OOPSLA99 [108], pp. 256-275.

[69] J. Y. GL AND Y. ZIBIN, Efficient algorithms for isomorphisms of simple
types Accepted for publication in Mathematical Structures in Computer Science
(MSCS), special issue on Type Isomorphisms.

[70] ——, Efficient subtyping tests with PQ-encodidgcepted for publication in ACM
Transactions On Programming Languages And Systems (TOPLAS).

[71] A. GOLDBERG, Smalltalk-80: The Interactive Programming Environment
Addison-Wesley, Reading, Massachusetts, 1984.

[72] R. GRAFL, CACAO: Ein 64bit JavaVM just-in-time compilenaster’s thesis, Uni-
versity of Vienna, 1996.

[73] R. GUREVIC, Equational theory of positive numbers with exponentigtimeri-
can Mathmatical Society, 94 (1985), pp. 135-141.

[74] M. HABIB, Y. CASEAU, L. NOURINE, AND O. RAYNAUD, Encoding of multiple
inheritance hierarchie and partial order€Computational Intelligence, 15 (1999),
pp. 50-62.

[75] M. HABIB AND L. NOURINE, Bit-vector encoding for partially ordered sets
Bouchitte and Morvan [18], pp. 1-12.

BIBLIOGRAPHY 189

[76] Y. HOLLANDER, M. MORLEY, AND A. NoOY, The e language: A fresh separa-
tion of concernsin Proceedings of the International Conference on Technology of
Object-Oriented Languages and Systems, Zurich, Switzerland, Mar. 12-14 2001,
TOOLS 2001 Europe Conference, Prentice-Hall, pp. 41-51.

[77] W. HoLsT, D. SZAFRON, Y. LEONTIEV, AND C. PANG, Multi-method dispatch
using single-receiver projectionech. Report TR-98-03, University of Alberta,
Edmonton, Alberta, Canada, 1998.

[78] U. HOLzLE, C. CHAMBERS, AND D. UNGAR, Optimizing dynamically-typed
object-oriented languages with polymorphic inline cachasProceedings of the
5" European Conference on Object-Oriented Programming [55].

[79] W. A. HOWARD, The formulaes-as-types notion of constructiorlo H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism, J. R. Hindley
and J. P. Seldin, eds., Academic Press, 1980, pp. 479-490.

[80] S. HA, J. RLSBERG, AND T. ZHAO, Efficient type matchingn Proc. of the %
Foundations of Software Science and Computation Structures, Grenoble, France,
April 2002.

[81] S. HA, J. ALSBERG, T. ZHAO, AND F. HENGLEIN, Efficient type matching
TOPPS technical report, DIKU, University of Copenhagen, Universitetsparken
1, 2002. Submitted to Special issue of Higher-Order Symbolic Computation in
memoriam Robert Paige.

[82] M. JUNGER, S. LEIPERT, AND P. MUTZzEL, On computing a maximal planar
subgraph using PQ-treetech. report, Informatik, Universit zu Koln, 1996.

[83] ——, A note on computing a maximal planar subgraph using PQ-iréeEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17
(1998), pp. 609-612.

[84] H. KAcI, R. BOYER, P. LINCOLN, AND R. NASR, Efficient implementation of
lattice operation ACM Trans. Prog. Lang. Syst., 11 (1989), pp. 115-146.

[85] J. KATZENELSON, S. S. INTER, AND E. SCHENFELD, Type matching, type-
graphs, and the schanuel conjectuCM Trans. Prog. Lang. Syst., 14 (1992),
pp. 574-588.

[86] G. KiCZALES AND L. RODRIGUEZ Efficient method dispatch in PCin 1990
ACM Conference on Lisp and Functional Programming, Nice, France, June 1990,
ACM, ACM Press, pp. 99-105.

[87] E. KipD, Efficient Compression of Generic Function Dispatch Tablexh. Re-
port TR2001-404, Dartmouth College, Computer Science, Hanover, NH, June
2001.

[88] A. KRALL, personal communicatigrireb. 2001.

190 BIBLIOGRAPHY

[89] A. KRALL AND R. GRAFL, CACAO - a 64 bit JavaVM just-in-time compilén
PPoPP’97 Workshop on Java for Science and Engineering Computation, G. C. Fox
and W. Li, eds., Las Vegas, June 1997, ACM Press.

[90] A. KRALL, J. VITEK, AND R. N. HOrRsPoOOL Near optimal hierarchical encod-
ing of typesin Proceedings of the ¥European Conference on Object-Oriented
Programming, no. 1241 in Lecture Notes in Computer Sciencasky®, Finland,
June 9-13 1997, ECOOP’97, Springer Verlag, pp. 128-145.

[91] S. LEIPERT, PQ-trees, an implementation as template class in Cteeh. report,
Informatik, Universiét zu Koln, 1997.

[92] A. LEMPEL, S. EVEN, AND |. CEDERBAUM, An algorithm for planarity testing
of graphs in Theory of Graphs, International Symposium, New York, NY, 1967,
Gordon and Breach, pp. 215-232.

[93] S. B. LIPPMAN, Inside The C++ Object ModeAddison-Wesley, Z ed., 1996.

[94] B. MAGNUSSUN, B. MEYER, AND ET AL ., Who needs need multiple inheritance
Panel discussion at the European conference on Technology of Object Oriented
Programming (TOOLS Europe’94), Mar. 1994.

[95] K. MELHORN AND S. NAHER, Dynamic fractional cascadingAlgorithmica, 5
(1990), pp. 215-241.

[96] B. MEYER, Object-Oriented Software Constructidmternational Series in Com-
puter Science, Prentice-Hall, 1988.

[97] ——, EIFFEL the LanguageObject-Oriented Series, Prentice-Hall, Hemel Hemp-
stead, Hertfordshire, UK, 1992.

[98] D. A. MooON, Object-oriented programming with flavorsn OOPSLA86 [104],
pp. 1-8.

[99] W. MUGRIDGE, J. HAMER, AND J. HOSKING, Multi-methods in a statically-typed
programming language#n Proceedings of thé™European Conference on Object-
Oriented Programming [55].

[100] S. MUTHUKRISHNAN AND M. MULLER, Time and space efficient method-lookup
for object-oriented programsn Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, New York/Philadelphia, Jan. 28-30 1996,
ACM/SIAM, pp. 42-51.

[101] A. C. MYERS, Bidirectional object layout for separate compilatiom OOP-
SLA95 [106], pp. 124-139.

[102] M. NAIK AND R. KUMAR, Efficient message dispatch in object-oriented systems
ACM SIGPLAN Notices, 35 (2000), pp. 49-58.

[103] OOPSLA01, Proceedings of the If8Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applicatibampa Bay, Florida, Oct. 14-18
2001, ACM SIGPLAN Notices 36(10) Oct. 2001.

BIBLIOGRAPHY 191

[104] OOPSLA'86 Proceedings of the*1Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applicati®tmstland, Oregon, USA, Sept.
29 - Oct. 2 1986, ACM SIGPLAN Notices 21(11) Nov. 1986.

[105] OOPSLA'93 Proceedings of the8Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applicatigveshington, DC, USA, Sept. 26
- Oct. 1 1993, ACM SIGPLAN Notices 28(10) Oct. 1993.

[106] OOPSLA'95 Proceedings of the f0Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applicatigustin, Texas, USA, Oct. 15-19
1995, ACM SIGPLAN Notices 30(10) Oct. 1995.

[107] OOPSLA'97 Proceedings of the ¥2Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applicatiétianta, Georgia, Oct. 5-9 1997,
ACM SIGPLAN Notices 32(10) Oct. 1997.

[108] OOPSLA'99 Proceedings of the 14 Annual Conference on Object-Oriented
Programming Systems, Languages, and Applicati@enver, Colorado, Nov.1—
51999, ACM SIGPLAN Notices 34(10) Nov. 1999.

[109] R. PaIGE, Efficient translation of external input in a dynamically typed langyage
in Technology and Foundations—Information Processing 94, B. Pehrson and I. Si-
mon, eds., vol. 1, North-Holland, 1994, pp. 603—-608.

[110] K. PALACZ AND J. VITEK, Java subtype tests in real-tim@ Proceedings of the
17" European Conference on Object-Oriented Programming [54].

[111] J. FALSBERG AND T. ZHAO, Efficient and flexible matching of recursive types
Manuscript, 2000.

[112] C. PANG, W. HOLST, Y. LEONTIEV, AND D. SZAFORON, Multi-method dispatch
using multiple row displacemerin Proceedings of the ¥3European Conference
on Object-Oriented Programming, no. 1628 in Lecture Notes in Computer Science,
Lisbon, Portugal, June 14-18 1999, ECOOP’99, Springer Verlag, pp. 304—-328.

[113] W. PuGH AND G. WEDDELL, Two-directional record layout for multiple inheri-
tance in Proceedings of the ACM SIGPLAN’90 Conference on Programming Lan-
guage Design and Implementation (PLDI), White Plains, New York, June 1990,
ACM SIGPLAN, ACM Press, pp. 85-91. SIGPLAN Notices 25(6).

[114] ——, On object layout for multiple inheritan¢c&echnical Report CS-93-22, Uni-
versity of Waterloo—Department of Computer Science, May 1993.

[115] O. RAYNAUD AND E. THIERRY, A quasi optimal bit-vector encoding of tree hier-
archies. application to efficient type inclusion testsProceedings of the ¥5=u-
ropean Conference on Object-Oriented Programming, no. 1850 in Lecture Notes in
Computer Science, Budapest, Hungary, June 12-16 2001, ECOOP 2001, Springer
Verlag, pp. 165-181.

192 BIBLIOGRAPHY

[116] M. RITTRI, Retrieving library identifiers via equational matching of typies10"
International Conference on Automated Deduction, no. 449 in Lecture Notes in
Computer Science, Springer Verlag, July 1990, pp. 603-617.

[117] ——, Using types as search keys in function libraridsurnal of Functional Pro-
gramming, 1 (1991), pp. 71-89.

[118] A. ROYER, Optimizing Method Search with Lookup Caches and Incremental
Coloring, in Proceedings of the'7Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Vancouver, British Columbia,
Canada, Oct.18-22 1992, OOPSLA92, ACM SIGPLAN Notices 27(10) Oct. 1992,
pp. 110-126.

[119] M. A. SCHUBERT, P. L.K., AND J. TAUGHER, Determining type, part, colour,
and time relationshipsComputer, 16 (special issue on Knowledge Representation)
(1983), pp. 53-60.

[120] A. SHALIT, The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Languagéddison-Wesley, Reading, Mass., 1997.

[121] D. SLEATOR AND R. TARJAN, Self-adjusting binary search tree3. ACM, 32
(1985), pp. 652—-686.

[122] S. V. SoLoVIEV, The category of finite sets and cartesian closed categoias-
nal of Soviet Mathematics, 22(3) (1983), pp. 1387-1400.

[123] B. STROUSTRUR The Design and Evolution of C++Addison-Wesley, Reading,
Massachusetts, Mar. 1994.

[124] ——, The C++ Programming LanguageAddison-Wesley, Reading, Mas-
sachusetts,ed., 1997.

[125] A. TARSKI, A Decision Method for Elementary Algebra and Geometiyiversity
of California Press, Berkeley, CA'®ed., 1951.

[126] W. T. TROTTER Combinatorics and Partially Ordered Sets: Dimension Theory
The Johns Hopkins University Press, 1992.

[127] M. F. vaN BOMMEL AND T. J. BECK, Incremental encoding of multiple inheri-
tance hierarchiesin Proceedings of the’8International Conference on Informa-
tion Knowledgement (CIKM-99), N.Y., Nov. 2-6 2000, ACM Press, pp. 507-513.

[128] P.vAN EMDE BOAS, Preserving order in a forest in less than logarithmic time and
linear spacelInf. Process. Lett., 6(3) (1977), pp. 80-82.

[129] P.vaN EMDE BOAS, R. KAAS, AND E. ZIJLSTRA, Design and implementation
of an efficient priority queueMath. Systems Theory, 10 (1977), pp. 99-127.

[130] J. VITEK, Compact dispatch tables for dynamically typed programming langyages
master’s thesis, University of Victoria, 1995.

BIBLIOGRAPHY 193

[131] J. VITEK AND R. N. HORspooOlI, Taming message passing: Efficient method
lookup for dynamically typed object-oriented languagadProceedings of the'8
European Conference on Object-Oriented Programming [56].

[132] ——, Compact dispatch tables for dynamically typed object oriented languages
Compiler Construction, 8 International Conference, T. Gyimothy, ed., vol. 1060
of Lecture Notes in Computer Science, Lagkng, Sweden, 24-26 Apr. 1996,
Springer, pp. 309-325.

[133] J. VITEK, R. N. HORsPooOL AND A. KRALL, Efficient type inclusion testsn
OOPSLA97 [107], pp. 142-157.

[134] D. E. WILLARD, New trie data structures which support very fast search opera-
tions, J. Comput. Sys. Sci., 28 (1984), pp. 379-394.

[135] O. ZENDRA, C. COLNET, AND S. CoLLIN, Efficient dynamic dispatch without
virtual function tables: The SmallEiffel compijen OOPSLA97 [107], pp. 125—
141.

[136] Y. ZIBIN AND J. Y. GIL, Efficient subtyping tests with PQ-encoding OOP-
SLAO01 [103], pp. 96-107.

[137] ——, Fast algorithm for creating space efficient dispatching tables with applica-
tion to multi-dispatchingin Proceedings of the ¥7Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, Seattle, Washing-
ton, Nov. 4-8 2002, OOPSLA02, ACM SIGPLAN Notices 37(10) Nov. 2002,
pp. 142-160.

[138] ——, Incremental algorithms for dispatching in dynamically typed languages
Proceedings of the 30 ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL’03), ACM Press, 2003, pp. 126-138.

[139] —, Two-dimensional bi-directional object layqum Proceedings of the Y7Eu-
ropean Conference on Object-Oriented Programming [54], pp. 329-350.

[140] Y. ZiBIN, J. Y. GIL, AND J. CONSIDINE, Efficient algorithms for isomorphisms of
simple typesin Proceedings of the 30ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL’03), ACM Press, 2003, pp. 160-171.

