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Object layout schemes used in C++ and other languages rely on (sometimes numerous) com-
piler generated fields. We describe a language-independent object layout scheme, which is space
optimal, i.e., objects are contiguous, and contain no compiler generated fields other than a single
type identifier. As in C++ and other multiple inheritance languages such as Cecil and Dylan,
the new scheme sometimes requires extra levels of indirection to access some of the fields. Using
a data set of 28 hierarchies, totaling almost 50,000 types, we show that this scheme improves
field access efficiency over standard implementations, and competes favorably with (the non-space
optimal) highly optimized C++ specific implementations. The benchmark includes an analytical
model for computing the frequency of indirections in a sequence of field access operations. Our
layout scheme relies on whole-program analysis, which requires about 10 micro-seconds per type
on a contemporary architecture (Pentium III, 900Mhz, 256MB machine), even in very large hi-
erarchies. We also present a layout scheme for separate compilation using the user-annotation of
virtual inheritance edge that is used in C++ .

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language Constructs and Features—Data types;
structures; G.4 [Mathematical Software]: Algorithm design; analysis

1Research supported in part by the generous funding of the Israel Science Foundation, grant No.
128/02.
Parts of the contribution of this paper were described by Pugh and Weddell [1993]; others were
published in the proceedings of the 17th Annual European Conference on Object-Oriented Pro-
gramming (ECOOP’03).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005, Pages 1–37.



2 · J. Gil and W. Pugh and G. Weddell and Y. Zibin

General Terms: Algorithms, Design, Measurement, Performance, Theory

Additional Key Words and Phrases: Bi-Directional, Coloring, Hierarchy, Inheritance, Object
Layout, Partially Ordered Sets

1. INTRODUCTION

A common argument raised by proponents of the single inheritance programming
model is that multiple inheritance incurs space and time overheads and inefficiencies
on the runtime system [Cargill et al. 1993; Magnussun et al. 1994]. A large body of
research was targeted at reducing the multiple inheritance overhead in operations
such as dynamic message dispatch and subtyping tests (see e.g., [Zibin and Gil 2001;
2002; 2003] for recent surveys). Another great concern in the design of runtime
systems for multiple inheritance hierarchies is object layout that support efficient
field access at runtime. To this end, both general purpose [Pugh and Weddell 1990]
and C++ [Stroustrup 1997] language specific [Gil and Sweeney 1999; Eckel and
Gil 2000] object layout schemes were previously proposed in the literature.

The various C++ layout schemes described in the literature are not space-
optimal in the sense that they store in the layout compiler generated fields, i.e.,
fields whose sole purpose is to serve the runtime environment in accessing the
principal object data. There is evidence [Eckel and Gil 2000] that such fields can
be a significant space overhead.

Object space overhead can be traded for access time. The field dispatching
scheme [Borning and Ingalls 1982], employed by many object oriented languages,
recodes field access operations as calls to compiler generated accessor methods. In
effect, the scheme reduces the problem of field dispatching into the more difficult
problem of method dispatching. Although field dispatching does not increase the
object size, it uses global tables which may be large, and incurs an access time
penalty as a result of this reduction. Popular C++ layout schemes also have
access time penalties, specifically accessing fields defined in virtual bases requires
several memory dereferences. There are certain schemes which require O(n) time
for accessing a field defined in the nth ancestor class.

This paper revisits the object layout problem in the general, language-independent
setting. We propose a new object layout scheme that is space optimal, i.e., objects
are contiguous, and contain no compiler generated fields. Hence, in terms of space,
it is superior to previous C++ layout schemes. It is also superior to these in terms
of field access efficiency to the (space-optimal) field dispatching scheme. In fact, in
the new scheme the number of machine instructions required for accessing a field
is bounded by a (small) constant. In the main implementation variant, most fields
can be accessed in a single dereferencing instruction, while no field requires more
than three such instructions.

In fairness, it should be said that these improvements are made possible by
whole program analysis, whereas traditional C++ compilers are incremental. It is
straightforward to adapt the new scheme to allow the dynamic addition of types
with a single parent; the difficulty lies with the addition of types with multiple
parents.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.
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The scheme presented here is labeled as two dimensional, bi-directional since all
objects can be thought of as being laid out first in a two-dimensional matrix, whose
rows (also called layers) may span both positive and negative indices. The layout
algorithm ensures that the populated portion of each such layer is consecutive,
regardless of the object type. The particular object layout in one-dimensional
memory is a cascade of these portions.

A data set of 28 hierarchies, totaling almost 50,000 types, was used in comparing
the field access efficiency of the new scheme with that of different C++ specific
layouts. Our analytical cost model shows that in this data set, the new scheme is
superior to the standard C++ layout and to the simple inlining algorithm [Eckel
and Gil 2000]. Even though the new layout is not C++ specific, it competes
favorably in this respect with aggressive inlining [Eckel and Gil 2000], arguably the
best C++ layout scheme.

1.1 Object Layout

To better understand the intricacies of object layout, consider Figure 1a, which
depicts a small single inheritance hierarchy.
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Fig. 1. A small single inheritance hierarchy (a), a possible object layout for this hierarchy (b),
a multiple inheritance hierarchy (c), and a possible two-dimensional bi-directional layout for this
hierarchy (d).

A possible object layout of the types defined in this hierarchy is shown in Fig-
ure 1b. This layout exploits the natural degree of freedom of memory, which allows
populating it in either increasing or decreasing order. The fields of A1 are laid out
just after R. The layout of B1 adds its own fields in increasing offsets. Types A2

and B2 are laid out in negative offsets. Types A3 and B3 have positive directionality.
Figure 1b demonstrates a degenerate case of the two-dimensional bi-directional

layout scheme, in which there is only one layer. This layer is populated in both
negative and positive offsets. In the general case, there are multiples layers, which
may use for the same object type both positive and negative offsets, or even be
empty.

Consider now the multiple inheritance hierarchy of Figure 1, obtained by adding
multiple inheritance edges (i) from B1 to A2, and, (ii) from B2 to A1 and A3.
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Note: Here and henceforth, inheritance is assumed to be shared (virtual in the
C++ jargon). Thus, in the figure, type B2 has a single R sub-object. We believe
that repeated inheritance, i.e., where type B2 has two R sub-objects, is a rarity, or as
one once wrote: “repeated inheritance is an abomination”.2 Repeated inheritance
also causes a tight coupling between message dispatching and object layout (e.g.,
in the presence of two R sub-objects, which field should a method access?), and is
therefore not supported in our layout scheme.

1.2 The Strong Conformance Requirement

It is easy to see that the layout of Figure 1b can be extended so that despite having
two parents, type B1 still has a contiguous layout. This layout is obtained by placing
its A2 sub-object just prior to the R sub-object.

On the other hand, the layout of B2 becomes difficult, since at the same positive
offsets immediately following R we expect to find both the fields of A1 and the fields
of A3. This difficulty is no coincidence, and is in fact a result of two conflicting
requirements which we implicitly made:

(i) The strong conformance requirement (or fixed offsets [Pugh
and Weddell 1990]): Every type must be laid out at the same offset
in all of its descendants, and
(ii) Contiguity requirement: A layout cannot contain “holes”, i.e.,
for every type, the offsets of its ancestors define an interval.

If requirement (i) holds then field access is as efficient as record access: a single load
instruction. If requirement (ii) holds then objects do not have any additional dy-
namic memory overhead due to object layout. (Due to subtyping tests and method
dispatching, most languages add a type identifier to the fields of the hierarchy’s
root.) Phrased differently, if requirement (ii) does not hold for a type A then at
runtime every instance of A will have a hole, and the amount of wasted storage
depends on the number of instances of A.

If the layout of A1, A2 and A3 in Figure 1c is required to be contiguous, then the
fields of each of these types must be laid out adjacent to R. Since the layout of R in
memory has only two sides, then it must be that at least two of A1, A2 and A3 are
laid out at the same side of R. This is not a problem as long as these two types are
never laid out together, as is the case in single inheritance. The difficulty is raised
in multiple inheritance, specifically, when there is a common descendant of these
two types. More precisely, we can say that two types are in conflict if neither is a
descendant of the other, yet, they have a common descendant.

No types are in conflict in a single inheritance hierarchy. In Figure 1c there are
three conflicts: between A1 and A2 (due to both B1 and B2), A1 and A3 (due to B2),
and between A2 and A3 (due again to B2).

The following simple argument shows that in the case of a single layer and a
common ancestor to the hierarchy, two conflicting types cannot have the same di-
rectionality without violating either the strong conformance requirement, or having
a type with non-contiguous layout: Assume by contradiction that the two conflict-
ing types have the same directionality. They are obviously laid out at different

2words of an anonymous reviewer to [Gil and Sweeney 1999]
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(say) positive offsets in their common descendant. Consider now the layout of the
type which is allocated the greater offset. This layout will have a hole at the offset
of the other type.

We therefore strive to assign opposing directionality to conflicting types. A con-
tiguous and strongly conforming layout exists for B1 since its conflicting parents
have opposing directionality. However, there is no way of assigning opposing direc-
tionality in all three conflicts of our example.

Figure 1d shows a possible two-dimensional bi-directional layout for the hierarchy
of Figure 1c. This layout maintains contiguity by sacrificing the strong conformance
requirement. This is achieved by laying out objects in one or more layers, where
each layer uses a bi-directional layout. Figure 1d uses two layers (marked in bold),
e.g., type B3 has three ancestors {R, A3, B3}, where {R, B3} are in the first layer
and {A3} in the second. Note that for some types the second layer is empty,
e.g., in type B1. Recall that there are three conflicting types {A1, A2, A3}. Our
layout places two conflicting types in either different layers (e.g., A1 and A3) or in
different directionality (e.g., A1 and A2). Within each layer we still maintain strong
conformance, e.g., the offset of A1 within the first layer is always 1, and the offset
of A3 within the second layer is always 0. Observe that the offset of the second
layer is different in different types. Section 8 explains how to find at runtime the
offset of a layer within a type, and Section 5 presents the algorithm that calculates
the layout.

Note that separate compilation discovers too late that two types are in conflict,
i.e., after the layout of these two types was determined. For this reason, our layout
scheme, just as all other optimizing layouts (including aggressive inlining), relies
on whole program analysis.

1.3 Evaluation Criteria

A layout scheme is evaluated by the following criteria.

(1) Dynamic memory overhead. This is extra memory allocated for objects, i.e.,
memory beyond what is required for representing the object’s own fields. Ide-
ally, this overhead is zero. However, holes in a noncontiguous object layout
contribute to this overhead. Another overhead of this kind are compiler gener-
ated fields, e.g., virtual function table pointers (VPTRs) in C++ .
Note that the semantics of most object oriented languages dictates that the
layout of each object includes at least one type identifier. This identifier is used
at runtime to identify the object type, for purposes such as dynamic message
dispatch and subtyping tests. This identifier can be conveniently thought of as
a field defined in the common root type , and therefore is not counted as part
of the dynamic memory overhead. However, if a scheme allocates multiple type
identifiers, as is the case with the C++ standard layout, then all but the first
identifier contribute to this overhead.

(2) Field access efficiency. This is the time required to realize the field access
operation o.f. Ideally, fields can be accessed in a single machine instruction,
which relies on a fixed offset (from the object base) addressing mode. Layout
schemes often rely on several levels of indirection for computing a field location
in memory.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.
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Common practice is to lay out consecutively all fields introduced in a certain
type. Since f is supplied at compile time, the type t′ in which f was introduced
can be pre-computed. The main duty of the runtime system is to find the
location in memory in which the fields of t′ are laid out in t, the type of o.

(3) Static memory overhead. These are the tables and other data-structures used by
the layout which are shared between all objects of a certain type. This overhead
is usually less significant than the dynamic memory overhead, and therefore it
seems worthwhile to maximize sharing. On the other hand, retrieving the
shared information comes at the cost of extra indirections, and may reduce
field access efficiency.

(4) Time for computing the layout. This is the time required for computing the
layout, which could be exponential in some schemes.

Outline Section 2 defines the object layout problem, and then describes the
criteria used in evaluating object layout schemes. These criteria are then used in
Section 3 to compare our result in the context of previous work.

A formal definition of a uni-directional two dimensional layout is the subject of
Section 4. Section 5 presents the algorithm for computing the actual layout, which
is adapted for separate compilation in Section 6 The correctness and completeness
of these algorithms are the subject of Section 7, which also characterizes the com-
plexity of the problem. Section 8 suggests three different strategies for realizing the
formal layout as a bi-directional layout scheme.

Section 9 describes the data-set used in the benchmark, while Section 10 gives
the experimental results. Finally, conclusions and directions for future research are
given in Section 11.

Appendix A summarizes the terminology and notation used in this paper.

2. THE OBJECT LAYOUT PROBLEM

2.1 Definitions

Leading to a more exact specification of the problem, we must first make precise
notions such as a hierarchy, incomparable types, and introduced and accessible
fields in a type.

Formally, a hierarchy is specified by a set of types T , n = |T |, and a partial
order, ¹, called the subtype relation which must be reflexive, transitive and anti-
symmetric. Let a, b ∈ T be arbitrary types. Then, if a¹ b holds we say that a
is a subtype of b, that b is a supertype of a, and that a and b are comparable. (If
neither a¹ b nor aº b holds, we say that the types are incomparable.) Also, if there
does not exist c such that a¹ c¹ b and c 6= a, c 6= b, then we say that a is a child
of b and that b is a parent of a. A hierarchy is single inheritance if each a ∈ T has
at most one parent, and multiple inheritance otherwise.

Types a and b are conflicting if they are incomparable and there exists a type c ∈
T , c¹ a and c¹ b. If two conflicting types are given the same memory address, then
they will collide in the layout of c.

The set of ancestors of a type a ∈ T is ancestors(a) ≡ {b ∈ T | a¹ b}. We
denote the number of ancestors of a by θa. Note that a ∈ ancestors(a).
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.
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An instance of the object layout problem is specified by a hierarchy of types, each
introducing fields, which can be thought of as unique names or selectors. For a
type t ∈ T , let |t| denote the memory size required for fields introduced in t.

The accessible fields of a type include all fields introduced in it and in any of its
proper supertypes. Our objective is to design a layout scheme for the objects of
each of the types in the hierarchy, and a method for locating each of the accessible
fields of this type at runtime. Specifically, given an object address o of type t,
and f, an accessible field of t, the runtime system should be able to compute the
address of o.f. The selector f is a compile time constant, while o is supplied only
at runtime.

2.2 Assumptions

We shall assume that all hierarchies are rooted, i.e., that there exists a type r ∈ T ,
such that for all a ∈ T , a¹ r. For example, type R is the root of the hierarchy
depicted in Figure 1. We also assume that each object has within a fixed offset a
unique type-identifier (type-id), which is also needed for the purposes of method
dispatching and subtyping tests. (The type-id can be any kind of unique pointer
such as C++ ’s virtual table pointer.) It is convenient to think of the type-id as a
field introduced in the root r. (Although C++ does not have a common root, we
can artificially add a common root that introduces the type-id.)

Observe that the process of method dispatching is similar to field access: Given
a compile time constant (the method name) and an object at runtime, the method
dispatcher must find the correct implementation of the method. Yet, as we com-
mented earlier, field access is easier than method dispatching since (by wide agree-
ment) field overriding is disallowed in most languages. The reason for this is that
unlike methods, fields have no body which can be re-implemented in an overriding
definition. One may contemplate overriding the type definition of a field, but this
cannot be done without introducing intriguing type safety issues: on one hand,
since fields can be read, a safe redefinition must be co-variant; on the other, since
fields can be written, a safe redefinition must be contra-variant.

We shall therefore assume that a field name can only be used once in each type.
Stated differently, our demand is that no run time dispatching process is required
to select the particular “implementation” of a field name. This is precisely the
case in statically typed languages, where the field name and the static object type
uniquely determine the introducing class. (Note that although there are languages
(e.g., C++ and Java [Arnold and Gosling 1996]) which allow field overloading in
that a derived class may reuse the name of a private field defined in a base class,
our assumption is trivially satisfied by a simple renaming.)

Some languages such as Smalltalk [Goldberg 1984] restrict field access to the
methods of the defining object, i.e., all fields are private and never protected
nor public. In such languages the strong conformance requirement does not need
to be satisfied, and the object layout problem becomes trivial, even with the face
of multiple inheritance.

Observe also that in a dynamically typed language that supports non-private
fields, there must be a runtime check that the accessed field is defined in the object.
Such checks are related to subtyping tests and even to a more general dispatching
problem which have received extensive coverage in the literature [Zibin and Gil
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2001; 2002; 2003], and shall therefore be excluded from the domain of discourse.

3. PREVIOUS WORK

Object layout in a single inheritance hierarchy can simultaneously optimize all the
above metrics. As can be seen in Figure 1b, both static and dynamic memory
overheads are zero. Field access efficiency is optimal with no dereferencing. Also,
the computation of the layout is as straightforward as it can be.

A trivial layout scheme for multiple inheritance which maintains the strong con-
formance requirement is that the layout of each type reserves memory for all fields
defined in the hierarchy. Static memory overhead, time for computing the layout,
and field access efficiency are optimized. However, dynamic memory overhead is
huge since each object uses memory of size

∑
t∈T |t|, regardless of its actual type,

which usually has far fewer accessible fields.
Pugh and Weddell [1990] investigated more efficient layout schemes which still

fulfill the strong conformance requirement, and therefore must sacrifice the conti-
guity requirement, i.e., objects might have “holes” in their layout. The dynamic
memory overhead of their main bi-directional object layout scheme is only 6% in
one case study, compared to 47% in a unidirectional object layout. The authors
also showed that the problem of determining whether a contiguous bi-directional
layout exists is NP-complete.

At the other extreme stands what may be called the field dispatching layout
scheme, which is employed by many dynamically typed programming languages in-
cluding Cecil [Chambers 1993] and Dylan [Shalit 1997]. In this scheme, the layout
of type t is obtained by iterating (in some arbitrary order) over the set ancestors(t),
laying out their fields in order. Since the strong conformance property is broken,
the scheme must encapsulate fields in accessor methods. If a field position changes
in a subtype, its accessor method is overridden. The dynamic memory overhead in
this scheme is zero.

Dispatching on accessor methods can be implemented by an n× n field dispatch
matrix which gives the base offset of a type in the layout of any of its descendants.
This static memory overhead can be reduced if the matrix is compressed by e.g.,
techniques used for method dispatching. The SmartEiffel compiler [Zendra et al.
1997] avoids using a dispatching matrix by using an inlined binary search over the
type-id. See, e.g., [Zibin and Gil 2002], for a recent survey of dispatching techniques.

The main drawback of field dispatching is in reduced field access efficiency. In
the matrix implementation, field access requires at least three indirections in the
simplest version, and potentially more with a compressed representation of the
matrix.

Myers [Myers 1995] suggested a bi-directional layout for Theta which have a
similar restriction as in Java regarding classes and interfaces: a class can extend
only a single superclass but it can implement several types. With this restriction
the layout problem becomes trivial (but method dispatching is still a challenge).
Myers also presents two variants of the technique for multiple inheritance: (i) either
recompile the code of the superclasses as described below in SmartEiffel, or
(ii) use field dispatching (called dynamic field offset) with an uncompressed field
dispatching matrix.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.
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3.1 SmartEiffel’s layout

SmartEiffel compiler (which used to be called SmallEiffel [Zendra et al. 1997])
specialize the code of the superclass, i.e., all methods are overridden and the code
of the superclass is copied (by the compiler) to the subclass. The layout of a type
does not necessarily conform to the layout of its ancestors. Consider a method in
type t that accesses a field f defined in a type t′. When t¹ t′ then the code of
that method is unique for t and the offset of f is thus known statically, making
field access as efficient as a record access. However, when t 6 ¹ t′ then the compiler
inserts a dispatching method that finds the offset of the field according the type-id
of t. Since most field accesses are of the former type, field access has good efficiency.

Specialization enables many optimizations due to the fact that the exact type of
this is known statically, such as efficient field access and avoiding dispatching for
method calls on this. However, there is an exponential blow-up of the code-space
(since the code of a class is copied to all its descendants), which can affect runtime
performance due to code caching. Also, the efficiency of method dispatching is de-
graded since a method is now overridden in all descendants. For example, consider
a method m that is defined only in a single type t and never overridden in any
descendant. Then an optimizing compiler can avoid dispatching on that method,
and use a direct jump. However, in SmartEiffel, method m is overridden in all
descendants due to specialization, forcing the compiler to insert code that binary
search over the type-id of all descendants. (Note that in order to have efficient field
access in m we must override this method in all descendants, since fields’ offset can
be different in different descendants.)

3.2 C++ ’s layout

An interesting tradeoff between the two extremes is offered by the memory model
of C++ [Lippman 1996]. C++ distinguishes between virtual and non-virtual
bases. We are not so interested in the textbook [Stroustrup 1997] difference be-
tween the two. Instead, we say that a type is a virtual base if two or more of its
children have a common descendant. For non-virtual bases, C++ uses a relaxed
conformance requirement. Let t1, t2, t3 ∈ T be such that t1 is a non-virtual base
of t2, and t3 is an arbitrary subtype of t2.

The weak conformance requirement: The offset of t1 with respect
to t2 is fixed in all occurrences of t2 within t3¹ t2.

In other words, although the offset of t1 is not the same in all of its descendants, it is
fixed with respect to any specific descendant t2, regardless of where that descendant
is found. Consequently, to find where t1 is located within t3 it is sufficient to find
the address of t2 within t3.

The weak conformance requirement can be maintained together with object con-
tiguity in many multiple inheritance hierarchies, specifically those with no virtual-
bases. In such hierarchies, e.g., the hierarchy in Figure 2a,

The layout of a type is the concatenation of the layout of its parents
followed by its fields.

(1)

The cells with a dot in Figure 2b represent a type-identifier (VPTR in the C++
jargon). (For simplicity of the presentation, we assume that all classes in the

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.
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hierarchy have at least one virtual function, and thus each object must have a
VPTR in order to perform message dispatching.)

A.

A B C

E

D

A:
B:

A.

C:
D:
E:

. C

D

. B

. B . C

D. B . C E
F F: F. A . B

(a) (b)

Layer
Fields of type T
Type-id (VPTR)

T
.

Fig. 2. A type hierarchy without virtual bases (a) and its C++ layout (b).

Consider the C++ layout in Figure 2b. According to (1), the layout of E is the
concatenation of the layout of A, than the layout of D, and than the fields of E

itself. Note how this layout satisfies the weak conformance requirement for t1 = B

and t2 = D: the offset of B is fixed in all occurrences of D within t3¹D, e.g.,
when t3 = D we see that B has the first offset and when t3 = E then still B has the
first offset in the layout of D within E. The offset of B within D will be the same
in all descendants of D due to (1) which uses the layout of D without modifying it.
Note that the offset of B is different in F (which is not a descendants of D). Thus
strong conformance is not maintained, i.e., a type is not always located at the same
offset, making it necessary to apply a process called this-adjustment [Stroustrup
1994] in order to access a field introduced in a supertype. For example, a method
of B cannot be invoked on an object of type E, without first correcting the pointer
to the object (this in the C++ jargon), coercing it to type B.

Observe in Figure 2b that each layout starts with a VPTR, and some layouts have
more than one VPTR. The reason for having several VPTRs is the requirement
that a VPTR must be located within a fixed offset from this in order to perform
subtyping tests and message dispatching (in C++ , this offset is zero, i.e., this
always points to a VPTR). Therefore, after correcting the pointer from E to B,
that pointer must still point to a VPTR, forcing C++ to place a VPTR before
the fields of B. Note that these VPTRs cannot be shared among several instances
of the same class and thus contribute to dynamic memory overhead.

The this-adjustment model incurs many penalties other than dynamic memory
overhead and the time required for the addition in correcting this. For example,
the runtime system must apply null checks before this can be corrected. Also, a
conversion from an array of subtypes to an array of supertypes cannot be done in
constant time. Finally, the pointers to the same object may have different values
which is a serious hurdle for garbage collectors and for efficient identity testing.

Object layout becomes much more complex in the presence of virtual bases, as
demonstrated by the hierarchy in Figure 3a. Type A is a virtual base since it has
two children (B and C) with a common descendant D. C++ allows a programmer
to denote some of the inheritance edges as virtual (see note below on separate
compilation). In the figure, the dashed edges 〈B, A〉 and 〈C, A〉 are virtual so that D
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has a single A sub-object. Recall that we assumed that all inheritance is shared
(never repeated), thus the programmer must annotate all edges 〈b, a〉 as virtual
whenever there exists a child c of a that share a common descendant d with b, i.e.,

d¹ c¹ a and d¹ b¹ a but b 6 ¹ c nor c 6 ¹ b. (2)

Such a quartet 〈a, b, c, d〉 is called a diamond due to diamond shape in the inheri-
tance hierarchy. Observe that Figure 2a has no diamonds, and thus no edge needs
to be marked as virtual.
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Fig. 3. A diamond hierarchy (a), its C++ layout (b), the hierarchy with the inlined virtual
edge 〈B,A〉 (c), and its inline C++ layout (d).

If we “ignore” the virtual edges, then the resulting hierarchy has no diamonds
and can be laid out using rule (1). Figure 2b shows the C++ layout of Figure 2a.
Note that all classes (except A) have two layers. C++ uses virtual base pointers
(VBPTRs) to tie the layers of the same object, e.g., in order for a method of B

to access a field of A it must traverse a VBPTR. Gil and Sweeney [1999] give a
detailed description of VBPTRs. We only mention that VBPTR can be stored
directly in the objects, as in the “standard” C++ implementation, contributing to
dynamic memory overhead, or moved to the static memory, at the cost of increasing
field access time. (For that reason, VBPTRs were not drawn in Figure 3.) Also, in
order to be able to access fields at constant time, an implementation must store (a
potentially quadratic number of) inessential VBPTRs. We note that referencing
fields through VBPTRs also requires this-adjustment, and that a virtual base
must also have a VPTR.

An optimizing compiler (with whole program information) can decide to inline
a subset of virtual edges, e.g., the bold edge 〈B, A〉 was inlined in Figure 2c. Note
that even after inlining this edge we can still use rule (1) for doing the layout. After
inlining, the remaining set of virtual edges E′ must satisfy

There are no two edges 〈a, b〉, 〈a, c〉 ∈ E \ E′

where b and c has a common descendant d.
(3)

Phrased differently, for every diamond 〈a, b, c, d〉 either 〈a, b〉 ∈ E′ or 〈a, c〉 ∈ E′,
i.e., we cannot inline two virtual edges that participate in a diamond. Observe that
in the inline C++ layout of Figure 2d is more efficient than that of Figure 2b since
only the layout of C has two layers.
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Gil and Sweeney [1999] proposed several optimizations of the standard C++ lay-
out, which were then empirically evaluated by Eckel and Gil [2000], whose main
yardstick was dynamic and static memory overhead. The main optimization which
contributes to field access efficiency is simple-inline which tries to reduce the num-
ber of virtual bases by conforming transformations of the hierarchy. Aggressive-
inline does the same, using a maximal independent-set heuristic as procedure for
finding a close to optimal set of transformations. The bi-directional object layout
optimization reduces dynamic memory overhead but does not contribute to field
access efficiency.

For the purpose of illustration, Figure 4 depicts a type hierarchy and its aggressive-
inline C++ layout. (This hierarchy will be used as our running example: in Sec-
tion 8.4 for demonstrating two-dimensional bi-directional, and then in Section 5 for
gaining intuition into the algorithm that generates this layout.)
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Fig. 4. A type hierarchy (a) with its aggressive-inline C++ layout (b).

Separate compilation: It is well known that the C++ compiler is incremental
in the sense that a layout of a class depends only on the layout of its superclasses,
i.e., the compiler does not require knowledge of any future descendants. However in
the presence of virtual bases, layout must be guided by user-defined “predictions”,
and will therefore be called prediction-guided layout. Recall that the inheritance
edges 〈B, A〉 and 〈C, A〉 in Figure 3a are virtual so that D has a single A sub-object.
Marking the edge 〈B, A〉 as virtual is in fact a prediction given to the compiler so it
will know of a future conflict in a descendant of B. In other words, the compiler does
not need to know the set of descendants of a type since it is given predictions on
future conflicts instead. Section 6 presents a variant of our algorithm for prediction-
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guided layout, i.e., a subset of the edges that satisfy (3) is marked as virtual and
the compiler must calculate the layout of a type based only on its set of ancestors.

Comparison with two-dimensional bi-directional: Our two-dimensional
bi-directional scheme incurs no dynamic memory overhead. In this respect it is
at least as good as any other layout scheme, and strictly better than all C++
implementations (which may include more than one VPTR). (See [Sweeney and
Burke 2003] for a study of the space overhead in real C++ programs.) The most
interesting criterion for comparison with C++ and field dispatching is therefore
field access efficiency. We shall see that our new scheme competes favorably even
with the highly optimized and language specific aggressive-inline layout scheme.

Our results indicate that the time for computing the new layout is small—
about 10 µSec per type (see Section 10). We also find that the static memory
overhead is small compared both to field dispatching and various C++ techniques.

The new layout is uniform, in the sense that (unlike C++ ) the runtime system
does not need any information on the static type of an object pointer in order to
access any of its fields. Consider an object o and a field f. Then, the sequence
of machine instructions for the field access operation o.f depends only on the
selector f, and is the same regardless of the type of o. This is in contrast to
languages such as C++ in which, depending on the static type of o, access to
field f is either direct, or through indirection.

4. A TWO-DIMENSIONAL LAYOUT

We present our two-dimensional bi-directional scheme in five stages. In this section,
we explain the notion of a formal uni-directional two dimensional layout, or for
short, two-dimensional layout. Section 5 presents the algorithm for computing the
two-dimensional layout, which is adapted for separate compilation in Section 6.
The correctness and completeness of these algorithms are the subject of Section 7.
Finally, Section 8 shows how the two-dimensional layout is made bi-directional and
gives the actual representation in memory.

Definition 4.1. A two dimensional layout of T is a pair of two functions 〈φ, ρ〉,
such that φ, ρ : T 7→ {1, 2, . . .}.

A two dimensional layout allocates to each type t ∈ T a two-dimensional ad-
dress 〈φ(t), ρ(t)〉:
—Coordinate φ(t), 1 ≤ φ(t) ≤ Φ, is the semi-layer of type t, where Φ is the number

of semi-layers used by the layout.
—Coordinate ρ(t) ≥ 1 is the integral position of t in its semi-layer.

The uni-directional semi-layers will be joined together in pairs in Section 8 to make
bi-directional layers.

The fields introduced by a type t are positioned in the address defined by 〈φ(t), ρ(t)〉.
This positioning persists in all descendants of t. Dually, we can make the following
definition.

Definition 4.2. The entire layout of a type t, L(t) is specified by the multi-set
of addresses of t and its ancestors, i.e.,

L(t) = {〈φ(t′), ρ(t′)〉 | t′ ∈ ancestors(t)}.
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There is a very simple two-dimensional layout which gives distinct addresses to
all types. This field-dispatching layout is realized by letting Φ = |T | and positioning
the ith type at the first position in the ith semi-layer.

Reducing the number of semi-layers Φ is desirable for several reasons that will
be further explained in Section 8: (i) the static memory overhead is Φ/2− 1 bytes
per type, and (ii) field access becomes more efficient as the number of semi-layers
decreases. To achieve this objective, a layout should reuse the same address for
different types. There are however limitations to such a reuse.

Definition 4.3. The layout of a type t is collision-free if all addresses in L(t)
are distinct, i.e., L(t) is a set rather than a multi-set. A layout of a hierarchy is
collision-free if the layout of all types in it is collision-free.

In requiring that the layout of a certain type is collision-free, we require first
that the fields introduced in the type do not collide with the fields of any of its
ancestors. Moreover, we ensure that there are no collisions between the (proper)
ancestors themselves of a type, as may be the case in multiple inheritance. Stated
differently, this requirement re-iterates what we have observed before: that two
types which are in conflict must be allocated to distinct addresses.

Henceforth, we consider only collision-free layouts. We shall also require that no
“holes” occur in the layout of any particular type; that is, that no type is located
at a position of a semi-layer unless all previous positions of this semi-layer are
populated by an inherited type.

Definition 4.4. The layout of a type t ∈ T is contiguous if the set L(t) satisfies
the property that if 〈σ, p〉 ∈ L(t) and p > 1, then 〈σ, p − 1〉 ∈ L(t). A layout of a
hierarchy is contiguous if the layout of all types in it is contiguous.

A collision-free and contiguous two-dimensional layout always exists, e.g., the
field-dispatching layout. Also, in the single-inheritance setting, there is a collision-
free and contiguous layout scheme which uses a single semi-layer: A type at height i
in the inheritance tree is laid out at the ith position. Note that in single-inheritance
types are laid out in descending subtyping order. A similar property will hold for
multiple inheritance as well.

In the next three sections we turn to the problem of finding such a layout in
the multiple-inheritance setting, which minimizes Φ, the number of layers. We will
then discuss the implementation of a collision-free and contiguous layout.

5. COMPUTING TWO-DIMENSIONAL ADDRESSES OF TYPES

This section is dedicated to the issue of finding a two-dimensional layout, i.e.,
finding two functions φ and ρ which define a layout which is both collision-free and
contiguous. As explained above, two such functions always exist. The challenge is
to find two such functions which achieve the smallest possible number of semi-layers.

We will see below in Section 7 that the problem of finding the minimal number of
semi-layers is NP-complete. Therefore, this section will be settled with a heuristic,
which as will be shown in Section 10, performs well in practice.

Returning to our running example, Figure 5a shows the allocation of types in the
hierarchy of Figure 4 to semi-layers.
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Fig. 5. (a) The allocation of types in the hierarchy of Figure 4 to semi-layers, (b) the conflict
graph with its coloring, and (c) the resulting two dimensional layout.

The figure shows the partition of types into the three semi-layers as used by the
layout: seven types A, C, F, H, K, L, and N are in semi-layer 1. Semi-layer 2 includes
five types: B, E, G, J, and M. Types D and I are in semi-layer 3.

In making such a partitioning, the algorithm must be concerned with the question
of whether two given types a, b ∈ T can be allocated to the same semi-layer, and
what their relative ordering in that semi-layer should be.

—Suppose first that the two inputs are comparable. Then, without loss of general-
ity, a¹ b. We have that whenever a appears in the layout of any arbitrary type,
so does b. Therefore, with the absence of other constraints, we can allocate a
and b into the same semi-layer, and a must be placed after b in this semi-layer.

—If however a and b are incomparable, then they could be allocated to the same
semi-layer, and even to the same position in the level, as long as they do not
occur together in the layout of any third type c. In other words, the allocation
is allowed as long as a and b have no common descendants, i.e., a and b are not
in conflict.

Figure 5b shows the conflict graph of our running example. In this graph, two
types are connected by an edge if they are in conflict.

We see in the figure that no edges are incident on A. This is because A is the root
type, and as such is comparable with all types in the hierarchy. Also, no edges are
incident on the leaves F, K and N. On the other hand, the edge between C and E

(for example) is due to their common descendant L.
Algorithm 1 shows how the conflict graph of a given hierarchy is computed.
Lines 1–10 compute the edges in the conflict graph. In the main loop, we con-

sider the ancestors of each candidate t. There is a conflict between any two of its
ancestors p1 and p2 if they are incomparable. For example, when t = L, p1 = C,
and p2 = E we discover that neither p1 6 ¹ p2 nor p1 6 º p2, and we therefore add the
edge {C, E} to the conflict graph.

A node coloring of the conflict graph provides a collision-free allocation. We of
course seek a minimal coloring of this graph.
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Algorithm 1 Compute the conflict graph of a hierarchy
Given a hierarchy T compute its conflict graph G.

1: Let E ← ∅ // E is the set of edges in the undirected conflict graph
2: For all t ∈ T do // Consider all possible common descendants
3: For all p1, p2 ∈ ancestors(t) do // p1 and p2 have a common descendant t
4: If p1 6 ¹ p2 and p1 6 º p2 then // p1 and p2 are incomparable
5: If {p1, p2} 6∈ E then // A new conflict edge found
6: E ← E ∪ {{p1, p2}

}
7: fi
8: fi
9: od

10: od
11: Let G ← 〈T , E〉

Figure 5b also gives a coloring of the conflict graph of the running example. A
total of three colors are used: white, grey and black. A side-by-side comparison
of Figure 5b with Figure 5a reveals that white nodes are allocated to semi-layer 1,
grey to semi-layer 2, and black to semi-layer 3.

Algorithm 2 shows how the two-dimensional layout of a given hierarchy is found.
The algorithm computes the number of semi-layers, and, for each type in the input,
its semi-layer and its position within this semi-layer.

Algorithm 2 Produce the two-dimensional layout of a hierarchy from its conflict
graph
Given a hierarchy T and its conflict graph G, return Φ, the number of semi-layers, and φ(t)
and ρ(t) for each type t ∈ T
1: Let φ : T 7→ [1, . . . , Φ] be a coloring of the nodes of G

2: For all t ∈ T do // Compute the position of t in its semi-layer
3: ρ(t) ← 0 // Start counting ancestors in the same semi-layer as t
4: For all t′ ∈ ancestors(t) do
5: If φ(t′) = φ(t) then // Ancestor t′ is in the same semi-layer as t
6: ρ(t) ← ρ(t) + 1
7: fi
8: od
9: od

Running Algorithm 2 on the hierarchy of Figure 4 with the coloring of Figure 5b,
produces the two dimensional layout in Figure 5c. Note that the layout in Figure 5c
is both contiguous and collision-free, which will be proven in Theorem 7.1. Observe
that the number of semi-layers is the same as the number of colors, which is 3.
Also observe how types are allocated positions in descending subtyping order, e.g.,
in the layout of N the positions in the first semi-layer are allocated in descending
subtyping order AºCºHº LºN.

There are two main steps to Algorithm 2: First, line 1 finds an assignment of
types to semi-layers, while the main loop in lines 2–9 computes the position of each
type in its semi-layer:
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(1) The first step employs a simple, greedy heuristic to color the graph. This
heuristics iterates over the nodes in order of descending degree, and assigns to
each the first color which was not previously assigned to any of its neighbors.
A favorable property of this heuristic is that the sizes of color groups decrease
quickly, i.e., φ−1(1) is the largest set, φ−1(2) much smaller than it, etc. This
is important for our application since fields in the first layer can be accessed
in a single indirection (see Section 8), therefore this layer should be as large as
possible.

(2) To ensure the contiguous property of the layout, each type is positioned immedi-
ately after the subset of its ancestors which are assigned to the same semi-layer.
Thus, lines 3–8, count in ρ(t) the number of ancestors t′, such that t′ is assigned
in the same semi-layer as t. Positions 1, . . . , ρ(t) − 1 in this semi-layer will be
occupied with all such proper ancestors, while t is positioned in ρ(t).

6. PREDICTION-GUIDED LAYOUT

The subject of this section is a variant of Algorithm 1 and Algorithm 2 for separate
compilation, i.e., the layout of a type t can be determined solely from information on
its ancestors t′º t. The challenge in separate compilation is maintaining any kind
of conformity requirement in the presence of unknown future descendants. Field
dispatching places the fields of each supertype in a different layer (see Section 3),
thus the number of layers in a type is exactly the number of its ancestors. This is the
only technique which fits the model of separate compilation since the layers can have
different offsets in different descendants, i.e., there is no conformity requirement
which can be broken by future descendants.

In contrast, C++ has the weak conformity requirement which can always be
broken by future descendants, unless all inheritance edges are marked as virtual.
To see why all edges must be marked as virtual, assume by contradiction that
there was an edge 〈a, b〉 which was not marked as virtual. We now add two future
descendants: c (that extends a) and d (that extends b and c), which creates a
diamond 〈a, b, c, d〉 (see Section 3.2). The semantics of C++ dictates that in
such a case we have repeated inheritance semantics meaning that d have two a
sub-objects. However, recall that we assume that all inheritance is shared, i.e.,
the semantics of repeated inheritance is never desired. Type d cannot change the
semantics to shared without changing its supertype b by declaring the edge 〈a, b〉
as virtual.

When all edges are marked as virtual in C++ then the number of layers in a
layout of a type is exactly the number of its ancestors, which reduces C++ layout
to field dispatching. (In fact C++ ’s efficiency is worst due to this adjustment.)
Thus a C++ programmer joggles two conflicting forces: (i) flexibility that dictates
that all edges are marked as virtual, and (ii) efficiency that dictates that no edge is
marked as virtual. Consider an inheritance edge 〈a, b〉. The programmer attempts
to predict if future descendants of b might inherit a through a different path, i.e.,
will there be a diamond that includes this edge. If so, then we declare 〈a, b〉 as
virtual, otherwise as non-virtual. In case the programmer made a wrong prediction,
then such a future diamond will have a repeated inheritance semantics (which is
undesired most of the time). As mentioned in Section 3.2, we call such layout
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algorithm prediction-guided, since it is based on user predictions that are assumed
never to be falsified.

In order to present our prediction-guided layout, we make the following defini-
tions. Let E be the set of inheritance edges, and E′ ⊆ E is a set of predictions
(or virtual edges in C++ terminology). Then, we require as in (3) that these
predictions are true, i.e., that for every two edges 〈a, b〉, 〈a, c〉 ∈ E \E′ then b and c
never share a common descendant d.

Algorithm 3 computes the two-dimensional address 〈φ(t), ρ(t)〉 of a type t, as-
suming the addresses of all its supertypes have been calculated previously. We
assume the existence of a function typeid that gives a unique type-id for each type.

Algorithm 3 Prediction-guided Layout Algorithm
Given a set of inheritance edges E, a set of predictions E′ ⊆ E satisfying (3), a func-
tion typeid mapping types to unique type-ids, a type t, and the addresses of its super-
types t′º t, compute the address of t, i.e., its semi-layer φ(t) and offset within that semi-
layer ρ(t).

1: If Exists t′ such that 〈t′, t〉 ∈ E \ E′ then // t has a parent in E \ E′

2: φ(t) ← φ(t′) ; ρ(t) ← ρ(t′) + 1
3: else
4: φ(t) ← typeid(t) ; ρ(t) ← 1
5: fi

Theorem 7.2 will prove that Algorithm 3 computes a layout which is collision-
free and contiguous. Figure 6a and Figure 6b depicts the two dimensional layout
as computed by Algorithm 3 where edges from the set of predictions E′ are dashed,
e.g., 〈A, B〉 ∈ E′. Note that the set of predictions E′ satisfies (3).
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Fig. 6. (a) The semi-layers computed by Algorithm 3 where edges from the set of predictions E′

are dashed, and (b) the resulting two dimensional layout.

Consider, for example, the run of Algorithm 3 on type D in Figure 6a. Since 〈A, D〉 ∈
E′, we have from line 4 that φ(D) = typeid(D) = 4 and ρ(D) = 1. Now con-
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sider type I. Since 〈D, I〉 ∈ E \ E′, we have from line 2 that φ(I) = φ(D) = 4
and ρ(I) = ρ(D) + 1 = 2.

Observe that Figure 6b is identical to Figure 5c, even though the number of
semi-layers in Figure 6a is 5 (semi-layers 1,2,4,5, and 7) whereas in Figure 5a it is 3
(semi-layers 1,2, and 3). In other words, the layout calculated by Algorithm 3 and
Algorithm 2 are isomorphic in the sense that there is a mapping m from the semi-
layers of Algorithm 3 to those of Algorithm 2 that produces an identical layout.
That mapping m is defined as m(typeid(t)) = φ(t), e.g., m(7) = m(typeid(G)) =
φ(G) = 2.

It was no coincidence that the layouts are isomorphic, and in fact with a specific
choice of a predictions set E′ Algorithm 3 will always produce an isomorphic lay-
out. In fact, given any contiguous and collision-free layout 〈φ, ρ〉, we can chose a
predictions set E′ that produces an isomorphic layout:

An edge 〈a, b〉 ∈ E will be in E′ if and only if φ(a) 6= φ(b). (4)

It is trivial to check that such a definition of E′ and the above definition of the
mapping m produces an identical layout 〈φ, ρ〉.

The prediction set in Figure 6a was selected using (4) with the coloring of Fig-
ure 5a. For example, Figure 5a assigns the semi-layers φ(A) = 1 and φ(B) = 2, thus
we have that 〈A, B〉 ∈ E′ in Figure 6a since φ(A) 6= φ(B).

We finally note that the same set of predictions E′ can be used both in the
aggressive-inline algorithm of C++ (Section 3.2) and in our two-dimensional algo-
rithm, which gives us a way of comparing the two technique using the same terminol-
ogy. Consider a type c, and suppose that there exists two edges 〈a, c〉, 〈b, c〉 ∈ E\E′.
In the aggressive-inline layout, type c will have a layer that concatenates the layout
of a and b. In the two-dimensional layout, type c will share the (semi-)layer of
either a or b. Thus, the aggressive-inline layout always assigns an equal or smaller
number of layers per object compared to the two-dimensional layout. However,
this benefit comes at the cost of dynamic memory overhead and the need for this-
adjustment.

7. CORRECTNESS AND COMPLEXITY ANALYSIS

Having described algorithms for computing the two-dimensional layout, both using
whole program information and in separate compilation, we can now proceed to
proving their correctness and analyzing their runtime complexity. This section ends
with a proof that finding such layout that minimizes the number of semi-layers is
an NP-complete problem.

Let T , the input hierarchy, be fixed and arbitrary.

Theorem 7.1. Algorithm 2 produces a contiguous and collision-free two dimen-
sional layout.

Proof. Let t ∈ T be arbitrary, and let L(t) be its entire layout, i.e., the multi-set
of all two-dimensional addresses of its ancestors.

(1) By Definition 4.3, the layout is collision-free if all addresses in L(t) are dis-
tinct. Let t1, t2 ∈ ancestors(t), t1 6= t2. Then, we need to show that the
two-dimensional addresses of t1 and t2 are distinct, i.e., either φ(t1) 6= φ(t2)
or ρ(t1) 6= ρ(t2).
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If t1 and t2 are incomparable, then they are in conflict since they share t as a
common descendant. Therefore, they are neighbors in the conflict graph, and
the coloring heuristic ensured that φ(t1) 6= φ(t2).
Otherwise, t1 and t2 are comparable. If they are in different semi-layers, then we
are done. Else, suppose, without loss of generality, that t1¹ t2. Since t1 6= t2,
we have ancestors(t1) ⊃ ancestors(t2), and the code in lines 3–8 of Algorithm 2
ensures that ρ(t1) > ρ(t2).

(2) By Definition 4.4, the layout is contiguous if all addresses in L(t) belonging to
a certain semi-layer are consecutive, but this is obvious from the fact that each
type is laid out by Algorithm 2 in its respective semi-layer in the position which
follows immediately that of all of its proper ancestors in this semi-layer.

Theorem 7.2. Algorithm 3 produces a contiguous and collision-free two dimen-
sional layout.

Proof. By the induction on the hierarchy structure. It is trivial to see that L(r),
the layout of the root, is collision-free and contiguous. Consider a type t. By
induction, L(t′) is collision-free and contiguous for all t′º t, t′ 6= t.

Assume by contradiction that L(t) is not collision-free, i.e., there exists two
distinct types t and b with a common with the same address, i.e., φ(a) = φ(b)
and ρ(a) = ρ(b). Let c be the type whose type-id is φ(a), i.e., typeid(c) = φ(a).
Since this id is unique, then from line 2 in Algorithm 3, there must be a chain of
edges in E \ E′ starting from c and ending in a, i.e.,

〈c, a1〉, 〈a1, a2〉, . . . , 〈ak−1, ak〉 ∈ E \ E′ and a = ak.

Similarly, there is such a chain ending in b, i.e.,

〈c, b1〉, 〈b1, b2〉, . . . , 〈bl−1, bl〉 ∈ E \ E′ and b = bl.

Let i be the minimal integer for which ai 6= bi (there must be such i since a 6= b).
Note that 〈ai−1, ai〉, 〈ai−1, bi〉 ∈ E \ E′ and we also have that ai and bi have a
common descendant t, which contradicts property (3).

Assume by contradiction that L(t) is not contiguous, i.e., there exists a semi-
layer typeid(a) which is not contiguous. (Note that from line 4 and uniqueness of
type-id we have that φ(a) = typeid(a).) If t = a then that semi-layer contains
just type t since type-id is unique, and from line 4 we have ρ(t) = 1 thus this
semi-layer must be contiguous. Thus t 6= a. If φ(t) 6= φ(a) then the layout of
the semi-layer typeid(a) is the same as it was in the ancestors of t, contradicting
that L(t′) is contiguous for all t′º t, t′ 6= t. If φ(t) = φ(a) then by line 2 there
exists t′º t, 〈t′, t〉 ∈ E \ E′, and we have that ρ(t) = ρ(t′) + 1. Since the layout
of t′ is contiguous, we have that the layout of the semi-layer typeid(a) in t must be
contiguous as well.

Having proved correctness, we now turn to the runtime complexity of the algo-
rithms. It is trivial to see that the runtime complexity of Algorithm 3 is linear.
However, the complexity of Algorithm 2 is cubic since it does not rely on the pro-
grammer predictions and thus must calculate the conflict graph and solve a coloring
problem.
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Theorem 7.3. Let n = |T |. Then, the runtime complexity of Algorithm 2
is O(n3).

Proof. Lines 2–3 in Algorithm 1, which require constant time, may be executed
in certain hierarchies over a fixed fraction of all possible type triplets 〈t, p1, p2〉 ∈ T 3,
hence the cubic complexity of this algorithm.

Algorithm 2 is time bounded by the simple greedy graph-coloring heuristic whose
complexity is O(n2). The runtime of the inner loop (lines 3–10) of this algorithm
is also at most quadratic.

We now turn to characterizing the problem of finding a contiguous and collision-
free two-dimensional layout for a given hierarchy.

Lemma 7.4. Let 〈φ, ρ〉 be a contiguous and collision-free two-dimensional layout.
Then function φ is a node coloring of the conflict-graph.

Proof. Let t1 and t2 be two conflicting types. We need to show that the colors
assigned to t1 and t2 are distinct, i.e., φ(t1) 6= φ(t2). Assume to the contrary that t1
and t2 are in the same semi-layer s = φ(t1) = φ(t2).

Since t1 and t2 are conflicting they necessarily have at least one common descen-
dant. Let t3 denote one such descendant. The addresses of t1 and t2 are distinct
since the layout of t3 is collision-free. However, since they are in the same semi-
layer, they must occupy different positions, i.e., ρ(t1) 6= ρ(t2). Without loss of
generality, ρ(t1) < ρ(t2).

Consider now the type t′1 ∈ ancestors(t2) which is located in position ρ(t1) in
semi-layer s in the layout of t2. There must be such a type since the layout of t2
is contiguous. Also, t1 6= t′1. (The reason is that t1 and t2 are incomparable and
therefore t1 is not present in the layout of t2.)

We argue that t1 and t′1 collide in the layout of t3. Since t′1 ∈ ancestors(t2) ⊂
ancestors(t3) it follows that t′1 is present in the layout of t3. However, the two-
dimensional addresses of t1 and t′1 are identical.

The following lemma shows that graph coloring of the conflict graph and finding
a contiguous and collision-free two-dimensional layout are equivalent:

Lemma 7.5. The conflict graph of T is Φ-colorable if and only if there is a
contiguous and collision-free two-dimensional layout which uses at most Φ semi-
layers.

Proof. From Theorem 7.1 we know that if the graph is Φ-colorable then there
exists such a layout. From Lemma 7.4 we know that if there exists such a layout
then the graph is Φ-colorable.

Theorem 7.6. The problem of determining whether a hierarchy has a contigu-
ous and collision-free two-dimensional layout which uses Φ semi-layers is NP-
complete for all Φ > 2.

Proof. By reduction from graph-coloring. Given a graph G = (V,E), we will
build a hierarchy T G whose conflict graph has the same chromatic number as G,
which proves the theorem using Lemma 7.5.

The construction of T G is rather straightforward. There is a type tv for each v ∈
V , and a type t(u,v) for each (u, v) ∈ E. Also, for all (u, v) ∈ E, type t(u,v) inherits
from both tu and tv.
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It is easy to see that the conflict graph of T G has no edges between types t(u,v),
and that its conflict graph (ignoring the singleton components t(u,v)) is isomorphic
to G.

8. ADDING BI-DIRECTIONALITY TO A TWO-DIMENSIONAL LAYOUT

This section presents three different strategies for realizing a collision-free and con-
tiguous two-dimensional layout in computer memory: the simple and not so effi-
cient canonical layout, which is included for the purpose of illustration, the general
purpose compact layout, which we expect to be used in most cases, and the highly-
optimized inlined layout which is applicable in some special cases.

All three strategies assume that semi-layers are joined in pairs to form bi-directional
layers. Let Γ = dΦ/2e denote the total number of such layers.

8.1 The Canonical Layout

In the canonical layout each object is represented as a pointer to a Layers Dispatch
Table (LDT) of size Γ. Entry i, i = 1, . . . , Γ, of the LDT points to the ith layer of
the object.

The canonical layout for the case Γ = 5 is demonstrated in Figure 7(a). The
object depicted in the figure represented by a pointer p to its LDT, which stores
pointers to layers L1, L3, and L4. The type of the object is such that it has no
fields from the second and the fifth layers. Hence the corresponding entries of the
LDT are null.
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Fig. 7. The canonical (a) and the compact (b) two-dimensional bi-directional layout of an object
from a 5-layer hierarchy. Layers L2 and L5 are empty in the depicted object.

In general, layers are two directional, and may store fields with both negative and
positive offsets. Such is layer L1 in the figure, with offsets in the range −6, . . . , +2.
However, the type of the object depicted has no fields with positive offsets in
layer L3. Similarly, layer L4 has no fields with negative offsets.

We can see in the figure that each of the layers is contiguous. By placing the
layers and the LDT next to each other we obtain a contiguous object layout. The
pointers from the LDT to the layers can then be stored as relative offsets.

In realizing a two-dimensional layout in memory we must take care of the fact
that different objects have different number of fields, and that some semi-layers take
positive directionality while others take negative directionality. Formally, we say a
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type t has a bi-directional two-dimensional address 〈`(t),∆(t)〉, where 1 ≤ `(t) ≤ Γ
is the layer of t and ∆(t) is the offset of t within its layer (which can be negative).
Algorithm 4 shows how these are computed from uni-directional two-dimensional
addresses 〈φ(t), ρ(t)〉.

Algorithm 4 Produce the canonical two-dimensional bi-directional layout of a
hierarchy
Given a two-dimensional layout 〈φ, ρ〉 of a hierarchy of types T , compute the
number of layers Γ, and for each type t in hierarchy its layer `(t) and off-
set ∆(t).
1: Let Φ = maxt∈T φ(t)
2: Let Γ = dΦ/2e
3: For all t ∈ T do // Compute the offset and the layer of t
4: ∆(t) ← 0 // Compute the total size of proper ancestors in the same semi-layer

as t
5: For all t′ ∈ ancestors(t), t′ 6= t do
6: If φ(t′) = φ(t) then // Ancestor t′ is in the same semi-layer as t
7: ∆(t) ← ∆(t) + |t′|
8: fi
9: od

10: `(t) ← dφ(t)/2e // Layer l hosts semi-layers 2l − 1 and 2l
11: If φ(t) mod 2 = 0 then // Even semi-layers are laid out in the negative

direction
12: ∆(t) ← −∆(t)− 1 // Negative offsets start at −1
13: fi
14: od

The main loop of the algorithm computes the layer of each type t, and its offset
(which may be negative) within this layer. Lines 4–9 compute the total size of types
which precede t in its semi-layer. After computing the layer number (line 10) we
turn to making the necessary corrections to the offset. In general, positive semi-
layers use offsets 0, +1,+2, . . ., while negative semi-layers use offsets −1,−2, . . .
(lines 11–12).

A compiler algorithm for producing the runtime access code in the canonical
layout is presented in Algorithm 5. The algorithm takes as input a field f and
an object pointer p, and produces the runtime code for accessing f via p. The
algorithm produces pseudo-C++ runtime code using the Output function. To
distinguish between compile- and run-time expressions, we use quotation marks
and the concatenation operator “,”. For example, assuming that `(t) = 1 then the
following code

Output
“int *x = p[” , `(t)− 1 , “];”

will produce the output int *x = p[0].
Take note that the type t, the layer `(t), and the offsets ∆(t) and ∆(f) are

computed at compile time. Moreover, the last statement produces two runtime
constants: `(t) − 1, which is the correct index of the pointer to the layer in the
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Algorithm 5 An algorithm for generating field access code in the canonical layout
Given f, a name of a field of type int, and a pointer p to an object which uses
the canonical layout, generate the code sequence (using pseudo-C++ notation) for
accessing field f in p.
1: Let t be the type in which f was defined
2: Let `(t) be the unique layer of t // `(t) is a positive integer
3: Let integer ∆(t) be the offset of t
4: Let ∆(f) be the offset of f within its type // ∆(f) is a non-negative integer
5: Output

“int *layer ptr = ((int **)p)[” , `(t)− 1 , “];” // Fetch LDT entry
“int &r = layer ptr[” , ∆(t) + ∆(f) , “];”

LDT, and ∆(t) + ∆(f), which is the index of field f within that field. Therefore, a
single memory dereference is required to compute the field address.

8.2 The Compact Layout

It is important to notice that the occupied entries in each layer depend only on
the object type. Therefore, an offset-based LDT is identical in all objects of the
same type and can be shared. The compact version of object layout is obtained by
employing this sharing and by letting the object pointers reference the first layer
directly, which tends to be the largest in our algorithm for assigning fields to layers.

Figure 7b gives an example of the compact layout of the same object of Figure 7a.
In the figure we see the same three non-empty layers: L1, L3 and L4. However,
the object pointer p now points to offset 0 in layer L1. At this offset we find the
object type identifier, which is a pointer to the shared LDT. Notice that the size
of layer L1 was increased by one to accommodate the object type identifier. Also,
there are now only four entries in the LDT, which correspond to layers L2, . . . , L5.

Algorithm 6 is run by the compiler to generate the code sequence for accessing a
field in the compact layout.

If the compiler determines that the field is in the first layer, then the field can be
accessed directly—no memory dereferences are required for computing its address.
If the field however falls in any other layer, then memory must be derefenced once
to find the LDT, and then again to find the layer offset. Also, in this case, the
addressing mode for the final field access is slightly more complicated since it must
add compile- and runtime- offsets.

8.3 The Inlined Layout

The LDT in the example of Figure 7 includes only four entries, all of which are
byte-size integers (assuming of course that the object size is less than 256 bytes).
The entire LDT can be represented as a single 32 bit word. The inlined layout is
obtained from the compact layout by inlining the LDT into the object’s first layer.
At the cost of increasing object space, inlining saves a level of indirection in fetching
LDT entries. Note that even if the LDT is stored inside the object, each object
must include at least one type identifier for purposes such as subtyping tests and
dispatching. Therefore, even in this simple example, the inlined layout uses more
space than the compact layout.
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Algorithm 6 An algorithm for generating field access code in the compact layout
Given f, a name of a field of type int, and a pointer p to an object which uses
the compact layout, generate the code sequence (using pseudo-C++ notation) for
accessing field f in p.
1: Let t be the type in which f was defined
2: Let `(t) be the unique layer of t // `(t) is a positive integer
3: Let integer ∆(t) be the offset of t
4: Let ∆(f) be the offset of f within its type // ∆(f) is a non-negative integer
5: If `(t) = 1 then // The first layer receives a special treatment
6: If ∆(t) ≥ 0 then // If in the positive direction, skip over the LDT pointer
7: Output

“int &r = ((int *)p)[” , ∆(t) + ∆(f) + 1 , “];”
8: else // The negative direction starts as usual at offset −1
9: Output

“int &r = ((int *)p)[” , ∆(t) + ∆(f) , “];”
10: fi
11: else // All other layers
12: Output

“int *p1 = ((int **)p)[0];” // Find the address of the LDT
“int layer offset = p1[” , `(t)− 2 , “];” // Fetch the layer’s offset
“int &r = p[layer offset + ” , ∆(t) + ∆(f) , “];”

13: fi

We now return to explain the reasons for wishing to minimize the number of
layers. One reason for focusing on this objective is that the memory required for
LDTs is Γ− 1× n, where n = |T |. LDTs are a source for static memory overhead
in the compact layout, and dynamic memory overhead in the inlined layout. More
importantly, fewer layers reduce the likelihood of LDT fetches, or in other words,
the inefficiency of field access. If the number of layers is one, then all fields can be
retrieved without any dereferences. Also, if the number of layers is small, then an
optimizing compiler might be able to pre-fetch and reuse layer addresses to expedite
field access. A probabilistic model of field access is presented in Section 10.2.

8.4 An Example of the Compact Layout

Figure 8 shows the details of the compact layout of the running example (the type
hierarchy of Figure 4a). Recall that in the compact layout the first layer contains
the type-id at offset 0, which is depicted using a dot. The object’s pointer will
always point to that memory cell.

This layout uses in total two layers and three semi-layers. The first layer has at
offset 0 the type-id and both positive and negative semi-layers. The second layer
uses only a positive semi-layer.

The figure dedicates a row to portray the the layout of each type in the hierarchy.
Each such row depicts, from left to right, three semi-layers: SL2 (the negative
portion of the first layer), SL1 (the positive portion of the first layer), and SL3 (the
positive portion of the second layer).
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Fig. 8. The two-dimensional bi-directional object layout of the hierarchy in Figure 4a.

For example, the layout of type I, including its three proper ancestors (E, A,
and D), is as follows:

—The first layer which contains (i) the fields of E in SL2 (ii) the type identifier, at
the 0th offset, denoted by a small black box in the figure, and (iii) the fields of A

in SL1.
—The second layer, in which semi-layer SL3 includes the fields of D, and the fields

introduced by I itself.

Not all types use all semi-layers: H uses only SL1, B does not use SL3, and D

does not use SL2. The type identifier (or, alternatively, the root of the hierarchy)
is present in all types; since it is in SL1, there are no types which do not use this
semi-layer.

Notice also the following points:

(1) Semi-layers SL1 and SL2, which comprise the first layer, are in a fixed offset; SL3

occurs at different offsets in different types.
(2) Each type is always placed in the same position in its semi-layer. In other

words, the two-dimensional address of a type is fixed in all of its descendants.
For example, type I is located in the second position in SL3 in the layouts
of all of its descendants: I, L, M, and N. Thus, the two dimensional address
of I is 〈3, 2〉. Also, the addresses of its (proper) ancestors: E, A, and D, are
(respectively), 〈2, 1〉, 〈1, 1〉, and 〈3, 1〉.

(3) The layout is contiguous (Definition 4.4): there are no holes in the layout of
any of types A, . . . , N.
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For example, the entire layout (Definition 4.2) of type I is given by

L(I) = {〈2, 1〉, 〈1, 1〉, 〈3, 1〉, 〈3, 2〉}.
We can check that set L(I) represents a contiguous layout by verifying that
each of the semi-layers is contiguous: no positions other than the first in SL2

and SL1, and the first and second in SL3 are occupied.
(4) The same position in the same semi-layer can be used for different types. For

example, the first position of SL2 stores the fields of B in the layout of B and F,
the fields of G in the layout of G and K, and the fields of E in the layout of e.g., J.
This does not pose a problem, since at most one of B, G and E is laid out in
any type of the hierarchy. Thus, the layout is collision-free (Definition 4.3).

(5) Types are allocated to semi-layers in descending subtyping order. For example,
we see that types A, C, H, L and N are placed in this order in SL1 in the layout
of N and that AºCºHº LºN.

We finally note that the differences between the compact layout as depicted in
Figure 8 and the other two layouts (canonical and inlined) are as follows: In the
inlined layout, in addition to the type-id that is depicted as a dot, we would also
store the offset of the third layer (instead of storing it in the shared type-record). In
the canonical layout, we treat all layers in a uniform way, thus the object’s pointer
would point to an array of pointers to layers as depicted in Figure 7.

9. DATA SET

For the purpose of evaluating the multi-layer object layout scheme, we used an en-
semble of 28 type hierarchies, drawn from eight different programming languages,
and spanning almost 50,000 types. The first 27 hierarchies3 were used in our pre-
vious benchmarks. A detailed description of their origin, respective programming
language, and many of their statistical and topological properties can be found
elsewhere [Zibin and Gil 2001; 2002]. (Even though multiple inheritance of fields
is not possible in Java, the Java hierarchies are still useful in characterizing how
programmers tend to use multiple inheritance. When translating these Java hier-
archies to C++ one would get multiple inheritance hierarchies. Although these
hierarchies are degenerate in the sense that no fields are defined in classes that corre-
spond to interfaces, we assumed that a programmer might add some field definitions
and method code.) To these we added Flavors [Moon 1986], a 67-type hierarchy
representing the multi-inheritance core of the Flavors language benchmark used
by Pugh and Weddell [1990, Fig. 5].

Together, the hierarchies span a range of sizes, from 67 types (in IDL and Fla-
vors) up to 8,793 types in MI: IBM SF, the median being 930 types. The hierar-
chies are relatively shallow, with heights between 9 and 17. Most types have just
one parent, and the overall average number of parents is 1.2. In these and other
respects, the hierarchies are not very different from balanced binary trees [Eckel
and Gil 2000].

3IDL, MI: IBM XML, JDK 1.1, Laure, Ed, LOV, Cecil2, Cecil-, Unidraw, Harlequin, MI: Orbacus
Test, MI: HotJava, Dylan, Cecil, Geode, MI: Orbacus, Vor3, MI: Corba, JDK 1.18, Self, Vortex3,
Eiffel4, MI: Orbix, JDK 1.22, JDK 1.30, MI: JDK 1.3.1, and MI: IBM SF.
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The number of ancestors is typically small, averaging less than 10 in most hierar-
chies. Exceptions are the Geode and the Self hierarchies, which make an extensive
use of multiple inheritance. In Geode, there are 14 ancestors on average per type,
and there exists a type with as many as 50 ancestors. Self has 31 ancestors in
average per type. The topology of Self is quite unique in that almost all types in it
inherit from a type with 23 ancestors. Table I below gives (among other informa-
tion), the number of types in each hierarchy, and the maximal and average number
of ancestors.

10. EXPERIMENTAL RESULTS

The next subsection presents the results of computing the two-dimensional layout
with Algorithm 1 and Algorithm 2 on our data set, followed by a comparison with
previous work.

10.1 Two-dimensional Bi-Directional layout

Since the layout depends on a graph-coloring heuristic (Line 1 of Algorithm 2),
we would like first to examine the quality of the coloring computed by our greedy
coloring heuristic. We remind the reader that if a graph has a clique of size k, then
it cannot be colored by fewer than k colors. Although it is not easy to find cliques
in general graphs, some cliques can be efficiently found in conflict graphs. Consider
a type t and its set of ancestors ancestors(t). Let Pt ⊆ ancestors(t) be a set of
types which are pair-wise incomparable. Then any t1, t2 ∈ Pt are in conflict, and
the set Pt is a clique in the conflict graph. Finding a maximal set of incomparable
nodes in a hierarchy is a standard procedure of finding a maximal anti-chain in a
partial order [Trotter 1992].

Table I compares the number of colors and layers with the predictions of the
lower bound thus found.

Let

ωt = max{|Pt| | Pt ⊆ ancestors(t) is a set of pair-wise incomparable types},
i.e., ωt is the size of the maximal anti-chain among the ancestors of t. Then,

ω = max
t∈T

{ωt}

is a lower bound on the number of colors (or semi-layers), and dω/2e is a lower bound
on the number of layers Γ. We see in the table that Φ > ω only in seven hierarchies:
Flavors, Ed, LOV, MI: Orbacus Test, MI: HotJava, Geode and MI: Corba. In
these seven cases, Φ = ω + 1, so the number of colors was off by at most one from
the lower bound. Further, as the next two columns indicate, the situation that the
number of layers is greater than the prediction of the lower bound, occurs in only
three hierarchies: Ed, MI: HotJava and MI: Corba.

It is also interesting to compare the number of colors and the number of layers
with the maximal number of ancestors, denoted α = max(θt). In our data-set, the
number of colors is never greater than the maximal number of ancestors, and is
typically much smaller than it. The number of entries in the LDT is even smaller,
since every two colors are mapped to a single layer.

The maximal number of layers in the field dispatching technique is exactly α,
since each layer is a singleton. The field dispatch matrix can be compressed using
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Hierarchy 〈T ,¹〉 n = |T | ω a Φ b dω/2e dΦ/2e max(θt)
c avg(Γt)

d avg(θt)
e

Flavors 67 3 4 2 2 13 1.6 4.9
IDL 67 2 2 1 1 9 1.0 4.8
MI: IBM XML 145 5 5 3 3 14 1.5 4.4
JDK 1.1 226 2 2 1 1 8 1.0 4.2
Laure 295 3 3 2 2 16 1.1 8.1
Ed 434 12 13 6 7 23 3.2 8.0
LOV 436 13 14 7 7 24 3.5 8.5
Cecil2 472 8 8 4 4 29 2.0 7.4
Cecil- 473 8 8 4 4 29 2.0 7.4
Unidraw 614 3 3 2 2 10 1.0 4.0
Harlequin 666 14 14 7 7 31 1.9 6.7
MI: Orbacus Test 689 3 4 2 2 12 1.3 3.9
MI: HotJava 736 14 15 7 8 23 2.0 5.1
Dylan 925 3 3 2 2 13 1.1 5.5
Cecil 932 6 6 3 3 23 1.7 6.5
Geode 1,318 21 22 11 11 50 5.1 14.0
MI: Orbacus 1,379 11 11 6 6 19 1.6 4.5
Vor3 1,660 6 6 3 3 27 1.6 7.5
MI: Corba 1,699 6 7 3 4 18 1.3 3.9
JDK 1.18 1,704 12 12 6 6 16 1.2 4.3
Self 1,802 24 24 12 12 41 10.7 30.9
Vortex3 1,954 8 8 4 4 30 1.7 7.2
Eiffel4 1,999 15 15 8 8 39 2.2 8.8
MI: Orbix 2,716 6 6 3 3 13 1.1 2.8
JDK 1.22 4,339 14 14 7 7 17 1.5 4.4
JDK 1.30 5,438 15 15 8 8 19 1.5 4.4
MI: JDK 1.3.1 7,401 21 21 11 11 24 1.5 4.4
MI: IBM SF 8,793 13 13 7 7 30 2.3 9.2

athe maximal size of an anti-chain in the ancestors of any type t ∈ T
bthe number of colors (or semi-layers) used by Algorithm 2
cmax{θt | t ∈ T }
d 1

n

∑
t∈T Γt

e 1
n

∑
t∈T θt

Table I. Statistics on the input hierarchies, including the number of colors and layers found by
the greedy heuristic compared with the maximal anti-chain lower bound

method dispatching techniques, such as selector coloring [Dixon et al. 1989; Pascal
and Royer 1992]. A lower bound on the space requirement of selector coloring
is n × α. We therefore have that the static memory of our layout scheme n × Γ
is superior to that of the field dispatch matrix compressed using selector coloring.
(Using other techniques for compressing the dispatching matrix [Zibin and Gil 2002]
might yield a smaller field dispatch matrix.)

The next two columns of Table I give another comparison of hash-table implemen-
tation of the LDT with a hash table implementation of the field dispatch matrix.
We see that the number of layers which each object uses is typically small. No more
than 3.5 in all but the Self and Geode hierarchies. In all hierarchies, we see that
the average number of ancestors is much greater than the average number of layers.
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This shows that (i) the greedy heuristic is successful in compressing multiple types
into layers, and consequently that (ii) the LDT places weaker demands than the
field dispatch matrix on static memory.

10.2 Comparison with Previous Work

Recall the evaluation criteria of Section 1.3: creation time, field access efficiency,
dynamic- and static-memory overhead. We next compare our new layout with three
C++ layout schemes: the standard, simple-inline, and aggressive-inline [2000].
There is no fair comparison of our layout with Pugh and Weddell [1990] fixed offsets
algorithm since our layout has zero dynamic memory overhead but with additional
cost to field access whereas the fixed offset algorithm has dynamic memory overhead
(objects have “holes”) but field access requires one load. For example, in the
Flavors hierarchy Pugh and Weddell reported 6% dynamic memory overhead
(assuming a single instance per type). Our scheme uses only two layers for this
hierarchy, and the probability that a field access would require extra dereferences
is only 0.19.

Creation time: As argued in Theorem 7.3, the theoretical complexity of the
algorithm is cubic. However, the fact that the average number of ancestors in actual
hierarchies is small, makes its runtime much more tolerable.

By applying some rather straightforward algorithmic optimizations, e.g., con-
sidering in line 2 of Algorithm 1 only types which have more than one parent,
the run times were reduced even further. On a Pentium III, 900Mhz machine,
equipped with 256MB internal memory and running a Windows 2000 operating
system, Algorithm 2 required less than 10 mSec in 19 hierarchies. Seven hierar-
chies required between 10 mSec and 50 mSec. The worst hierarchy was MI: IBM
SF which took 400 mSec. The total runtime for all hierarchies was 650 mSec,
which gives on average 13µSec of CPU time per type. The runtime of the C++
aggressive-inline procedure on the same hardware is much slower. For example,
aggressive inline of MI: IBM SF took 3,586 mSec, i.e., about 9 times slower. Simple
inline of MI: IBM SF took 2,294 mSec, which is still much slower.

Field access efficiency: Since the hierarchies were drawn from different lan-
guages and were not associated with any application programs, we were unable
to directly measure the actual cost of field access in the various layout schemes.
Moreover, replacing the layout scheme of C++ is a major design challenge since
it requires changing the dispatching mechanism as well due to strong coupling be-
tween dispatching and layout in C++ . (The layout of the virtual tables is identical
to the way the object’s fields are laid out.) We can however derive other metrics
to compare the costs of the new layout technique with that of prior art.

For example, the number of layers used by a given type, gives an indication on
the number of different dereferences required to access all the object fields. The
corresponding metric in C++ is the number of virtual bases, which can be accessed
only by dereferencing a VBPTR.

Figure 9 compares the average number of layers of the new scheme with that
of the standard C++ implementation, the simple inlined implementation and the
aggressive inlined implementation.

We see in the figure that with the exception of Self hierarchy (which as we
mentioned above has a very unique topology), the new layout scheme is always
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Fig. 9. Average no. of layers in different hierarchies.

superior to the standard- and simple-inlined implementation of C++ . Moreover,
the new scheme is superior or comparable with the aggressive-inline layout scheme,
with the exception of four hierarchies: Ed, LOV, Geode and Self. Comparing the
maximal- rather than the average- number of layers yields similar results.

We also offer a more sophisticated theoretical model for comparing the perfor-
mance of various schemes of object layout which involve indirection to access various
fields. Suppose that a certain field was retrieved from a certain layer. Then, a good
optimizing compiler should be able to reuse the address of this layer in retrieving
other fields from this layer. Even in the standard C++ layout, the compiler may
be able to reuse the address of a virtual base to fetch additional fields from this
base.

For a fixed type t, and for a sequence of k field accesses, we would like to com-
pute At(k), the expected number of extra dereferences required to access these
fields. Due to missing empirical data from our ensemble of hierarchies, we make
two simplifying assumptions:

(1) Uniform class size. The number of fields introduced in each type is the same.
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Although evidently inaccurate, this assumption should not be crucial to the
results. We do expect that most classes introduce a small number of fields,
with a relatively small variety.

(2) Uniform access probability. The probability of accessing any certain field is
fixed, and is independent of the fields accessed previously, nor of the type in
which the field is defined. This assumption is clearly in contradiction to the
principle of locality of reference.
However, as we shall see, locality of reference improves the performance of
layout schemes. It is not clear whether this improvement contribute more to
any specific scheme.

The θt ancestors of t are laid out in Γt different layers or virtual bases, such that
layer i (virtual base i) has θt(i) ancestors. The first layer can always be accessed
directly. Access to a field in layer i in step k requires a dereference operation, if
that layer was not accessed in steps 1, . . . , k − 1.

Let Xt(i), i = 2, . . . , Γt be the random binary variable which is 1 if a field of
level i was not referenced in any of the steps 1, . . . , k. Then,

Prob[Xt(i) = 1] = Exp(Xt(i)) =
(

1− θt(i)
θt

)k

.

Additivity of expectation allows us to sum the above over i, obtaining that the
expected number of levels (other than the first) which were not referenced is

Γt∑

i=2

(
1− θt(i)

θt

)k

.

Using the linearity of expectation, we find that the expected number of referenced
levels, i.e., the number of dereferences is simply

At(k) = (Γ− 1)−
Γt∑

i=2

(
1− θt(i)

θt

)k

. (5)

Averaging over an entire type hierarchy, we define

A(k) =
1
n

∑

t∈T
At(k) (6)

Figure 10 gives a plot of A(k) vs. k in four sample hierarchies (other hierar-
chies give rise to similar graphs) in the layout schemes field dispatching, standard
C++ layout, simple inline (S-Inline), aggressive inline (A-Inline), and our two-
dimensional bi-directional layout (TDBD). Values of A(k) were computed using (5)
and (6) in the respective hierarchy and object layout scheme. For field dispatching,
we set θt(i) = 1.

It is interesting to see that in all hierarchies and in all layout schemes, the ex-
pected number of dereferences is much smaller than the number of actual fields
accessed. It is also not surprising that A(k) increases quickly at first and slowly
later. As expected, the new scheme is much better than field dispatching. The
graphs give hope of saving about 75% of the dereferences incurred in field dispatch-
ing. (Note however that the model does not take into account any optimizations
which runtime systems may apply to field dispatching.)
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Fig. 10. Average no. of dereferences vs. no. of field accesses in four hierarchies.

The other, C++ specific techniques are also more efficient than field dispatching.
We now turn to comparing these with our scheme. In the Vortex3 hierarchy the
new scheme dramatically improves the expected number of dereferences compared
to any of the C++ layout schemes. The new scheme is also the best in smaller k
values in the Eiffel4 hierarchy, and is comparable to aggressive inline with greater
values of k. Another typical behavior is demonstrated by MI: IBM SF, in which
the new scheme is almost the same as aggressive-inline. In the Geode hierarchy
which is one of the two hierarchies in which the two-dimensional bi-directional
scheme cannot find a good partitioning into a small number of layers, we find that
aggressive inline gives the best results in terms of field access efficiency. Still, even
in this hierarchy the new scheme is better than the standard C++ implementation
and the simple-inline outline heuristic.

Dynamic memory: As mentioned before, our layout incurs no dynamic mem-
ory overhead. In contrast, the various C++ layout schemes sometimes store multi-
ple VPTRs, as explained in Section 3.2. Table II shows the extra dynamic memory
consumed by those VPTRs.

Curiously, the four hierarchies in which the new scheme does not perform as well,
Ed, LOV, Geode and Self, are exactly the hierarchies in which the C++ schemes,
including the highly optimized aggressive inline waste the most amount of dynamic
memory.

Static memory: The static memory overhead of our layout can be found in
Table I. We see that on the worst case the number of layers was 12, in which case
our layout stores 12 bytes per type. For example, in a hierarchy with 10,000 types
and 12 layers, the static memory overhead of our technique is 120KB.
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Hierarchy
Average Median Maximum

C++ S-In A-In C++ S-In A-In C++ S-In A-In

Flavors 3.4 3.2 2.4 3 3 2 9 8 5
IDL 1.9 1.6 1.2 2 2 1 3 2 2
MI: IBM XML 2.8 2.8 2.0 2 2 1 9 9 6
JDK 1.1 2.1 2.0 1.8 2 2 2 4 4 3
Laure 3.9 3.2 2.3 4 3 2 8 7 5
Ed 5.2 5.0 4.2 4 4 4 16 16 12
LOV 5.6 5.5 4.6 5 5 4 17 17 13
Cecil2 4.6 4.4 3.4 3 3 3 17 15 9
Cecil- 4.6 4.3 3.5 3 3 3 17 15 9
Unidraw 1.4 1.4 1.4 1 1 1 4 3 3
Harlequin 3.6 3.2 2.7 2 2 2 21 19 16
MI: Orbacus Test 2.5 2.1 1.7 2 2 1 8 6 5
MI: HotJava 2.9 2.9 2.7 2 2 2 17 17 15
Dylan 2.0 1.9 1.3 2 2 1 7 6 5
Cecil 3.7 3.5 2.7 3 3 2 16 13 8
Geode 9.9 9.5 8.3 9 9 7 32 31 27
MI: Orbacus 2.8 2.6 2.2 2 2 1 13 12 11
Vor3 4.6 4.2 3.5 4 3 3 17 14 11
MI: Corba 2.6 2.3 1.7 2 2 1 14 12 10
JDK 1.18 1.9 1.9 1.7 2 2 1 14 13 12
Self 21.2 21.2 21.1 22 22 22 26 25 25
Vortex3 4.4 3.8 3.4 3 3 3 18 15 11
Eiffel4 3.7 3.4 3.1 2 2 2 20 17 16
MI: Orbix 1.5 1.4 1.3 1 1 1 7 7 6
JDK 1.22 2.4 2.3 2.1 2 2 2 16 15 14
JDK 1.30 2.4 2.3 2.1 2 2 2 17 17 16
MI: JDK 1.3.1 2.3 2.3 2.0 2 2 1 23 22 21
MI: IBM SF 5.8 5.8 3.6 6 6 3 16 16 13

Total 4.2 4.0 3.3 - - 22 32 31 27

Median 3.2 3.0 2.4 2 2 2 16 14.5 11
Minimum 1.4 1.4 1.2 1 1 1 3 2 2
Maximum 21.2 21.2 21.1 22 22 22 32 31 27

Table II. No. of VPTRs using standard C++ layout, simple inline (S-In), and aggressive inline
(A-In)

For the C++ layouts, the VBPTRs can be a source for static memory (if they
are not inlined in the object, in which case they contribute to the dynamic memory).
A lower bound on the average number of VBPTR in an object is the number of
layers in Figure 9. (An object can also have inessential VBPTRs [2000].) We see
that in the worst case the average number of VBPTRs per type is less than 8.

11. CONCLUSIONS AND OPEN PROBLEMS

The two-dimensional bi-directional object layout scheme enjoys the following prop-
erties: (i) the dynamic memory overhead per object is a single type-identifier,
(ii) the static memory per type is small: at most 11 cells in our data set, but
usually only around 5 cells, (iii) small time for computing the layout: an average
of 13 µSec per type in our data set, and (iv) good field access efficiency as predicted
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by our analytical model: the new scheme always improves upon the field dispatch-
ing scheme and on the standard C++ layout model. The new scheme compares
favorably even with a highly optimized C++ layout.

We note that the new scheme does not rely on this-adjustment, and in the few
hierarchies where the aggressive-inline of C++ won, it was with the cost of large
dynamic memory overheads, e.g., as much as 21 VPTRs on average per object in
the Self hierarchy.

The one-dimensional bi-directional layout of Pugh and Weddell’s [1990] realizes
field access in a single indirection, but it may leave holes in some objects. In compar-
ison, our two-dimensional bi-directional layout has no dynamic memory overheads,
but a field access might require extra dereferences. In the Flavors hierarchy Pugh
and Weddell reported 6% dynamic memory overhead (assuming a single instance
per type). Our scheme uses only two layers for this hierarchy, and the probability
that a field access would require extra dereferences is only 0.19.

Directions for future work include empirical study of frequencies of field accesses,
and further reducing the static memory overheads. In dynamically typed languages
where fields can be overloaded, the layout algorithm must color fields instead of
types. Empirical data should be gathered to evaluate the efficiency of the layout
algorithm in such languages.
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A. NOTATION

Acronym Expansion
LDT Layers Dispatch Table
VBPTR Virtual Base Pointer (in C++ )
VPTR Virtual Function Pointer (a pointer to a virtual function table in

C++ )
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Symbol Denotes
¹ The subtype relation
T The set of types
A, . . . , J, R Concrete types
a, b, t, t′ Type variables; a, b, t, t′ ∈ T
r The root of the type hierarchy
|t| The number of fields introduced in t
o Some object
f Some field
n Number of types; n = |T |
Φ The number of colors required to color the conflict graph, which

is also the number of semi-layers
Γ The number of layers; Γ = dΦ/2e
Γt The number of non-empty layers in the layout of type t
ρ(t) The integral position of t in its semi-layer, ρ(t) > 0
∆(t) The integral offset of t in its layer (can be negative)
∆(f) The offset of a field f within its type
φ(t) The semi-layer of type t, 1 ≤ φ(t) ≤ Φ
`(t) The layer of type t, 1 ≤ `(t) ≤ Γ
〈φ(t), ρ(t)〉 The uni-directional two-dimensional address of a type t
〈`(t),∆(t)〉 The bi-directional two-dimensional address of a type t
θt The number of ancestors of type t
θt(i) The number of ancestors of type t in layer i
L(t) The entire layout of a type t, i.e., the multi-set of addresses of t

and its ancestors
At(k) The expected number of extra dereferences required to access k

random fields in t
A(k) The average of At(k) over an entire type hierarchy
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