
Efficient Subtyping Tests with PQ-Encoding

JOSEPH (YOSSI) GIL1 and YOAV ZIBIN
Technion—Israel Institute of Technology

Given a type hierarchy, a subtyping test determines whether one type is a direct or indirect
descendant of another type. Such tests are a frequent operation during the execution of object-
oriented programs. The implementation challenge is in a space-efficient encoding of the type
hierarchy that simultaneously permits efficient subtyping tests. We present a new scheme for
encoding multiple and single inheritance hierarchies, which, in the standard benchmark hierarchies,
reduces the footprint of all previously published schemes. Our scheme is called PQ-encoding
(PQE) after PQ-trees, a data structure previously used in graph theory for finding the orderings
that satisfy a collection of constraints. In particular, we show that in the traditional object layout
model, the extra memory requirements for single inheritance hierarchies is zero. In the PQE
subtyping tests are constant time, and use only two comparisons. The encoding creation time
of PQE also compares favorably with previous results. It is less than a second on all standard
benchmarks on a contemporary architecture, while the average time for processing a type is less
than one millisecond. However, PQE is not an incremental algorithm. Other than PQ-trees, PQE
employs several novel optimization techniques. These techniques are applicable also in improving
the performance of other, previously published, encoding schemes.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Programming; D.3.3
[Programming Languages]: Language Constructs and Features—Data types; structures; G.4 [Mathematical
Software]: Algorithm design; analysis

General Terms: Algorithms, Design, Measurement, Performance, Theory

Additional Key Words and Phrases: Casting, Encoding, Hierarchy, Inheritance, Partially Ordered
Sets, PQ, PQE, Subtyping, Type inclusion

1. INTRODUCTION

One of the basic operations in the runtime environment of object-oriented (OO) programs
is a subtyping test. Given an objecto and a typeb, a subtype test determines whethera,
the runtime type ofo, is a subtype ofb, i.e., a is a direct or indirect descendant ofb in
the inheritance hierarchy. These subtyping tests (also known astype inclusiontests) are
carried out at runtime, and are distinct from static subtyping tests done by the language
type checker.

1Research supported in part by the generous funding of the Israel Science Foundation, grant No. 128/02.
Authors’ address: Technion City, Haifa 32000, Israel.
Contact the authors for patent information.
A preliminary version of this paper was published in the proceedings of the 16th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’01).
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2001 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005, Pages 1–36.

2 · J. Gil and Y. Zibin

1.1 Subtyping Tests in OO Languages

A programmer may apply a subtyping test explicitly using dedicated constructs such as
JAVA ’s [Arnold and Gosling 1996]instanceof , andSMALLTALK ’s [Goldberg 1984]
isKindOf: method. In addition, several other language constructs are implemented us-
ing these tests. For example, subtyping tests are implicit in the execution of type cast oper-
ations, e.g.,?= in theEIFFEL programming language [Meyer 1992] anddynamic cast
in C++ [Stroustrup 1997]. InJAVA for example, the lack of parametric polymorphism is a
common source of such casts. When extracting an elemento from a collection class, e.g.,
Vector , the type ofo is Object . Therefore, it is typically necessary to casto to the
expected type.

Also, the covariant nature of array subtyping inJAVA renders subtyping tests necessary
in assignments to elements of arrays whose dynamic type is unknown. Consider for exam-
ple the following code fragment

void f(Object x[]) {
x[1] = new A();

}
It may be a bit surprising that the assignment tox[1] in f requires a subtyping test. To
understand why, suppose that functionf was invoked with a value of typeB[] (an array
of elements of typeB) as an actual argumentx , e.g.,

f(new B[3]);

This invocation is correct because typeB[] is a subtype ofObject[] (an array of ob-
jects). However, the assignment

x[1] = new A();

is legal only if typeA is a subtype of typeB. Otherwise, the runtime environment raises an
ArrayStoreException exception.

Yet another construct which is implemented using subtyping tests is covariant overriding
of arguments inEIFFEL. The compiler is inclined to make subtyping tests in conjunction
with calls to methods that use this feature in order to ensure type-safety2.

Finally, we note that subtyping tests may also be part of the implementation of exception
handling inJAVA , C++, and other languages. The following code excerpt is an example of
a try block, followed by acatch clause and block.

try { f(); ... }
catch (B b) {... }

Suppose that an objecto is throw n from thetry block, e.g., from within functionf() .
Then, the program should execute thecatch block, but only if typeB is a supertype of
the thrown object’s type. Thus, thecatch clause can be implemented with a subtyping
test. InJAVA , the subtyping test is with respect to the dynamic type ofo, while in C++ it is
with respect to the static type ofo. However, in both cases, this test must be carried out at
runtime.

2Various mechanisms of static analysis have been proposed to eliminate this requirement, but none of these have
been implemented.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 3

1.2 Problem Definition

The problem we deal with is defined formally as follows. Ahierarchyis a partially ordered
set (T ,¹) whereT is a set of types3 and¹ is a reflexive, transitive and anti-symmetric
subtype relation. If a andb are types, anda¹ b holds, we say that they arecomparable,
thata is asubtypeof b and thatb is asupertypeof a. Given a hierarchy(T ,¹), |T | = n,
thesubtyping problemis to build a data structure supporting queries of the sorta¹ b. This
data structure is called anencodingof the hierarchy.

The subtyping problem has enjoyed considerable attention recently (see e.g., [Kaci et al.
1989; Agrawal et al. 1989; Caseau 1993; Habib and Nourine 1994; Capelle 1994; Fall
1995; 1996; Krall et al. 1997; Vitek et al. 1997; Habib et al. 1999; van Bommel and
Beck 2000; Raynaud and Thierry 2001; Filman 2002; Palacz and Vitek 2003; Corsaro
and Cytron 2003]). The challenge of implementing subtyping tests is to simultaneously
optimize its four complexity measures:

(1) Space. Encoding methods associate certain data with each type. We measure the
average number of bits per type, also called theencoding length.
Note that we do not include in the measure the space consumed by each object. Al-
though the space overhead per object depends on the object layout model, it is usually
assumed that each object includes a pointer to a type information record.

(2) Instruction count.This is the number of machine instructions in thetest code, on a
certain hardware architecture. There are indications [Vitek et al. 1997] that the space
consumed by the test code, which can appear many times in a program, can dominate
the encoding length. An encoding is said to beuniform4 if there exists an implementa-
tion of the test code in which the instruction count does not depend on the size of the
hierarchy. Only uniform encodings will interest us.

(3) Test time.The time complexity of the test code is of major interest. Since the test
code might contain loops, the time complexity may not be constant even in uniform
encodings. Our main concern here are encodings with constant-time tests (which are
always uniform). To improve timing performance, loops of not constant-time tests
may be unrolled, giving rise to non-constant instruction count, without violating the
uniformity condition. (Bit-vector encoding, presented in Sec. 4, is an example of a
uniform encoding which is not constant-time.)
In explicit subtyping tests and in type casts, the supertypeb is known at compile time.
Therefore, the generated subtyping test code can bespecialized, by pre-computing
values that depend only onb and using them in the test code. Specialization thus
benefits both instruction count and test time, and may even reduce the encoding length.

(4) Encoding creation time.Another important complexity measure is the time for gen-
erating the actual encoding, which can be large. It is essential that a compiler will be
able to finish its computation in a reasonable time. In many cases, this is not possible.
For example, the problem of finding an optimal bit-vector encoding was proved to be
intractable [Habib and Nourine 1994]. Heuristics of bit vector encoding [Kaci et al.

3The distinction between type, class, interface, signature, etc., as it may occur in various languages does not
concern us here. We shall refer to all these collectively as types.
4The term is borrowed from circuit complexity. A family of circuits for the size dependent incarnations of a
certain problem is called uniform, if this family can be generated by a single Turing machine.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

4 · J. Gil and Y. Zibin

1989; Caseau 1993; Habib et al. 1999; Krall et al. 1997; Raynaud and Thierry 2001;
Filman 2002] offer a tradeoff between creation time and encoding length.
Most of the previous work assumed, as we shall do here, that the entire type hierarchy
is supplied at compile time.JAVA , E [Hollander et al. 2001] and many other languages
allow types to be dynamically loaded at runtime. If the encoding creation time is
sufficiently small, then the encoding can berecomputedwhenever such a load occurs.
An active research topic is to find truly incremental algorithms, which can quickly
updatethe encoding.

1.3 Naı̈ve Solutions

The most obvious (uniform) representation as abinary matrixgives constant subtyping
tests, but the encoding length isn. This method is useful for small hierarchies and is used,
for example, for encoding theJAVA interfaceshierarchy [Krall 2001] in CACAO 64-bit
JIT compiler [Grafl 1996; Krall and Grafl 1997]. The quadratic space overhead becomes
very noticeable in large hierarchies. For example, one of the hierarchies in our data set
has 5500 types giving rise to 3.8MB binary matrix. The binary matrix encoding can be
(non-uniformly) implemented using a zero encoding length andO(n) instruction count:
relying on specialization, the test code fora¹ b then checks whethera is among the pos-
sibly O(n) descendants ofb. More generally, a non-uniform encoding is tantamount to
representing the encoding data structure as part of the test code, and therefore will not
interest us.

The observation that stands behind the work on subtyping tests is that the binary matrix
representation isin practicevery sparse, and therefore susceptible to optimization. Nev-
ertheless, for arbitrary hierarchies the encoding length isΩ(n), and thus the performance
of the (not optimized) binary matrix implementation is asymptotically optimal. (The rep-
resentation of some posets requiresΩ(n2) bits5 since the number of partially ordered sets
(posets) with n elements is2Θ(n2).)

Let the relation≺d be thetransitive reductionof ¹, i.e., a minimal relation whose
transitive closureis¹. More precisely, relation≺d is defined by the condition thata≺d b
if and only if a¹ b, a 6= b, and there is noc ∈ T such thata¹ c¹ b, a 6= c 6= b.

Fig. 1.1 depicts a directed acyclic graph (DAG) representation of a hierarchy which will
serve as the running example of this paper.

B

C D E

H IGF

A

Fig. 1.1. A small example of a multiple subtyping hierarchy

5The number of bipartite graphs withn elements is clearly2Θ(n2), and every bipartite graph is also a poset.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 5

We employ the usual convention that edges are directed from the subtype to the super-
type, and that types drawn higher in the diagram are considered greater in the subtype
relationship. Thus, the figure specifies (for example) thatG≺d C andH¹A. In total in
this hierarchy,n = 9, |≺d| = 11, and|¹| = 27.

Another obvious solution to the subtyping problem isDAG encoding, which is based
on the DAG defined by types as nodes and edges from≺d. In this encoding, a list of
parents is stored with each type, resulting in total space of|≺d|dlog ne bits6 in an idealized
bit-efficient representation. The DAG encoding length is therefore

|≺d|
n

· dlog ne.

The average number of parents,|≺d|/n, tends to be small; We will see that it is less than 2
in all the standard benchmark hierarchies. Unfortunately, a subtyping test in DAG encoding
is O(n) time.

Closure encodingpresents another obvious tradeoff between space and test time. In this
encoding, with each type we store the list ofall of its ancestors using a simple sorted array
representation. A subtyping test is then implemented using a binary search inO(log n)
time. Since each entry in this array requiresdlog ne bits, the encoding length is

|¹|
n
· dlog ne.

Theoretically superior representations of this list includeQ-fast tries[Willard 1984], which
achieve deterministicO(

√
log n) time, or the randomized stratified trees (also calledvan

Emde Boas data structure) [van Emde Boas et al. 1977; van Emde Boas 1977], which
achieveO(log log n) time. Another alternative is perfect hash tables [Fredman et al. 1984]
which giveO(1) lookup time. In moderately sized tables we expect the simple binary
search algorithm to outperform the asymptotically better competitors. Also, these sophis-
ticated data structures increase the encoding length by factors which can be prohibitively
large.

The binary matrix, DAG, and Closure encodings are not very appealing techniques.
Previous contributions in this field included many sophisticated encoding schemes which
come close to DAG encoding in space, while keeping the test time constant or almost
constant.

An important special case of the problem is single inheritance, which occurs when the
hierarchy DAG takes a tree or forest topology as mandated by the rules of languages such
as SMALLTALK [Goldberg 1984] andOBJECTIVE-C [Cox 1986]. The general case of
multiple inheritance is more difficult, and will be our main concern here.

1.4 PQ Encoding

Our chief result is based onPQ-trees[Booth and Leuker 1976], a technique for searching
an ordering satisfying prescribed constraints:PQ-encoding(PQE) improves the encoding
length of all previous results, in the de facto standard benchmark hierarchies. Thanks to
specialization and other optimization techniques, PQE achieves, in a standard object layout
model, an encoding length of zero for all single inheritance hierarchies and even in some
multiple inheritance hierarchies.

6Here and henceforth, all logarithms are based two.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

6 · J. Gil and Y. Zibin

The encoding creation time of PQE also compares favorably with previous results. It
is less than a second on all standard benchmarks on a contemporary architecture, while
the average time for processing a type is less than one millisecond. However, PQE is not
an incremental algorithm. We are unaware of any efficient algorithm for updating the PQ
encoding as types are added to the hierarchy.

The remainder of this article is organized as follows. Sec. 2 makes some pertinent
definitions. The data set of the 13 hierarchies used as benchmarks is presented in Sec. 3.
A survey of prior research is the subject of Sec. 4. This section also describes theslicing
technique of partitioning a hierarchy for the purpose of subtyping tests. The technique
is common to many previous algorithms for the problem; it also stands as the basis of
the PQE algorithm which is described in Sec. 5. Sec. 6 presents our new optimization
techniques, improving instruction count, test time and encoding length. The penultimate
Sec. 7 presents the results of running these algorithms on our benchmark. Finally, some
open problems and directions for future research are mentioned in Sec. 8. Appendix A
demonstrates the inner workings of the PQ-tree data structure.

2. DEFINITIONS

Given a typea ∈ T , we define the following sets:descendants(a) andancestors(a) (the
set of subtypes and supertypes ofa, respectively), as well aschildren(a) andparents(a)
(the set ofimmediatesubtypes and supertypes ofa, respectively). More precisely,

descendants(a) ≡ {b ∈ T | b¹ a}
ancestors(a) ≡ {b ∈ T | a¹ b}
children(a) ≡ {b ∈ T | b≺d a}
parents(a) ≡ {b ∈ T | a≺d b}

(2.1)

Also for a ∈ T , the valuelevel(a) is the length in nodes of the longest directed (upward)
path starting froma. Theheightof the hierarchy is the maximal level among all types inT .
Thekth-levelof the hierarchy is the set of all typesa for which level(a) = k.

level(a) ≡ 1 + max {level(b) | b ∈ parents(a)}
height(T) ≡ max {level(a) | a ∈ T } (2.2)

(In the above definition oflevel(a), the maximum over an empty set is defined as zero. In
other words, nodes without any parents are defined as being in level 1.)

In Fig. 1.1 we have

descendants(A) = {A, C, D, F, G, H}
ancestors(F) = {A, B, C, F}
children(A) = {C, D}
parents(F) = {C}

level(F) = 3

This hierarchy has three levels: with two, three, and four types, respectively.
The following definitions will also become pertinent:

roots(T) ≡ {a ∈ T | parents(a) = ∅}
leaves(T) ≡ {a ∈ T | children(a) = ∅} (2.3)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 7

In Fig. 1.1 we have

roots(T) = {A, B}
leaves(T) = {F, G, H, I}.

3. DATA SET

To benchmark the algorithms, we started from the 9 multiple inheritance hierarchies used
by Eckel and Gil [2000] in their benchmark of object layout techniques. Three new
JAVA hierarchies (newer versions of theJAVA runtime environment), as well as the Ce-
cil compiler hierarchy [Chambers 1993] were added to this benchmark. In total, our
data set comprises large hierarchies drawn from six different OO languages. In particular,
the set includes all multiple inheritance hierarchies used in previous studies of encoding
schemes [Habib et al. 1999; Vitek et al. 1997; Krall et al. 1997]. Eckel and Gil [2000]
gave a detailed description of these hierarchies. One of their findings is that many topo-
logical properties of typical hierarchies are similar to those of balanced trees. This makes
it possible to find more efficient encodings for hierarchies used in practice. Comparison of
different encoding schemes is done over these 13 hierarchies which have now become a de
facto standard benchmark.

The hierarchies in the data set are enumerated in ascending order of size in Table I.
We see that the number of types ranges between 66 and 5,438. In total the 13 hierarchies
represent over 19,500 types.

Hierarchy n |≺d|/n |¹|/n αa βb γc |T ′|/n

IDL 66 0.98 3.83 8 6 7 15%
JDK 1.1 225 1.04 3.17 7 6 8 15%
Laure 295 1.07 8.13 16 11 9 18%
Ed 434 1.66 7.99 23 10 9 61%
LOV 436 1.71 8.50 24 9 9 62%
Unidraw 613 0.78 3.02 9 8 10 4%
Cecil 932 1.21 6.47 23 12 10 33%
Geode 1,318 1.89 13.99 50 13 11 75%
JDK 1.18 1,704 1.10 4.35 16 9 11 18%
Self 1,801 1.02 29.89 40 16 11 9%
Eiffel4 1,999 1.28 8.78 39 17 11 46%
JDK 1.22 4,339 1.19 4.37 17 9 13 22%
JDK 1.30 5,438 1.17 4.37 19 9 13 21%

amax{|ancestors(a)| | a ∈ T }
bheight
cdlog ne

Table I. Topological properties of hierarchies in the data set

Table I gives also some of the topological properties of the hierarchies. Examining the
third column in the table we see that the average number of parents,|≺d|/n, is always less
than 2. On the other hand, the average number of ancestors,|¹|/n, can be large. In the
Self hierarchy a type has in average almost 30 ancestors! The maximal number of ancestors
plays an important factor in the complexity of some of the algorithms. We see that there
exists a type in the Geode hierarchy which has 50 ancestors in total. In comparing the

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

8 · J. Gil and Y. Zibin

height of the hierarchy withlog n we see that the hierarchies are shallow; their height is
similar to that of a balanced binary tree.

We can learn a bit more on the topology of inheritance hierarchy by considering the
setT ′ that is themultiple inheritance coreof the hierarchy. Formally, a type is in the
core if it has a descendant with more than one parent. Conversely, the setT \ T ′ is a
collection of maximal subtrees discovered in a bottom-up traversal of the hierarchy. It was
previously noticed [Vitek et al. 1997] that encoding is easier if the core is considered first,
and thebottom treesof T \ T ′ are added to the encoding later. In Table I we see that in most
hierarchies the core is rather small, typically less than half the number of types. Treating
the core and the bottom trees separately reduces the runtime of our encoding algorithm.

4. PREVIOUS WORK

This section gives an overview of various encoding methods proposed in the literature. We
describe the data structure used in each such encoding, and how it is deciphered to imple-
ment subtyping tests. Little if any attention is devoted to describing the actual generation
of the data structure and the theory behind it.

4.1 Encoding of Single Inheritance Hierarchies

4.1.1 Relative numbering.Perhaps the most elegant encoding algorithm isrelative
numbering[Schubert et al. 1983] (also calledSchubert’s numbering) which guarantees
both optimal encoding length ofdlog ne bits and constant time subtyping tests. However,
these achievements are only possible in a single inheritance hierarchy. For a typeb ∈ T ,
let rb denote its ordinal (i.e., an integer in the range1, . . . , n) in a postorder traversal ofT .
A basic property of postorder traversal is that

rb = max{ra | a¹ b}. (4.1)

Let lb be defined by

lb = min{ra | a¹ b}. (4.2)

Combining (4.1) and (4.2) with the fact that in postorder traversal the descendants of any
type are assigned consecutively, we find thata¹ b if and only if

lb ≤ ra ≤ rb. (4.3)

Thus, in relative numbering, each typea is encoded by an interval[la, ra] as exemplified
by Fig. 4.1.

In the figure we have (for example) thatdescendants(D) = {D, H, I}. Ther-descriptor
of each of these descendants, i.e.,rD = 8, rH = 6 andrI = 7, fall within the interval[6, 8]
associated with typeD. No otherr-descriptor falls in this interval.

Recall that sinceb is known at compile time, values which depend only onb can be
pre-computed. Henceforth, such values are marked by a “#” prefix. With this notation, we
write (4.3) as

#lb ≤ ra ≤ #rb. (4.4)

We note that#lb and#rb are compile-time constants so test (4.4) can be specialized by
eliminating the memory fetches of these. In doing so, we find thatlb is not part of the
encoding, bringing down the encoding length of relative numbering todlog ne.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 9

[6,6] [7,7][3,3][2,2][1,1]

[1,4] [5,5] [6,8]

[1,9]

[l,r] A

B C D

E F G H I

Legend

Fig. 4.1. Relative numbering in a tree hierarchy

Relative numbering is used in CACAO [Grafl 1996; Krall and Grafl 1997] to represent
theJAVA class inheritance hierarchy [Krall 2001] (Recall that the binary matrix is used in
CACAO for the interface hierarchy.) Range-compression [Agrawal et al. 1989], described
below, is a generalization of relative numbering for multiple inheritance.

4.1.2 Cohen’s encoding.A variant of Dijkstra’s displays [1960] is Cohen’s encod-
ing [1991]. His encoding is yet another example of an algorithm initially designed for sin-
gle inheritance, and later generalized to multiple inheritance. (The generalized algorithm,
known as Packed Encoding [Vitek et al. 1997], will be described below.) Cohen’s encoding
relies on hierarchies being relatively shallow, and more so, on types having a small number
of ancestors. As Table I shows, this is indeed the case in some of our multiple inheritance
hierarchies. A typea is associated an arrayra of size

level(a) ≤ |ancestors(a)|
(in single inheritance,level(a) = |ancestors(a)|), with entries for each

b ∈ ancestors(a).

Specifically, each typeb, bº a, is stored in locationlevel(b) in arrayra. Thus, the test
whetherbº a is carried out by checking whetherb indeed occurs in locationlevel(b) of
arrayra. The encoding is optimized by storing notb itself in this location, but rather anid,
which is unique among all types in its level.

Since different levels come in different sizes, someid’s may require fewer bits than oth-
ers. Typically, anid is stored in either a single byte or in a 16 bits word. It is even possible
to pack severalid’s into a single byte. As a result of this compression the entries ofra,
which are not of equal size, cannot be referenced using ordinary array access operations.

We say thatr is apseudo-array, and use the notationr@ i instead ofr[i] for denoting
pseudo-array access. Pseudo-arrays are only used if the indexi is always known at compile
time. Therefore, a pseudo-array access is the same as record member selection, and is no
slower than a non-pseudo array access. (If several pseudo-array entries are packed together
in a single byte, then the required shift and mask operations may slow down this operation
in comparison to normal array accesses.)

Cohen’s encoding stores with each typea its level, la = level(a), its uniqueid within
this levelida, as well as the pseudo-arrayra, such that for eachb ∈ ancestors(a),

ra@ lb = # idb . (4.5)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

10 · J. Gil and Y. Zibin

The testa¹ b is carried out by checking thatla ≥ #lb and then that (4.5) holds. Note
thatlb is known at compile time.

4 53

1

21

1 2 3

1

1
3
4

3
1
1
3

3
1
1
2

3
1
1
1

3

1
3

21
2

21
1

2

1

1
3
5

3

A

B C D

E F G H I

id
l

r[1]

r[l]

.
.
.

Legend

Fig. 4.2. Cohen’s encoding of the tree hierarchy of Fig. 4.1

Consider for example the 3-level tree hierarchy depicted in Fig. 4.2. As shown in the
figure, each type has a (pseudo-) array with at most 3-identifiers. The pseudo array of
typeH in the 3rd level has three entries:rH@ 1 = 1 since the ancestor ofH at the 1st level
is A, andidA = 1. Similarly, the ancestor at the 2nd level isD, idD = 3. The last entry of
this array stores theid of H.

Also observe that in the figure howid’s are reused at different levels. For example, for
typesC andF which are at different levels we have thatidC = idF = 2.

The array boundary checkla ≥ #lb in Cohen’s encoding is inelegant. We observe that
it can be eliminated at the price of allocating globally uniqueid’s. Then, it is possible to
concatenate the arrays, making sure that the largest array is at the end. Even if there is an
overflow in the array accessra[lb], the location found will not containidb.

Jalapẽno 7 [Alpern et al. 2001], IBM’s implementation of theJAVA virtual machine
(JVM), uses Cohen’s algorithm for subtyping tests where the supertype is a class. The
main reason is that this encoding is incremental, whereas vanilla relative numbering is not.

4.2 Encodings of Multiple Inheritance Hierarchies

4.2.1 Packed encoding.Cohen’s algorithm was generalized to the multiple inheritance
setting by Vitek et al. [1997] into what is calledPacked Encoding(PE) andBit-Packed En-
coding(BPE), which are both constant-time methods. Cohen’s algorithm, PE, BPE and our
algorithm share a common theme:slicing, in which the setT is partitioned into disjoint
slices(sometimes called buckets)S1, . . . , Sk. For each sliceSi we store the entire infor-
mation required to answer queries of the sorta¹ b, a ∈ T andb ∈ Si, i.e., queries in which
the supertype is drawn fromSi. Typea has a pseudo-arrayra of lengthk, wherera@ i
holds information for sliceSi. In essence, we store, in a very compressed format, the set
of descendants of each element inSi. The compression is possible since there is a great
deal of sharing in the descendants set of different members ofSi.

PE associates with each typea ∈ T a unique integerida within its slicesa, so thata
is identified by the pair〈sa, ida〉. Also associated witha is a byte arrayra, such that for

7Jalapẽno is now called Jikes RVM (Research Virtual Machine)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 11

all b ∈ ancestors(a), indexsb storesidb, i.e.,

ra[sb] = # idb . (4.6)

A necessary and sufficient condition fora¹ b to hold is then (4.6). It should be clear that
no two ancestors ofa can be on the same slice. Thus, the number of slices is at least the
size of the largest set of ancestors. Checking the fifth column of Table I we see that some
hierarchies require 40 slices or more.

Comparing (4.6) with (4.5), we see that slices play a role similar to that of levels in
Cohen’s algorithm. In fact, Cohen’s algorithm partitions the hierarchy intoheight(T)
anti-chains8, while PE partitions the hierarchy into anti-chains where no two elements in
an anti-chain have a common descendant. Fall [1995], who observed that this technique
might be used for subtyping tests, noted that it is NP-hard to find a minimal such partition,
and stopped short of finding a constant time subtyping test. The heuristic suggested by
Vitek et al. [1997] along with the constant time subtype test made PE viable. Based on this
heuristic, Palacz and Vitek [2003] recently gave an incremental implementation of PE.

Vitek, Horspool and Krall’s PE algorithm constrains each slice to a maximum of 255
types, so thatida can always be represented by a single byte. The encoding length is
then8k, wherek is the number of slices. The inventors of PE observed thatk is usually
the maximal number of ancestors unless multiple inheritance is heavily used. Thus, even
though the general problem is intractable, their heuristics often finds an optimal solution.

2,1

4,1 3,1 4,2

5,3 5,45,25,1

1,1

1
1
0
1
0

1
1
1
1
2

1
1
0
1
1

1
1
1
2
3

0
1
0
2
4

1
1
1
0
0

0
1
0
2
0

0
1
0
0
0

1
0
0
0
0

A B

C D E

IHGF

r[1]

r[k]

s,id

..
.

Legend

Fig. 4.3. PE representation of the hierarchy of Fig. 1.1

Consider Fig. 4.3 for an example of PE representation of the hierarchy of Fig. 1.1. The
types of the hierarchy are partitioned into five different slices:S1 = {A}, S2 = {B}, S3 =
{D}, S4 = {C, E}, andS5 = {F, G, H, I}. This is the smallest possible number of slices,
since typeG (for example) has five ancestors.

The only difference between BPE and PE is that BPE permits two slices or more to be
represented within a single byte. Thus, in BPEra is a pseudo-array, and the array access
in (4.6) becomes a pseudo-array access:

ra@ sb = # idb . (4.7)

8An anti-chainis a set of types where no two types are comparable. Clearly, each level is an anti-chain.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

12 · J. Gil and Y. Zibin

Starting from Fig. 4.3 we can represent slicesS1, S2 andS3 using a single bit,S4 using
two bits, andS5 in three bits, for a total of seven bits, which can fit into a single byte.

4.2.2 Bit-vector encoding.One of the most explored directions in prior art isbit-vector
encoding[Habib and Nourine 1994; Kaci et al. 1989; Caseau 1993; Habib et al. 1999;
Krall et al. 1997; Raynaud and Thierry 2001; Filman 2002]. In this scheme, each typea is
encoded as a vectorveca of β bits. If veca[i] = 1 then we say thata hasgenei. Let φ(a)
be the set of genes ofa. Relationa¹ b holds if and only ifφ(a) ⊇ φ(b), which can be
easily checked by maskingvecb againstveca, specifically, applying the test:

vecb and veca = vecb . (4.8)

Fig. 4.4 gives an example of a bit-vector encoding of the hierarchy of Fig. 1.1 which
uses 6 genes.

2

3 4 5

66

1
100000 010000

111000 110100 010010

111001 111100 110110 010011

A B

C D E

IHGF

gene
vec

Legend

Fig. 4.4. Bit-vector encoding of the hierarchy of Fig. 1.1. (We only write the genes a type adds to its parents.)

The set of genes of typeD (for example) isφ(D) = {1, 2, 4}, and thusvecD = 110100.
The genes of the ancestors of typeD are contained inφ(D), and every other type has at
least one gene not inφ(D).

Bit-vector encoding effectively embeds the hierarchy in the lattice of subsets of the
set{1, . . . , β}. It is always possible to do so by settingβ = n and in lettingveca be
the row of the binary matrix which corresponds toa. A simple counting argument shows
thatβ must depend on the size of the hierarchy. Hence, bit-vector encoding is not constant-
time, but it is uniform. For efficiency reasons, the implicit loop in (4.8) can be unrolled,
giving rise to a non-constant instruction count.

The challenge is in finding the minimalβ for which such an embedding of the hierar-
chy in a lattice is possible. Although the problem is NP-hard [Habib and Nourine 1994],
several good heuristics were proposed, including Kaci et al. [1989] work, Caseau’sCom-
pact Hierarchical Encoding[1993], later improved by Habib et al. [1999]. Currently,Near
Optimal Hierarchical Encoding(NHE), due to Krall et al. [1997], is the best general bit
vector encoding. Better results can be obtained for the special case of single inheritance
by dichotomic encoding[Raynaud and Thierry 2001] and itspolychotomic encodinggen-
eralization [Filman 2002].

4.2.3 Range compression.It is only natural to ask then whether it is possible to promise
constant encoding length, while maintaining uniformity and “almost constant” time. An

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 13

affirmative answer to this question was given by Agrawal et al. [1989] in theirrange-
compressionencoding which generalizes relative numbering. Range compression encodes
each typeb as an integeridb, with its ordinal in a postorder scan of a certain spanning forest
of the hierarchy. Then, the setΦ(b) of id’s of the descendants ofb,

Φ(b) = {ida | a ∈ descendants(b)}, (4.9)

is represented by an array of consecutive disjoint intervals

[lb@ 1, rb@ 1], [lb@ 2, rb@ 2], . . . , [lb@ γ(b), rb@ γ(b)].

Thus,a¹ b if and only if

#lb@ i ≤ ida ≤ #rb@ i (4.10)

holds for somei, 1 ≤ i ≤ γ(b). In single inheritance, all descendants of a type are
assigned consecutive numbering in a postorder traversal, and therefore the set (4.9) can be
represented using a single interval. The encoding then degenerates to relative numbering.

Fig. 4.5 gives a range-compression encoding of the hierarchy of Fig. 1.1. We have for
example

Φ(B) = {1, 2, 3, 5, 6, 7, 8, 9},
which can be represented as two intervals[1, 3] and[5, 9]. Thus,lB = 〈1, 5〉, rB = 〈3, 9〉
andγ(B) = 2.

9

3 6 8

5 721

4
[1,6] [1,3],[5,9]

[1,3] [2,2],[5,6] [5,5],[7,8]

[1,1] [2,2] [5,5] [7,7]

A B

C D E

F G H I

id

[l1,r1],[l2,r2],...

Legend

Fig. 4.5. Range-compression encoding of the hierarchy of Fig. 1.1. (Edges of the spanning forest are in bold.)

Examining (4.10) we see that onlyida has to be stored for a typea, since everything
else is specialized into the subtyping test site. The specialization reduces the encoding
length todlog ne, but at a price of increasing the instruction count from constant toγ(b),
which can be in the order ofn. In all of our hierarchies however, the average ofγ(b)
over allb ∈ T was always less than 2. The maximalγ(b) = 55 was found in the Geode
hierarchy.

The usual straightforward implementation of range compression requiresO(γ(b)) time.
If γ(b) is large then a binary search on (4.10) reduces the time toO(log γ(b)). Note that
this faster implementation does nothing to improve the instruction count in the specialized
implementation which remainsΩ(γ(b)).

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

14 · J. Gil and Y. Zibin

Other not -constant encoding techniques were used in large data- and knowledge-bases,
e.g., modulation techniques [Kaci et al. 1989; Fall 1995], sparse terms encoding [Fall
1996], and representation using union of interval orders [Capelle 1994]. The common ob-
jective is a small average, rather than worst-case, time for testing, which may be considered
unsuitable for an implementation of the runtime environment of OO languages.

5. PQ-ENCODING

This section describes PQ-encoding (PQE), our new encoding scheme, which achieves
the smallest space requirements among all previously published encodings. In a nut-shell,
PQE combines the ideas ofrelative numberingwith slicingas used in PE and BPE.

The essence of relative numbering is in the (global)consecutiveness property, i.e., the
requirement that the descendants of any given type are numbered consecutively; this prop-
erty makes it possible to represent the entire set of descendants as a pair of two integers:
the end points of the interval. In single inheritance, the consecutiveness property is satis-
fied by the numbering of a simple postorder visit. For multiple inheritance hierarchies, it
is only natural to try to generalize relative-numbering by replacing the postorder visit by
a DFS of the inheritance graph. Two issues must be addressed in order to make such a
generalization work.

(1) The encoding must chose one DFS visit of the inheritance hierarchy from many differ-
ent such visits, which may lead toessentiallydifferent orderings of the nodes. (Note
that different DFS visits of a single inheritance hierarchy give rise to essentially the
same relative numbering encoding.)

(2) In general, it is not guaranteed that there exists any single numbering which satisfies
the consecutiveness property. Therefore, the generalization must handle hierarchies in
which the consecutiveness property cannot be satisfied.

As explained in the previous section, the range-compression technique of Agrawal et
al. [1989] addresses these issues by applying a heuristic for choosing a DFS. Also, if this
heuristic fails, i.e., in case the set of descendants of a certain type does not fill up a single
range, then this set is represented as a collection of ranges.

PQE uses two techniques in the generalization of relative numbering:

(1) Employing a sophisticated algorithmic tool, namelyPQ-trees, for efficiently consider-
ing together even an exponential number of orderings. In particular, if there existsany
orderingof the hierarchy which satisfies the global consecutiveness property, then the
PQ-trees technique is guaranteed to find one inO(|¹|) time.

(2) Using the slicing technique to make sure that subtyping tests require constant time,
even if no ordering which satisfies the consecutiveness property exists.

We first (Sec. 5.1) explain data structure used by the encoding and the implementation
of constant time subtyping tests. Sec. 5.2 explains the slicing technique in greater detail.
In Sec. 5.3 we describe the PQ-trees data structure. Sec. 5.4 shows how it is used to find a
PQ-encoding.

5.1 Subtyping Tests in the PQ-Encoding

The set of types is partitioned into disjointslices, and each type has a distinctid with
respect toeachof the slices. Specifically, letk denote the number of slices. Then, for each
type three pieces of data are stored:

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 15

(1) an integersa, 1 ≤ sa ≤ k, which is the number of the slice to whicha belongs,
(2) a pseudo-arrayida of lengthk, such thatida@ i is the id of type a with respect to

slicei, 1 ≤ ida@ i ≤ n and
(3) an interval[la, ra], represented as a pair of integers,1 ≤ la ≤ ra ≤ n, which are the

smallest and the largestid (with respect to slicesa) of the descendants ofa.

In total k + 3 integers are stored for each type. Our main effort, for which we will har-
ness PQ-trees, is to minimize the number of slicesk. Fine tuning of the representation as
discussed below in Sec. 6 may make the encoding length less than(k + 3)dlog ne.

The selection ofid’s and intervals is such that subtyping tests can be made using two
comparisons. Specifically,a¹ b if and only if

#lb ≤ ida@ sb ≤ #rb. (5.1)

Thus, subtyping tests begins with the pseudo-array accessida@ sb which finds theid of a
with respect to the slice ofb. Then we check if thisid is in the range[lb, rb] of descendants
of b.

Sinceb is known at compile time, testing (5.1) requires exactly the same number of
RISC instructions as relative numbering (4.4). Note that the two comparisons in (5.1) are
between integers of fixed size, which needs not to be longer thanlog2 n bits. In each of the
hierarchies in our data set, 16 bits comparisons are sufficient, and it is extremely unlikely
that hierarchies will ever contain more than232 types. In contrast, subtyping tests in a bit
vector encoding scheme may be implemented in only one comparison of bit vectors, but
since the length of these vectors is not fixed (e.g., 95 bits for Geode in the NHE scheme),
this comparison must be repeated several times.

Also note that the test (5.1) is similar to array bounds checking. Therefore, it may be
possible to optimize the implementation on an architecture with dedicated instructions for
this kind of check. Such architectures include the Intel 80186+ series (bound mnemonic)
and the Motorola 680x0 series as well as Motorola 68300 (chk2 mnemonic).

Palacz and Vitek [2003] explain that for reasonably sized hierarchies, including all hier-
archies in standard benchmarks, it is possible to implement the check (5.1) using a single
jump instruction instead of two. We now give a slightly improved version of the technique
they describe. Consider the predicate

(x1 > y1) ∧ (x2 > y2) (5.2)

wherexi andyi, i = 1, 2 are 15-bit integers. Then we packx1 andx2 (respectively,y1

andy2) together in a single 32-bit integerx (respectively,y). Letx = 216x1 +x2, andy =
216y1 + y2 + M , whereM = 232 + 216. Then, the expression

(y − x) and M (5.3)

is zero if and only if (5.2) holds. Checking whether (5.3) is zero requires a subtraction, a
bit mask operation and a jump.

5.2 Slicing

The essence of slicing is that when the global consecutiveness property cannot be satisfied,
we maintain a weaker, local property. More specifically, given a sliceS ⊆ T , let ϕ(S) ⊆
℘(T) be the set of sets of descendants of types in this slice, i.e.,

ϕ(S) = {descendants(t) | t ∈ S}.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

16 · J. Gil and Y. Zibin

DEFINITION 5.1. A sliceS satisfies thelocal consecutiveness propertyif there is an
ordering of T in which all members ofϕ(S) are consecutive.

A partitioning ofT into slices which satisfies the local consecutiveness property always
exists, since this property trivially hold for singletons. The local consecutiveness property
makes it possible to represent the set of all descendants of any type using merely two
integers, and implement every type check as interval inclusion test, as done in (5.1).

Fig. 5.1 describes a PQE representation of the running example. The global consecu-
tiveness property holds in this case— only one slice is used—and each type has a singleid.
To check whetherG is a descendant ofA, we only need to check whetheridG = 4 falls in
the range[lA, rA] = [1, 6].

9

2 5 7

6 843

1
[1,6] [2,9]

[2,4] [4,6] [6,8]

[3,3] [4,4] [6,6] [8,8]

A B

EDC

F G H I

id
[l,r]

Legend

Fig. 5.1. PQ-encoding of the hierarchy of Fig. 1.1

The numbering of Fig. 5.1 was found using a PQ-tree, a data structure that maintains a
set oforderings(permutations) of someuniverse. Initially, the PQ-tree represents the set
of all 9! orderings of typesA, . . . , I. The tree is updated progressively, narrowing down this
set, to reflect the constraints that the descendants of all types are consecutive. For each of
the types, we try to update the PQ-tree so that it represents only the orderings in which the
descendants of this type are consecutive.

In the running example, this update process never fails; we therefore ended in a PQ-
tree representation of all orderings which satisfy the global consecutiveness property. The
ordering depicted in Fig. 5.1 was obtained by picking one of these orderings.

If an ordering which satisfies the global consecutiveness property exists, then our algo-
rithm is guaranteed to find it. In the general case, we use a greedy heuristic for minimizing
the total number of slices, and hence the encoding length: “try to make the current slice as
large as possible without violating the local consecutiveness property”.

Fig. 5.2 shows our running example hierarchy augmented with a new typeN, added as
an additional ancestor ofE.

There is no ordering of the types in this hierarchy which satisfies the global consecutive-
ness property. Therefore, PQ-encoding is inclined to use two slices:

S1 = {A, B, C, D, E, F, G, H, I},
S2 = {N}. (5.4)

We see that the greedy heuristic assigns all types butN to the first slice. In Fig. 5.2 the slice
of each type is written to its left.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 17

[3,3]

9,2

2,3 5,4 7,8

6,9 8,104,63,5

1,1
[1,6] [2,9]

[2,4] [4,6] [6,8]

[4,4] [6,6] [8,8]

A B

EDC

F G H I

1

1 1

1 1 1 1

1

21 10,7
N

[7,10]

ids
[l,r]

s

Legend

Fig. 5.2. A two slices PQ-encoding of the hierarchy of Fig. 1.1 augmented with a new typeN

Comparing Fig. 5.2 with Fig. 5.1 we also see that each type has now twoid’s instead
of one. To check whetherG is a descendant ofN, we first surmise that the slice ofN
is 2. We therefore use thesecondid of G, idG@ 2 = 6 and check whether it falls in the
range[lN, rN] = [7, 10].

5.3 PQ-Trees

PQ-trees were invented by Booth and Leuker [1976]9 who used them to test for thecon-
secutive 1’s property in binary matrices of sizer × s, in O(k + r + s) time, wherek is
the number of 1’s in the matrix. Booth and Leuker’s result gave rise to the first linear-
time algorithm for recognizing interval graphs. Later, PQ-trees were used for other graph-
theoretical problems, such as on-line planarity testing [Battista and Tamassia 1989; 1990]
and maximum planar embedding [Battista and Tamassia 1996; Junger et al. 1996; 1998].

DEFINITION 5.2. A PQ-tree over a universeT is either a special⊥ symbol, or an
ordered tree data-structure with a leaf for every member ofT , and such that each internal
node is labelled as either aQ-nodeor a P-node.

A PQ-tree represents a set of orderings ofT . The⊥ symbol represents an empty set of
orderings. Otherwise, each Q-node in the data-structure represents the requirement that all
children of the node must occur in the order they occur in the tree or in reverse order. A P-
node represents the requirement that these children must occur together, but in no specific
order.

Theuniversal PQ-tree, denotedP> represents the set of all orderings; it has a P-node as
a root and a leaf for every member ofT . A more interesting example is given by Fig. 5.3
which depicts a PQ-tree over the universeT = {A, B, C, D, E}. This tree represents the
requirement thatA, B, andC must occur together, either in this order or in the reverse
order〈C, B, A〉.

Let consistent(P) denote the subset of orderings of the universeT which is represented
by a PQ-treeP. The specific ordering ofT obtained by a DFS traversal ofP, P 6= ⊥, is
denotedfrontier(P).

In Fig. 5.3 we have

frontier(P) =〈A, B, C, D, E〉, (5.5)

9In fact, Lempel et al. [1967] were the first to coin the termPQ-expressions. PQ-trees are nothing more than an
efficient representation of PQ-expressions.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

18 · J. Gil and Y. Zibin

Q

B

D E

P

CA

Fig. 5.3. A PQ-tree over the universeT = {A, B, C, D, E}, with a single P-node (depicted as a circle), a Q-node
(depicted as a rectangle) and five leaves (depicted as octagons)

and

consistent(P) ={〈A, B, C, D, E〉, 〈C, B, A, D, E〉, 〈A, B, C, E, D〉, 〈C, B, A, E, D〉,
〈E, A, B, C, D〉, 〈E, C, B, A, D〉, 〈D, A, B, C, E〉, 〈D, C, B, A, E〉,
〈D, E, A, B, C〉, 〈D, E, C, B, A〉, 〈E, D, A, B, C〉, 〈E, D, C, B, A〉}.

(5.6)

There are two transformations of a PQ-treeP which preserveconsistent(P): swapping
any two children of a P-node, and reversing the order of the children of a Q-node. PQ-
treesP1 andP2 are equivalent (P1 ≡ P2) if P2 can be reached fromP1 by a series of
these transformations. Thus,consistent(P) can be more formally defined as

consistent(P) = {frontier(P ′) | P ′ ≡ P} , (5.7)

andconsistent(⊥) = ∅.
A constraint(on orderings) is the requirement that certain elements of the universe occur

together. A constraint is represented simply as a subset of the elements of the universe. (In
our application, each constraint will be the set of descendants of a given type.) We denote
the set of all orderings that satisfy constraintI asΠ(I).

Consider the special casesI = ∅, |I| = 1, or I = T . Then, it is easy to see that all
orderings satisfyI. Thus, in all these cases,

Π(I) = consistent(P>).

More generally,

FACT 5.3. For every constraintI there exists a PQ-treeP, P 6= ⊥, such that

Π(I) = consistent(P).

PROOF. The root ofP is a P-node whose children are the leavesT \I and another P-
node whose children are the leavesI.

Let I ⊆ ℘(T) be a collection of constraints. Then,Π(I) is the set (which may be empty)
of orderings that satisfyall constraints inI, i.e.,

Π(I) =
⋂

I∈I

Π(I).

(In our application, each sliceS generates a collection of constraintsϕ(S).)
For example, the requirement that typesA andB are consecutive, and that typesB andC

are consecutive, is represented by

I =
{ {A, B} , {B, C}}

.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 19

It is easy to check thatΠ(I) is the set (5.6) of orderings consistent with the PQ-tree of
Fig. 5.3. Another example is the empty set of constraints which is satisfied by all orderings,
i.e.,Π(∅) = consistent(P>). More generally,

THEOREM 5.4. (BOOTH-LEUKER (1976)) Suppose that|T | > 2. Then, for every
collection of constraintsI there exists a PQ-treeP, and for every PQ-treeP there exists a
collection of constraintsI such thatΠ(I) = consistent(P).

Algorithm 1 Compute the PQ-tree of all orderings which satisfy a set of constraintsI
Given a universeT , and a set of constraintsI ⊆ ℘(T), return a PQ-tree of all orderings
of T which satisfyI.

ProceduregenTree(I)
P ← P> // P> is the universal PQ-tree.
For all I ∈ I do
P ← reduce(P, I)

od
return P

Constructively, the treeP is generated fromI using the iterative process described in
Alg. 1. The heart of the algorithm is the procedurereduce which “adds” a constraint
to a PQ-tree in a time proportional to the size of the constraint. We here use Booth and
Leuker [1976] clever implementation ofreduce as a black box.10 Formally,

THEOREM 5.5. (BOOTH-LEUKER (1976))Given a PQ-treeP and a constraintI, the
call reduce(P, I) runs inO(|I|) time, while the value it returns satisfies

consistent(reduce(P, I)) = consistent(P)
⋂

Π(I).

Note that the setconsistent(P)
⋂

Π(I) may be empty, in which casereduce returns⊥.

5.4 Finding a PQ-encoding

There are hierarchies for which Alg. 1 can be used to find a PQ-encoding. A case in point
is our running example (see Fig. 5.1): Each of the nine types in this example imposes a
constraint on the permissible orderings. Singleton constraints are not interesting since they
are satisfied by any ordering. The remaining constraints are

IC = {C, F, G},
ID = {G, D, H},
IE = {H, E, I},
IA = {C, F, G, D, H, A},
IB = {C, F, G, D, H, E, I, B}.

(5.8)

The constraintIC is that the descendants of typeC must occur consecutively, etc. The
call genTree({IC, ID, IE, IA, IB}) returns the PQ-tree of Fig. 5.4. (Appendix A shows and
explains the intermediate trees generated in the computation process.)

10The curious reader may care to know thatreduce conducts a bottom-up traversal of the input tree, applying
one of eleven PQ-tree transformations at each step.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

20 · J. Gil and Y. Zibin

Q

G DA

C F

P H

E I

P B

Fig. 5.4. The PQ-tree returned from the callgenTree on the constraints (5.8)

The PQ-tree of the figure has one Q-node and two P-nodes with two children each.
Therefore, this tree represents 8 different orderings, each satisfying the global consecu-
tiveness property. The encoding of Fig. 5.1 uses the ordering represented by the tree’s
frontier 〈A, C, F, G, D, H, E, I, B〉.

In the general case, a PQ-encoding may require more than one slice. In such cases, the
application ofgenTree to the set of all constraintsϕ(T) returns⊥. (An example can be
found in Appendix A.)

Alg. 2 generates a PQ-encoding foranygiven hierarchy(T ,¹).

Algorithm 2 Compute the PQ-encoding of a hierarchy(T ,¹)
1: S ← ∅ // S is a set of the slices created so far. Each sliceµ ∈ S is represented as a

// record〈P, id〉, whereµ.P is the PQ-tree of the slice, andµ. id is theid of the slice.
2: For all a ∈ T do // Find a PQ-tree consistent with typea.
3: For all µ ∈ S do // Try to find a sliceµ into whicha could be inserted
4: P ′ ← reduce(µ.P,descendants(a))
5: If P ′ 6= ⊥ then // Typea can be inserted into sliceµ
6: µ.P ← P ′ // In the updated PQ-treedescendants(a) are consecutive
7: sa ← µ. id // Typea belongs to sliceµ
8: next a // Finished handling typea
9: fi

10: od
// Typea could not be inserted into any of the existing slices

11: µ ← new Slice //Generate a new sliceµ
12: µ.P ← reduce(P>, descendants(a)) // By Fact 5.3µ.P 6= ⊥.
13: µ. id ← |S|+ 1 // Sliceid’s are allocated in order1, 2, . . .
14: S ← S ∪ {µ}
15: od
16: For all µ ∈ S do // Assign uniqueid’s to types
17: id ← 1 // The first unusedid in the sliceµ.
18: For all a ∈ frontier(µ.P) do // Assignid’s to all types with respect to sliceµ
19: ida@ (µ. id) ← id
20: id ← id+1
21: od
22: od
23: For all a ∈ T do // Assign an interval to each typea
24: D ← {idb@ sa | b ∈ descendants(a)};
25: [la, ra] ← [min(D), max(D)]
26: od

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 21

The main data structure used by the algorithm is the setS, which is an internal represen-
tation of the set of slices. Eachµ ∈ S is a record〈P, id〉, whereµ.P is the PQ-tree of the
slice, andµ. id is theid of the slice. The setS is discarded after the algorithm computes
the encoding.

After a simple initialization (line 1), the algorithm comprises of three stages. The first
outer loop (lines 2–15) finds the slices. In this loop we try to find an existing slice for
each type, by trying to incorporate (line 4) the constraints that its descendants must lie
consecutively, into each of the PQ-trees of the existing slices. If this should fail then we
create a new slice (lines 11–14).

The second stage is the loop of lines 16–22, which assigns a uniqueid to each type
with respect to each slice. The last stage (lines 23–26) is to find the interval of theid’s
of the descendants of each typea ∈ T , i.e., theid’s, with respect to the slice ofa, of the
right-most and left-most type among the descendants ofa.

LEMMA 5.6. Alg. 2 runs inO (|S| · |¹|) time.

PROOF. The first stage is the slowest. At this stagereduce is invoked at most|S| times
for each of the types in the input. Using Thm 5.5 the total time of all such invocations is

O
(
|S| ·

∑

a∈T
|descendants(a)|

)
= O

(
|S| · |¹|

)
.

The second stage runs in time

O
(
|S| · |T |

)
⊆ O

(
|S| · |¹|

)
,

while the third stage time complexity is

O
(∑

a∈T
|descendants(a)|

)
= O

(
|¹|

)
⊆ O

(
|S| · |¹|

)
.

We do not know of any efficient algorithm for finding the optimal PQ-encoding, i.e., the
encoding which achieves the minimal number of slices. This is the reason why Alg. 2 is
non-deterministic in the following sense: The order at which types are inserted into PQ-
trees (line 2) is unspecified. After having tried several traversal orders, including a random
one, we concluded that the differences in the encoding length is small. Our empirical
findings indicate that the best results are obtained by a reverse topological-order in which
the leaves with the largest number of ancestors are visited first.

Similarly, the order at which we try to find the slices (line 3) is not specified by the
algorithm. We found empirically that the best encoding is obtained by trying the slices
in the order of decreasing size, i.e., trying the largest slice first, and the smallest one last.
A heuristic which gives almost identical results is to try the slices at the order of their
creation, with the oldest slice first.

6. OPTIMIZATIONS

In this section we describe how Alg. 2 can be further optimized. We have five different,
non-language specific, optimization techniques targeted at improving the various complex-
ity measures.

(1) ID Range Compaction(Sec. 6.1) reduces the space complexity measure, specifically
by decreasing the memory footprint of the pseudo-arraysida. With this optimization,

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

22 · J. Gil and Y. Zibin

borrowed from ideas originated by Vitek et al. [1997], it is possible to use byte-sized
entries for all but the first entry of these arrays.

(2) Pruning Bottom Trees(Sec. 6.2) targets the encoding creation time measure. We show
that the heavy-weight PQ-trees algorithm needs to be run only on the smaller core
portion of the input hierarchy.

(3) Reordering Type Records(Sec. 6.3) is a novel technique which simultaneously im-
proves three complexity measures: space, instruction count and test time. In this
optimization, the type records of the runtime environment are pre-sorted in linear time
by the first entry of theid pseudo-array. This makes it possible to eliminate this first
entry which is (in a sense) encoded by the pointer stored in each object to its type
record. A comparison ofid’s stored in the first entry is replaced by a comparison of
these pointers. (The main cost is in the requirement that type records occur in a fixed
order, which may be a burden to other parts of the computing environment.)

(4) Heterogeneous Encoding(Sec. 6.4) also reduces space complexity, by switching to bi-
nary matrix encoding in slices which contain no more than 8 types. This optimization
which is similar to the one suggested by Vitek et al. [1997] may increase the instruc-
tion count and the test time complexity measures in subtyping tests involving these
slices.

(5) Coalescing ID-Arrays(Sec. 6.5) is another novel technique which targets the space
complexity while increasing the instruction count and the test time. The idea here is
that if suffixes of theid pseudo-arrays are identical, they can be shared at the cost of
an extra indirection.

6.1 ID-Range Compaction

ID-range compaction reduces the encoding length as generated by Alg. 2. LetD be the set
of descendants of a sliceS:

D =
⋃

a∈S

descendants(a).

Clearly, |S| ≤ |D|. However, it is often the case, especially with the smaller slices,
that |S| ¿ |D|, and that|D| is close ton. ID-range compaction relies on the observa-
tion that in these casesid’s can be reused while numbering the types inD. This reuse
makes it possible to use fewer bits for the representation of eachid.

The critical point to note is that two typesb1, b2 ∈ D need to be assigned distinct
identifiers only if there is a typea ∈ S, such thatb1 ∈ descendants(a), while b2 6∈
descendants(a). Phrased differently,S partitionsT into equivalence classes, such that
typesb1 andb2 are in the same equivalence class if and only if

ancestors(b1) ∩ S = ancestors(b2) ∩ S. (6.1)

These equivalence classes are called theS-partitioningof T .
The number of differentid’s needed to encode a sliceS is exactly the number of equiv-

alence classes in theS-partitioning ofT . We argue that this number is less than twice the
slice size, specifically that there are at most

min(2|S|, |T |)
equivalence classes in theS-partitioning ofT . The reason is that the local consecutiveness
property ensures that for everya ∈ S there is an intervalIa which consists theid’s of

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 23

descendants ofa. These|S| intervals partition the types inD into at most2|S|−1 segments,
such that all types in the same segment can receive the sameid. The setE0 ≡ T \D defines
an additional equivalence class, which is not contained in any interval.

Consider, for example, Fig. 6.1, in which types inD were initially numbered3, . . . , 15.

1 2 3 4 5 6 7 9 11 12 1310 14 15 16

D

G1 G2 G3 G4 G5

I1

I2

I3

Fig. 6.1. Reducing the range needed for PQE

IntervalsI1, I2 andI3 drawn in the figure partitionD into 5 = 2 · 3− 1 segments. This
is the maximal possible number of segments, since every type inD must belong to at least
one interval. The equivalence classes in this example areE0 = {1, 2, 16}, E1 = G1, E2 =
G2, E3 = G3 ∪G5, andE4 = G4.

In all hierarchies in the data set, we found that all slices, except the first, were of size 128
or less. Thus the integral range required for numbering is at most 256 andida can be
represented as a byte array, with each slice adding a single byte to the encoding length.
The first slice receives some special handling as will be described below in Sec. 6.3.

It is possible to modify Alg. 2 to ensure that all but one (the first) slice has their range
bounded by 256. Specifically, line 5, must not only checkP ′, the PQ-tree returned by
the reduce routine, but also make sure that the range required for numbering does not
exceed 256.11 Storing the current required numbering range of a PQ-tree, and updating it
with eachreduce is straightforward. One can also manage the equivalence classes of all
slices incrementally inO(|¹|) total time.

6.2 Pruning Bottom Trees

Recall that in Sec. 3 we defined the core of a multiple inheritance hierarchyT ′ ⊆ T , such
thatt ∈ T ′ if t has a descendant with more than one parent. The setT \ T ′ is a collection
of bottom-trees discovered in a bottom-up traversal of the hierarchy. Intuitively, the core is
where the intricacies of multiple inheritance occur. The bottom-trees are a forest of single
inheritance hierarchies, hanging at the bottom of the core.

By pruning in a preprocessing stage all bottom-trees, we reduce the runtime of Alg. 2. A
lighter machinery is then used to produce the encoding of the bottom-trees. LetS1, . . . , Sk

be the slices ofT ′ found in the PQ-encoding of the pruned hierarchy, andπ′1, . . . , π
′
k be the

orderings ofT ′ with respect to each slice. Thus,π′i, i = 1, . . . , k is the ordering defined
by theid’s of all types with respect to sliceSi. Formally,π′i satisfies the constraintsϕ(Si).

Next we describe how to extendπ′i of T ′ into an orderingπi of T in such a way that
it will satisfy the constraintsϕ(Si ∪ (T \ T ′)). Consider an arbitrary bottom-tree whose
root is t. Sincet is not in the core, it has a single parentt′, i.e., parents(t) = {t′}.

11Note that this does not necessarily happen when the slice size hits 128.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

24 · J. Gil and Y. Zibin

Type t′ must be in the core, otherwiset would not be the root of the bottom tree. (Note
that t′ might have several other children which are roots of other bottom trees.) When
extending the orderingπ′i of T ′, we insert the relative numbering ordering of this bottom-
tree immediately after (or before)π′i(t

′).
Fig. 6.2 gives an example of the insertion of relative-numbering orderings into the order-

ing of the core. Fig. 6.2a shows the core of the hierarchy of the running example, whereas
the bottom-trees are highlighted in bold in Fig. 6.2b.

14

3 9 12

10 1384

1
A B

EDC

G H
7

5 6

2 (b)

11

N1

N2 N3

N5 N6 N7

N4

(a)

7

2 4 6

53

1
A B

EDC

G H

Fig. 6.2. PQE of the core of the running example (a) and PQE after inserting some bottom-trees (b)

Fig. 6.2a shows an orderingπ′ of the coreT ′ which satisfies the constraintsϕ(T ′),
π′ = 〈A, C, G, D, H, E, B〉.

Fig. 6.2b shows the extended orderingπ of T which satisfy the constraintsϕ(T):

π = 〈A, N1, C, N2, N5, N6, N3, G, D, H, N7, E, N4, B〉.
Note that the resulting orderingπi of T satisfies the old constraints inϕ(Si) (since

descendants in a bottom-tree are adjacent to their parent in the core) and the new constraint
in ϕ(T \ T ′) (since relative-numbering ordering satisfies these constraints).

In order to complete the process of incorporating the bottom-trees into a PQ-encoding
of the core, we must also assign each of the types in the bottom-trees into a slice. The fact

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 25

that we inserted the relative numbering ordering of each bottom-tree makes it possible to
chose any slice we want for each type in a bottom-tree. We chose to use the first slice for
all these types since ID-range compaction works best when the first slice is much larger
than the others. Another motivation for this choice is the “reordering of type records”
optimization which, as we shall see below, makes it possible to eliminate all bits used for
the first slice.

6.3 Reordering Type Records

Consider again the subtyping testa¹ b. So far it was assumed that the typea is givenat
runtime. In reality, however, an objecto is given and the runtime system must first infer
its typea. Typically o stores a pointerpa to its type record, a memory block with runtime
representation ofa. The various encoding schemes store their auxiliary information in
this area. Many object-oriented language implementations mandate other uses to the type
records, including dispatching, downcasting, serialization, and garbage collection.

Thereordering type recordsoptimization technique makes use of the degree of freedom
the compiler has in placing type records in memory.12 The simplest application of this
technique is to relative numbering (Sec. 4): Type records are placed in memory in the
same order as postorder traversal of the type hierarchy. In doing so, the pointerpa plays
the role as the ordinal in the postorderra. As a result, the encoding length is reduced to
zero and one load instruction in the subtyping test is saved.

Similarly, in range-compression (4.10),pa replaces the globalida. If specialization is
used then we obtain an encoding scheme with zero encoding length, but non-constant test
time and instruction count.

We do not know whether the technique is applicable to either bit-vector encodings or to
Cohen’s algorithm and its generalizations, PE and BPE. However, in PQE, the ability to
reorder type records makes it possible to eliminate entirely theid’s of types with respect to
the first slice. Specifically,ida@ 1 of a typea is encoded in the pointerpa. The saving is
significant since the first slice occupies the largest number of bits. This technique also saves
one load instruction when typeb belongs in the first slice. Since the first slice constitutes
around 90% of the types, we expect this saving to lead to a noticeable saving in the average
test time.

We finally note that this technique is applicable even with the unique C++ object layout.
In this layout [Gil and Sweeney 1999] an object may contain several pointers to several
distinct type records (VTBLs in the C++ jargon).

The reason that we can encode integers in pointers even though there is no unique
value pa for a typea is that the subtype tests of relative numbering (4.4), range com-
pression (4.10), and PQE (5.1), all check forinequality rather than equality. We simply
allocate a range of memory addresses to all type records of a given type, rather than a
single address, as the valuera (as in (4.4)) or theid (as in (4.10) and (5.1)).

6.4 Heterogeneous Encoding

Heterogeneous encoding is yet another optimization targeted at reducing the encoding
length. Recall that in the binary matrix each type adds exactly one bit to the encoding

12We make the natural assumption that the location of the encoding tables is in a protected location of memory
which is not subject to garbage collection. The reason is that these tables are generated as part of the compilation
process and are not changed at runtime.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

26 · J. Gil and Y. Zibin

of all other types. The PQ-encoding of a small slice withk < 8 types adds a byte to the
arrayida of each other typea, which is less efficient than using the binary matrix for types
in this slice. In heterogeneous encoding, subtyping testsa¹ b, whereb belongs in such a
small slice, are implemented using the binary matrix. Sinceb is known at compile time,
the compiler can choose the appropriate code to plant at the subtyping test. We found that
heterogeneous encoding may give rise to significant improvement to the encoding length.
On the other hand, the total number of types in small slices is negligible, and therefore we
do not expect a noticeable impact on the instruction count and test time.

6.5 Coalescing ID-Arrays

We now turn to describingCoalesced PQ-Encoding(CPQE). This memory optimization is
based on the observation that the contents of the pseudo-arraysida tend to be similar. We
rely on the fact that the first entry of these arrays is represented implicitly. Letid′a denote
the array obtained fromida by truncating its first entry. Then, many of the arraysid′a are
identical, and need to be stored only once.

More specifically, we claim that the number of distinct arraysid′ is exactly the number
of equivalence classes inG-partitioning ofT , whereG = T \S1. In other words, two
typesa, b are in the same equivalence class if and only ifid′a = id′b. Formally,

LEMMA 6.1. Leta, b be two types, andG = T \S1. Then

ancestors(a) ∩G = ancestors(b) ∩G ⇔ ida@ i = idb@ i for 2 ≤ i ≤ k.

PROOF. We previously showed (6.1) that two types can have the same identifiers if and
only if they are in the same equivalence class, i.e.,

ida@ i = idb@ i ⇔ ancestors(a) ∩ Si = ancestors(b) ∩ Si.

SinceS2 . . . Sk partitionG we have that

ancestors(a) ∩G = ancestors(b) ∩G ⇔
ancestors(a) ∩ Si = ancestors(b) ∩ Si for 2 ≤ i ≤ k ⇔

ida@ i = idb@ i for 2 ≤ i ≤ k.

(6.2)

Furthermore, the number of distinct arraysid′ is always smaller or equal to the size of
the core. (The core is the set of types not belonging to a bottom tree; See Sec. 3.) Recall
that the bottom trees were added to the first slice after they were pruned (see Sec. 6.2).
Since each type in a bottom tree has the same ancestors set as the root of that tree, they are
in the same equivalence class, and therefore can be coalesced together.

CPQE uses a bucket sort to find the distinct values of arraysid′ in linear time, and then
represents each typea as a pointerp′a to one of these distinct values. The cost of the
coalesced representation is in another level of indirection for subtyping tests involving the
second or higher slice.

The pointerp′a is not stored as an absolute memory address but rather as an index of an
arrayZ, whose entries are the distinctid′ arrays. Also the degree of freedom in placing
entries inZ, is employed to encodeida@ 2 (id’s of the second slice) inp′a in the same
fashion thatida@ 1 was encoded aspa.

In the testa¹ b, if it is found thatb belongs in sliceS2, then instead of usingida@ 2 in
the test (5.1), the compiler emits code for comparingp′a with the valueslb andrb, which

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 27

are, as usual, specialized into the test code. The entries in arrayZ are then the arraysid′′

produced by truncating the first two entries of the arraysid.
A strong incentive to use CPQE is raised by languages such as C++, in which objects

may containmultiple pointers to severaldistinct type records [Gil and Sweeney 1999].
Since these type records are similar, but not identical, the implementer must choose be-
tween (i)replicatingthe subtyping encoding data in each such record, or (ii)sharingat the
cost of another level of indirection during subtyping tests. Coalescing optimization may
tip the scale towards the sharing alternative.

7. RESULTS

Having described different optimization techniques we would like to appreciate the trade-
offs offered by these. To do so, we define (Sec. 7.1) variants of the main encoding scheme.
We then show (Sec. 7.2) how the encoding length of these variants depends on the output
of our main algorithm (Alg. 2), and in particular the number of slices and the distribution
of their size. Sec. 7.3 compares the encoding length achieved by the different variants with
the achievements of previous work. Sec. 7.4 gives the results of our timing of the algorithm
for computing the encoding length.

7.1 Variants of the PQ-Encoding Scheme

There are many variants of PQ-encoding, depending on which of the optimizations de-
scribed in the previous section are applied. The first two optimizations: ID range com-
paction and bottom tree elimination, which do not add to the main complexity measures
are in fact incorporated to the main algorithm. We next define three encoding variants
which successively apply the three other optimizations:

(1) Regular PQ-encoding, or RPQE for short is the variant in which reordering the type
records is used to eliminate the representation of the first slice from theid arrays.

(2) The principal acronym PQE is reserved to the variant which also applies the heteroge-
nous encoding optimization. As explained above, the cost is in longer subtyping tests
in the rare cases involving the smaller slices.
Thus, in PQE, there are three kinds of slices: The first slice, whose representation is
eliminated thanks to reordering of type-records. Heterogeneous encoding based on the
binary matrix representation is used for slices whose size is smaller than 8. Each of
the remaining slices occupies a single byte in the arrayid, which is used in the basic
subtyping tests of PQE (5.1).

(3) CPQE is the encoding variant obtained from PQE by applying in addition the remain-
ing fifth optimization: coalescing of ID-arrays, which adds to the cost of subtyping
tests involving the third or higher slice.

7.2 Output of the PQ-Algorithm

Alg. 2, the main algorithm behind the PQ-encoding, returns a partitioning of the hierarchy
into slices. It was mentioned before that the size of slices vary widely. Using the hierarchies
in our data set we now turn to studying this variety in detail.

Table II displays some of the essential parameters of the slice size distribution. These
parameters will become useful in appreciating the algorithm performance and the tradeoffs
offered by the different optimizations. We can also use these to calculate the encoding
length of the three encoding schemes described above.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

28 · J. Gil and Y. Zibin

Hierarchy ka n1/nb k2
c n2

d n2/n me

IDL 1 100.0% 0 0 0.0% 0
JDK 1.1 2 99.6% 1 1 0.4% 1
Laure 2 98.0% 1 6 2.0% 7
Ed 10 87.8% 7 20 4.6% 145
LOV 12 86.2% 9 26 6.0% 164
Unidraw 2 99.7% 1 2 0.3% 2
Cecil 5 94.1% 2 6 0.6% 101
Geode 16 86.0% 8 24 1.8% 419
JDK 1.18 6 97.5% 3 9 0.5% 74
Self 13 97.2% 11 31 1.7% 63
Eiffel4 11 89.1% 3 9 0.5% 376
JDK 1.22 8 97.6% 4 12 0.3% 235
JDK 1.30 8 97.7% 4 17 0.3% 286

anumber of slices
bfraction of types in the first slice
cnumber of small slices
dtotal number of types in small slices
enumber of distinctid′ arrays

Table II. Some characteristics of the slice partitioning of the PQ algorithm

Even though we do not have a non-trivial upper bound on the number of slices, the
second column of the table shows that in actual hierarchies,k, the number of slices, is
often small, and it does not increase as quickly asn. Thus, we have reasons to believe
thatO(kn), the asymptotic space complexity of algorithm Alg. 2, is closer to linear than
quadratic. Similar conclusions can be drawn onO(k|¹|), the time complexity of the algo-
rithm.

Integerk is also useful in computing the encoding length of RPQE. Recall that with the
exception of the first slice, theid’s with respect to each slice can be represented in a single
byte. Therefore, the encoding length of RPQE is8(k − 1). (Also, consider a variant of
RPQE in which type records are not reordered. Then, the encoding length in this variant
is 16 + 8(k − 1) = 8(k + 1).)

The next column in the table gives the ration1/n, wheren1 is the number of types in
the first slice (which is also the largest slice). We see that in all hierarchies over85% of
the types fall in this slice. In fact, in more than half the hierarchies, this slice occupies
at least97.5% of all types. Thus, we expect that an overwhelming portion of the actual
subtyping tests will use this slice. The test time of these will greatly benefit from reordering
of type records.

Small slices, i.e., slices with no more than 8 types, receive special handling by PQE.
The heterogeneous encoding optimization specifies that types in these slices use a binary
matrix representation. The subtyping test then involves bit operations, and is not as simple
as the range testing used for the other slices.

The fourth column of Table II showsk2, the number of small slices. We see that most of
the slices generated by the PQ-algorithm are small. However, examining the next column
(the total number of types in the small slicesn2, k2 ≤ n2 ≤ 8k2), we see thatn2 is small.
The penultimate column of the table shows that the fraction of types in small slices is tiny,
typically less than1%. We are lead to hope that the frequency of the more complex tests

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 29

will be equally negligible.
Interestingly, the values shown in Table II can be used to compute the encoding length

of PQE. Since all slices except the first and small slices occupy a single byte inid-array,
we have that this length is

8(k − k2 − 1) + n2.

To compute the encoding length of CPQE we need the final column of the table which
showsm, the number of distinctid′ arrays. We see that this number is much smaller than
the number of types. In fact,m ≤ 256 in all hierarchies except for Eiffel4, Geode, and
JDK 1.30. The pointerp′a can thus often be represented as a single byte. More generally,
the precise encoding length of CPQE is

8
⌈

log m

8

⌉
+

(8(k − k2 − 2) + n2)×m

n
.

7.3 Encoding Length in the Data Set

Table III compares the encoding length in bits of the three encoding variants with that of
other encoding schemes.

Hierarchy CPQE PQE RPQE NHE BPE PE DAGa Closureb Binary matrix
IDL 8 0 0 17 32 96 7 27 66
JDK 1.1 8 1 8 19 32 64 9 26 225
Laure 8 6 8 23 63 128 10 74 295
Ed 17 36 72 54 94 216 15 72 434
LOV 21 42 88 57 94 216 16 77 436
Unidraw 8 2 8 30 63 96 8 31 613
Cecil 10 22 32 58 94 192 13 65 932
Geode 39 80 120 95 157 408 21 154 1,318
JDK 1.18 9 25 40 39 94 128 13 48 1,704
Self 9 39 96 53 126 344 12 329 1,801
Eiffel4 27 65 80 72 157 312 15 97 1,999
JDK 1.22 10 36 56 62 157 184 16 57 4,339
JDK 1.30 18 41 56 65 188 216 16 57 5,438

aComputed idealistically as(|≺d| · dlog ne)/n.
bComputed idealistically as(|¹| · dlog ne)/n

Table III. The encoding length of different algorithms

The most important conclusion to draw from the table is that in all hierarchies in the data
set, the encoding length achieved by PQE is better than that of all other encoding schemes.
The only exception to these is an idealistic DAG representation, in which, as mentioned
above, test time can beO(n).

We stress again that the memory requirements of PQE is zero for all single inheritance
hierarchies. As can be seen in the table, zero memory footprint occurs even in IDL, which
is multiple inheritance. The median improvement over the next best algorithm, NHE, is
by 37%, while the average improvement is 50%.

PQE remains the shortest encoding even if it is not optimized by reordering type records
(in which case the encoding length increases by 16): Without this optimization, PQE is

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

30 · J. Gil and Y. Zibin

better than NHE in 9 out of the 13 hierarchies. In one hierarchy (LOV), the encoding
length of NHE is 1 bit shorter than PQE, in two hierarchy (Self and JDK 1.18) it is 2 bits
shorter, and in one hierarchy (Eiffel4) it is 9 bits shorter.

In comparing PQE with NHE we must also recall that the test time in the bit vector
based NHE is non-constant. Thus, even if the two schemes use the same number of bits,
subtyping tests in PQE are likely to be more efficient since they do not need to access all
bits in the representation of the compared types.

The space reduction of PQE over BPE, the best previousconstant time encoding, is
even more impressive: In the Eiffel4 hierarchy BPE total space requirement is 39KB,
compared with 16KB in PQE. These differences are significant since subtyping tests are
very frequent. Vitek [Palacz and Vitek 2003] benchmarks give 320,000 tests in a second.
Smaller encoding makes it possible to fit the entire representation in the cache.

Examining the second and third columns of Table III we see that coalescing ofid
records, employed by CPQE, shortens the encoding length of PQE, by factors ranging
between 2 and 4.3. In fact, CPQE competes favorably even with the idealized DAG encod-
ing!

Hierarchies IDL, Laure, Unidraw and JDK 1.1 are anomalous in the sense CPQE gives
a longer encoding than PQE. This phenomenon is explained by the fact that the two-level
structure employed by CPQE requires at least 8 bits forp′a.

We finally note that even RPQE competes favorably with NHE, winning in 7 out of
the 13 hierarchies in the data set.

7.4 Encoding Creation Time

Table IV compares the encoding creation time of PQE with that of NHE and PE. The
creation time of RQPE and CPQE is the same as PQE, and the creation time of BPE is the
same as PE.

Hierarchy (R| C)PQEa NHE b (B)PEc

IDL 1 - 5
JDK 1.1 1 19 10
Laure 4 21 9
Ed 77 136 12
LOV 95 168 10
Unidraw 1 93 10
Cecil 50 - 13
Geode 668 1,902 28
JDK 1.18 29 - 26
Self 122 1,367 22
Eiffel4 299 - 29
JDK 1.22 140 - 77
JDK 1.30 187 - 90

a266 Mhz Pentium II
b500 Mhz 21164 Alpha
c750 Mhz Pentium III, user time in Linux

Table IV. Encoding creation time in milliseconds of different algorithms

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 31

The comparison is not easy, since the algorithms were run on different machines. Alg. 2
was written in C++ based on the PQ-tree implementation of Leipert [1997]. More exper-
imentation is required before a faithful and fair comparison is possible. It appears as if
PQE, which is based on a linear algorithm, outperforms the quadratic NHE algorithm. PE,
which use a fast implementation of set unions and intersections using bit-vector operations,
seems to be the fastest. The Geode hierarchy is toughest for PQE and NHE. In this hier-
archy, the average time for processing a type is less than one millisecond in PQE. In all
benchmarks the time for computing PQE is less than a second.

8. CONCLUSIONS AND FUTURE RESEARCH

The PQE algorithm improves the encoding length, creation time, test time and instruction
count of NHE, the most space-efficient previously published encoding algorithm. The
CPQE variant reduces the encoding length even further at the cost of an extra indirection
in some, typically infrequent, subtyping tests.

The main problem which this paper leaves open is an incremental algorithm for the
subtyping problem, as required by languages such asJAVA , in which types may be added
as leaves at runtime. It turns out that the PQ-data structure is not susceptible to efficient
updates of this sort.

On the theoretical side, it would be very interesting to see any non-trivial lower bound
for the encoding length.

An interesting instance of the subtyping problem occurs when the ordinary type hierar-
chy is compounded by an interplay withgenericity, as inEIFFEL and in the proposed ad-
dition of generics toJAVA . In EIFFEL, a double ended queue of rectangles is a subtype of a
queue of polygons (DQueue[Rectangle]¹Queue[Polygon]) since (i)Rectangle¹ Polygon,
and (ii) the generic classDQueue[T] inherited fromQueue[T]. EIFFEL has a default sub-
typing rule which can be written as

∀a, b, A • a¹ b ⇒ A[a]¹A[b],

and the definition of generic classes which inherit from others adds other rules such as

∀a •A[a]¹B[a],
∀a, b • C[a, b]¹D[a[b]].

The research question is whether pre-processing of such rules can make it possible to
decide subtyping more efficiently.

ACKNOWLEDGMENTS

We are truly indebted to Jan Vitek for his help in making the initial data set available to us,
for contributing the three additionalJAVA hierarchies, for help in running the experiments,
and for many stimulating discussions!

REFERENCES

AGRAWAL , R., BORGIDA, A., AND JAGADISH, H. V. 1989. Efficient management of transitive relationships
in large data and knowledge bases. InProceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, J. Clifford, B. G. Lindsay, and D. Maier, Eds. ACM Press, Portland, Oregon, 253–262.

ALPERN, B., COCCHI, A., AND GROVE, D. 2001. Dynamic type checking in Jalapeño. InJava Virtual Machine
Research and Technology Symposium, J. Clifford, B. G. Lindsay, and D. Maier, Eds. USENIX, Monterey,
California.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

32 · J. Gil and Y. Zibin

ARNOLD, K. AND GOSLING, J. 1996. The Java Programming Language. The Java Series. Addison-Wesley,
Reading, Massachusetts.

BATTISTA , G. D. AND TAMASSIA , R. 1989. On-line planarity testing. Technical Report CS-89-31, Brown
University - Department of Computer Science. May.

BATTISTA , G. D. AND TAMASSIA , R. 1990. On-line graph algorithms with SPQR-trees. InAutomata, Lan-
guages and Programming, 17th International Colloquium, M. S. Paterson, Ed. Lecture Notes in Computer
Science, vol. 443. Springer-Verlag, Warwick University, England, 598–611.

BATTISTA , G. D. AND TAMASSIA , R.1996. On-line maintenance of triconnected components with SPQR-trees.
Algorithmica 15,4 (Apr.), 302–318.

BOOTH, K. S. AND LEUKER, G. S.1976. Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms.J. Comput. Sys. Sci. 13,3 (Dec.), 335–379.

BOUCHITTE, V. AND MORVAN, M., Eds. 1994.International Workshop on Orders, Algorithms, and Applications
(ORDAL’94). Number 831 in Lecture Notes in Computer Science. Springer Verlag, Lyon, France.

CAPELLE, C. 1994. Representation of an order as union of interval orders. See Bouchitte and Morvan [1994],
143–162.

CASEAU, Y. 1993. Efficient handling of multiple inheritance hierarchies. InProceedings of the 8th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications. OOPSLA’93, ACM SIG-
PLAN Notices 28(10) Oct. 1993, Washington, DC, USA, 271–287.

CHAMBERS, C. 1993. The Cecil language, specification and rationale. Tech. Rep. TR-93-03-05, University of
Washington, Seattle.

COHEN, N. H. 1991. Type-extension tests can be performed in constant time.ACM Trans. Prog. Lang. Syst. 13,
626–629.

CORSARO, A. AND CYTRON, R. 2003. Efficient memory-reference checks for real-time java. InProceedings of
2003 Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’03). ACM, San Diego,
California, USA, 51–58.

COX, B. J.1986. Object-Oriented Programming - An Evolutionary Approach. Addison-Wesley, Reading, Mas-
sachusetts.

DIJKSTRA, E. W.1960. Recursive programming.Numerische Mathematik 2, 312–318.

ECKEL, N. AND GIL , J. Y. 2000. Empirical study of object-layout strategies and optimization techniques. In
Proceedings of the 14th European Conference on Object-Oriented Programming. Number 1850 in Lecture
Notes in Computer Science. ECOOP 2000, Springer Verlag, Sophia Antipolis and Cannes, France, 394–421.

FALL , A. 1995. Heterogeneous encoding. InProceedings of International KRUSE’95 Conference: Knowledge
Use, Retrieval and Storage for Efficiency, G. Ellis, R. Levinson, A. Fall, and V. Dahl, Eds. Department of
Computer Science, University of California at Santa Cruz, USA, Santa Cruz, California, 162–167.

FALL , A. 1996. Sparse term encoding for dynamic taxonomies. InProceedings of the Fourth International
Conference on Conceptual Structures (ICCS-96): Knowlegde Representation as Interlingua, P. W. Eklund,
G. Ellis, and G. Mann, Eds. LNAI, vol. 1115. Springer, Berlin, 277–292.

FILMAN , R. E. 2002. Polychotomic encoding: A better quasi-optimal bit-vector encoding of tree hierarchies.
In Proceedings of the 16th European Conference on Object-Oriented Programming. Number 2374 in Lecture
Notes in Computer Science. ECOOP 2002, Springer Verlag, Malaga, Spain, 545–561.

FREDMAN, M. L., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Storing a sparse table withO(1) worst case access
time. J. ACM 31,3 (July), 538–544.

GIL , J. Y. AND SWEENEY, P. 1999. Space- and time-efficient memory layout for multiple inheritance. In
Proceedings of the 14th Annual Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications. OOPSLA’99, ACM SIGPLAN Notices 34(10) Nov. 1999, Denver, Colorado, 256–275.

GOLDBERG, A. 1984. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley, Reading,
Massachusetts.

GRAFL, R. 1996. CACAO: Ein 64bit JavaVM just-in-time compiler. M.S. thesis, University of Vienna.

HABIB , M., CASEAU, Y., NOURINE, L., AND RAYNAUD , O. 1999. Encoding of multiple inheritance hierarchie
and partial orders.Computational Intelligence 15, 50–62.

HABIB , M. AND NOURINE, L. 1994. Bit-vector encoding for partially ordered sets. See Bouchitte and Morvan
[1994], 1–12.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 33

HOLLANDER, Y., MORLEY, M., AND NOY, A. 2001. The e language: A fresh separation of concerns. InPro-
ceedings of the International Conference on Technology of Object-Oriented Languages and Systems. TOOLS
2001 Europe Conference, Prentice-Hall, Zurich, Switzerland, 41–51.

JUNGER, M., LEIPERT, S., AND MUTZEL, P.1996. On computing a maximal planar subgraph using PQ-trees.
Tech. rep., Informatik, Universität zu Köln.

JUNGER, M., LEIPERT, S., AND MUTZEL, P. 1998. A note on computing a maximal planar subgraph using
PQ-trees. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17,7 (July),
609–612.

KACI , H., BOYER, R., L INCOLN, P., AND NASR, R. 1989. Efficient implementation of lattice operation.ACM
Trans. Prog. Lang. Syst. 11, 115–146.

KRALL , A. 2001. personal communication.

KRALL , A. AND GRAFL, R. 1997. CACAO – a 64 bit JavaVM just-in-time compiler. InPPoPP’97 Workshop
on Java for Science and Engineering Computation, G. C. Fox and W. Li, Eds. ACM Press, Las Vegas.

KRALL , A., V ITEK , J., AND HORSPOOL, R. N.1997. Near optimal hierarchical encoding of types. InProceed-
ings of the 11th European Conference on Object-Oriented Programming. Number 1241 in Lecture Notes in
Computer Science. ECOOP’97, Springer Verlag, Jyväskyl̈a, Finland, 128–145.

LEIPERT, S.1997. PQ-trees, an implementation as template class in C++. Tech. rep., Informatik, Universität zu
Köln.

LEMPEL, A., EVEN, S., AND CEDERBAUM, I. 1967. An algorithm for planarity testing of graphs. InTheory of
Graphs, International Symposium. Gordon and Breach, New York, NY, 215–232.

MEYER, B. 1992. EIFFEL the Language. Object-Oriented Series. Prentice-Hall, Hemel Hempstead, Hertford-
shire, UK.

PALACZ , K. AND V ITEK , J.2003. Java subtype tests in real-time. InProceedings of the 17th European Confer-
ence on Object-Oriented Programming. Number 2743 in Lecture Notes in Computer Science. ECOOP 2003,
Springer Verlag, Darmstadt, Germany.

RAYNAUD , O. AND THIERRY, E. 2001. A quasi optimal bit-vector encoding of tree hierarchies. application
to efficient type inclusion tests. InProceedings of the 15th European Conference on Object-Oriented Pro-
gramming. Number 1850 in Lecture Notes in Computer Science. ECOOP 2001, Springer Verlag, Budapest,
Hungary, 165–181.

SCHUBERT, M. A., L.K., P., AND TAUGHER, J. 1983. Determining type, part, colour, and time relationships.
Computer 16 (special issue on Knowledge Representation), 53–60.

STROUSTRUP, B. 1997.The C++ Programming Language, 3rd ed. Addison-Wesley, Reading, Massachusetts.

VAN BOMMEL , M. F. AND BECK, T. J. 2000. Incremental encoding of multiple inheritance hierarchies. In
Proceedings of the 8th International Conference on Information Knowledgement (CIKM-99). ACM Press,
N.Y., 507–513.

VAN EMDE BOAS, P. 1977. Preserving order in a forest in less than logarithmic time and linear space.Inf.
Process. Lett. 6(3), 80–82.

VAN EMDE BOAS, P., KAAS, R., AND ZIJLSTRA, E. 1977. Design and implementation of an efficient priority
queue.Math. Systems Theory 10, 99–127.

V ITEK , J., HORSPOOL, R. N., AND KRALL , A. 1997. Efficient type inclusion tests. InProceedings of the 12th

Annual Conference on Object-Oriented Programming Systems, Languages, and Applications. OOPSLA’97,
ACM SIGPLAN Notices 32(10) Oct. 1997, Atlanta, Georgia, 142–157.

WILLARD , D. E. 1984. New trie data structures which support very fast search operations.J. Comput. Sys.
Sci. 28, 379–394.

A. A DETAILED PQ-TREE EXAMPLE

The example below will shed some light on the “magic” behind Thm 5.5 and the imple-
mentation ofreduce due to Booth and Leuker [1976].

We first trace the execution ofgenTree (Alg. 1) where the input is the constraints (5.8)
of the running example. The algorithm starts with a universal PQ-treeP> over the universe

T = {A, B, C, D, E, F, G, H, I},
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

34 · J. Gil and Y. Zibin

and iteratively callsreduce for each of the input constraints in the order they appear
in (5.8). The output of the algorithm is then the PQ-tree depicted in Fig. 5.4, which satisfies
these constraints. (Using any other order would have resulted in an equivalent PQ-tree.)

Fig. A.1 shows the PQ-tree at each of the intermediate steps in this iterative process.
Each sub-figure shows the next input constraint (variableI in Alg. 1), and the current PQ-
tree (variableP in the algorithm), where the leaves corresponding to types constrained
to appear together in the next iteration are highlighted. Thus, Fig. A.1b is the PQ-tree
obtained by performingreduce(P>, IC), while figures A.1c, d, e, f show the PQ-tree after
reducing it with constraintsID, IE, IA, andIB, respectively.

Imposing the constraintIC = {C, F, G} on the initial universal tree (Fig. A.1a) yields
the tree of Fig. A.1b, which uses an extra P-node to ensure that these three types occur
together. The next constraint to add isID = {G, D, H}. Since typeG is common to bothIC

andID we have that the permissible orderings must have a subsequence which matches one
of the following two patterns:

(1) TypesC and F occur together, in any order, then typeG, and then typesD and H
together, but in any order.

(2) TypesD and H occur together, in any order, then typeG, and then typesC and F
together, but in any order.

These two patterns are captured by the PQ-tree of Fig. A.1c, in which one P-node forcesC
andF to occur together, while another P-node forcesD andH to occur together. The Q-node
of this tree makes sure thatG falls between the pairs{C, F} and{D, H}.

The transition between Fig. A.1c and Fig. A.1d is even more interesting. Letαc be
the subtree rooted at the Q-node of Fig. A.1c. Then, subtreeαc ensures that the five
typesC, F, G, D andH occur together. To this requirement we now must add the con-
straintIE = {H, E, I}, which means thatH must be adjacent to eitherE or I. Therefore,H
must occur in a boundary position (either first or last) in the placement of the five types
in αc. The problem is thatαc allows D to take the place ofH in this boundary position.
The remedy is in “lifting” bothH andD to the containing Q-node, making sure that ifH is
first, thenD is second, while ifH is last thenD is in the penultimate position. After having
guaranteed thatH is in a boundary position, procedurereduce incorporates a P-node of
typesE andI into the boundary ofα. The result is shown in Fig. A.1d.

The transition from Fig. A.1d to Fig. A.1e is rather simple. Letαd be the subtree rooted
at the Q-node of Fig. A.1d. Then, the constraintIA = {C, F, G, D, H, A} is almost satisfied
by αd; the only missing requirement is thatαd does not guarantee thatA is adjacent to
the others in the requirement. Procedurereduce then makes the leafA a child of this Q-
node. It is possible to do so, since the set{C, F, G, D, H} has a “free” boundary (the other
boundary is constrained to be eitherE or I.

The transition from Fig. A.1e to Fig. A.1f follows the same lines as the previous tran-
sition. Again, the set{C, F, G, D, H, E, I} has only one “free boundary” in the Q-node of
Fig. A.1e. The constraint{C, F, G, D, H, E, I} is realized by addingB in the Q-node at this
free boundary. Fig. A.1f (which is the same as Fig. 5.4) is the final PQ-tree, representing
the eight different orderings which satisfy the constraints in (5.8).

To see a situation in which Alg. 1 returns⊥, which will make it necessary to use more
than one slice, consider the hierarchy depicted before in Fig. 5.2. This hierarchy is identical
to the running example except that a new typeN was added as a parent of typeE. This new

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Subtyping Tests with PQ-Encoding · 35

I
C
={C,F,G}

A B D E H I

P

C F G

P

Q

G

A E I

C F

P

D H

P

B

P

Q

G D

A B

C F

P H

P

E I

P

Q

G DA

B

C F

P H

P

E I

P

Q

G DA

C F

P H

E I

P B

A B C D E F G H I

P

(a)

(b)

(c)

(d)

(e)

(f)

I
D
={G,D,H}

I
E
={H,E,I}

I
A
={C,F,G,D,H,A}

I
B
={C,F,G,D,H,E,I,B}

Fig. A.1. Intermediate PQ-trees in the invocation ofgenTree on the constraints of the hierarchy Fig. 1.1

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

36 · J. Gil and Y. Zibin

node adds the constraint that all of its descendants must lie together, i.e., the constraint

IN = {N, E, H, I}, (A.1)

is added toI.
Fig. A.2 shows the PQ-tree of the augmented hierarchy after all theother constraints

in (5.8) were incorporated. (This tree is easily obtained by adding typeN to the PQ-tree of
Fig. A.1f.)

N

P

Q

G DA

C F

P H

E I

P B

Fig. A.2. PQ-tree with a new configuration in whichreduce will return⊥

Consider now the constraint (A.1), depicted by highlighting typesN, E, H, I in Fig. A.2.
By examining the figure, we see thatN cannot be made adjacent to any of the typesE, H, I.
For example,N cannot be adjacent toH, becauseH lies betweenD, and one ofE andI. In
other words, the set{H, E, I} has no “free” boundaries. Therefore, callingreduce with the
PQ-tree of Fig. A.2 and the constraint (A.1) returns⊥.

Received January 2001; accepted May 2004

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

