
Efficient Dynamic Dispatching with Type Slicing

Joseph (Yossi) Gil1

yogi@cs.technion.ac.il

and

Yoav Zibin

yoav@zibin.net

Technion—Israel Institute of Technology

A fundamental problem in the implementation of object-oriented languages is that of a frugal
implementation of dynamic dispatching, i.e., a small footprint data structure that supports quick
response to runtime dispatching queries of the following format: which method should be executed
in response to a certain message sent to a given object. Previous theoretical algorithms for this
problem tend to be impractical due to their conceptual complexity and large hidden constants.
In contrast, successful practical heuristics lack theoretical support.

The contribution of this paper is in a novel type slicing technique, which results in two dispatch-
ing schemes: TS and CTd. We make the case for these schemes both practically and theoretically.
The empirical findings on a corpus of 35 hierarchies totaling some 64 thousand types from 8 dif-
ferent languages, demonstrate improvement over previous results in terms of the space required
for the representation, and the time required for computing it.

The theoretical analysis is with respect to ι, the best possible compression factor of the dis-
patching matrix. The results are expressed as a function of a parameter κ, which can be thought
of as a metric of the complexity of the topology of a multiple inheritance hierarchy. In single
inheritance hierarchies κ = 1, but although κ can be in the order of the size of the hierarchy, it is
typically a small constant in actual use of inheritance; in our corpus, the median value of κ is 5,
while its average is 6.4.

The TS scheme generalizes the famous interval containment technique to multiple inheritance.
TS achieves a compression factor of ι/κ, i.e., our generalization comes with an increase to the
space requirement by a small factor of κ. The pay is in the dispatching time, which is no longer
constant as in a naive matrix implementation, but logarithmic in the number of different method
implementations. In practice, dispatching uses one indirect branch and, on average, only 2.5
binary branches.

The CT schemes are a sequence of algorithms CT1, CT2, CT3, . . . , where CTd uses d mem-
ory dereferencing operations during dispatch, and achieves a compression factor of 1

d
ι1−1/d in a

single inheritance setting. A generalization of these algorithms to a multiple inheritance setting,
increases the space by a factor of (2κ)1−1/d. This tradeoff represents the first bounds on the com-
pression ratio of constant-time dispatching algorithms. We also present an incremental variant of
the CTd suited for languages such as Java.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language Constructs and Features—Data types;
structures; G.4 [Mathematical Software]: Algorithm design; analysis

Some of the material presented here was published previously in the proceedings of OOP-
SLA’02 [Zibin and Gil 2002] and the proceedings of POPL’03 [Zibin and Gil 2003].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005, Pages 1–53.

2 · J. Gil and Y. Zibin

General Terms: Algorithms, Design, Measurement, Performance, Theory

Additional Key Words and Phrases: CT, Dispatch, Dynamic-typing, Hierarchy, Incremental, Mes-
sage, Subtyping, Type slicing

1. INTRODUCTION

Message dispatching stands at the heart of object-oriented (OO) programs, be-
ing the only way objects communicate with each other. Indeed, it was demon-
strated [Driesen and Hölzle 1996] that OO programs spend a considerable amount
of time in implementing dynamic dispatching. There is a large body of research ded-
icated to the problem of “efficient” implementation of message dispatching [Conroy
and Pelegri-Llopart 1983; Deutsch and Schiffman 1984; Dixon et al. 1989; Kicza-
les and Rodriguez 1990; Hölzle et al. 1991; Pascal and Royer 1992; Driesen 1993;
Vitek and Horspool 1994; Vitek 1995; Driesen and Hölzle 1995; Driesen et al. 1995b;
Ferragina and Muthukrishnan 1996; Muthukrishnan and Müller 1996; Vitek and
Horspool 1996; Driesen and Hölzle 1996; Zendra et al. 1997; Driesen et al. 1995a;
Driesen 1999; Naik and Kumar 2000].

To implement dynamic binding during dispatch, the runtime system of OO lan-
guages uses a dispatching data structure, in which a dispatching query finds the
appropriate implementation of the message to be called, according to the dynamic
type of the message receiver. A fundamental problem in the implementation of such
languages is then a frugal implementation of this data structure, i.e., simultaneously
satisfying (i) compact representation of the type hierarchy and the sets of different
implementations of each message, (ii) quick response to dispatching queries, and
(iii) fast creation of the dispatching data structure.

These are the main variation of the dispatching problem:

(1) Single inheritance vs. Multiple inheritance In a single inheritance hi-
erarchy each type has at most one direct supertype, which means that the
hierarchy takes a tree or forest topology, as in Smalltalk [Goldberg 1984],
ObjectiveC [Cox 1986], and other OO languages. Algorithms in the single
inheritance setting tend to be more efficient than the general case of multi-
ple inheritance. Some OO languages fall in between these two variations. For
example, Java [Arnold and Gosling 1996] has a multiple inheritance type hier-
archy, but a single inheritance class hierarchy.

(2) Incremental- vs. batch- algorithms We are also interested in incremental
algorithms where the hierarchy evolves at runtime. The most important kind
of change is the addition of types (together with their accompanying messages
and methods) at the bottom of hierarchy, also called dynamic loading. (This is
the case in Java, where types may be added as leaves at run time.) Previous
research explored addition of methods to existing nodes, as well as deletion of
types and other modifications.

(3) Statically- vs. dynamically typed languages Statically typed languages
such as Eiffel [ISE 1997] and C++ [Stroustrup 1997] may provide (partial)
type information. The challenge is in utilizing this information at runtime.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 3

Conversely, it is often more difficult to find algorithms for dynamically typed
languages (sometimes called dynamic-typing).

Virtual function tables (VFT) make a simple and well known (see e.g., [Strous-
trup 1994]) incremental technique which achieves dispatching in constant time (two
dereferencing operations), and very good compaction rates. The VFT of each type
is an array of method addresses. A location in this array represents a message, while
its content is the address of an implementing method. The VFT of a subtype is an
extension of the VFT of its supertype, and messages are allocated locations at com-
pile time in sequential order. The static type of the receiver uniquely determines
the location associated with each message. VFTs rely both on static typing and
single inheritance. Multiple inheritance implementations exist [Gil and Sweeney
1999], but they are not as elegant or efficient.

The challenge in the dispatching problem is therefore mostly in dealing with
dynamically typed and/or multiple inheritance languages. Our contribution (de-
scribed in greater detail in Section 1.3) includes a provable tradeoff between space
and dispatching time with extensions to multiple inheritance hierarchies. The pin-
nacle of the results is an incremental algorithm for maintaining a compact dispatch
table in languages such as Java.

The empirical evaluation of our algorithms was done on a corpus of 35 hierar-
chies totaling some 64 thousand types from 8 different languages, with the purpose
of making our research language independent. We demonstrate improvement over
previous results in terms of the space required for the representation, and the time
required for computing it. We describe the dispatching sequence for each technique,
without any hidden constants, however, we do not present actual dispatching time
nor do we measure code-space costs due to the language independent setting. In-
corporating our algorithms into a runtime system (e.g., in an industrial JVM), fine
tuning various parameters, and measuring runtime and code-space costs are left for
future work.

1.1 The Problem

We define the dispatching problem in a similar fashion to the colored-ancestors
abstraction described by Ferragina and Muthukrishnan [Ferragina and Muthukr-
ishnan 1996]: a hierarchy is a partially ordered set 〈T ,¹〉 where T is a set of types2

and ¹ is a reflexive, transitive and anti-symmetric subtype relation. For example,
in Java, T is the set of classes and interfaces, and ¹ is the transitive closure of the
extends and implements relations.

If a and b are types, i.e., a, b ∈ T , and a¹ b holds, we say that a is a subtype (or
a descendant) of b and that b is a supertype (or an ancestor) of a. Direct subtypes
(supertypes) are called children (parents).

We use the term message for the unique identifier of a set of implementing meth-
ods (also called member functions, operations, features, implementations, etc.).

A message, which is sometimes called a selector (in e.g., Smalltalk or Ob-
jectiveC) or a signature (in e.g., Java or C++), may include, depending on
the programming language, components such as name, arity, and even the type of

2The distinction between type, class, interface, signature, etc., as it may occur in various languages
does not concern us here. We shall refer to all these collectively as types.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

4 · J. Gil and Y. Zibin

parameters. (Note that a consequence of feature renaming in Eiffel, is that the
message does not always include the name of a routine.)

The intuition however is the same in all OO languages: when an object receives
a message encoded as a selector, dispatching on the dynamic type of the receiver
must take place at runtime to find and invoke the implementation which is most
appropriate for the receiver’s dynamic type.

We will use the terms message and selector interchangeably.
Let the min(·) operator return the set of smallest types in any given set of types,

i.e.,

min(X) = {t ∈ X | 6 ∃t′ ∈ X • t′ 6= t, t′¹ t}. (1.1)

Given a message m, I(m) ⊆ T are the implementors of m, i.e., the set of
types which have a method implementation for m. Given a message m and a
type t, cand(m, t) is the set of candidates in I(m), i.e., those ancestors of t with an
implementation of m:

cand(m, t) ≡ I(m) ∩ ancestors(t). (1.2)

A dispatching query dispatch(m, t) returns either the smallest candidate or null if
no such unique candidate exists. (A null result represents either the message not
understood or message ambiguous error conditions.) Specifically,

dispatch(m, t) ≡
{

t′ if min(cand(m, t)) = {t′},
null otherwise.

(1.3)

Figure 1.1 depicts a hierarchy which will serve as our running example in this
paper. In the figure and henceforth, type names are denoted by uppercase letters,
printed in sans-serif font: A, B, C, . . . , while lower case letters in the same font
denote messages.

h,b
e

f
k

JG H K

FD E

A B C
a,l b,l c

k

d,a
c,k

e,c
l

g,d
a,l

i,f
e

j

Fig. 1.1. A small example of a hierarchy and the methods implemented in each type

In the figure we see, for example, that type D implements messages d, a, c and k.
The implementors of message c are I(c) = {C, D, E}. We also see in Figure 1.1 that
for this message

cand(c, K)= {C, E} dispatch(c, K)= E

cand(c, B)= ∅ dispatch(c, B)= null (message not understood)
cand(c, H)= {C, D, E} dispatch(c, H)= null (message ambiguous)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 5

The type checker of statically typed languages makes sure at compile time that
dispatching never results in null. It would therefore be a compilation error in such
a langauge to send c to objects whose static type is B or H. Moreover, it is a
compilation error even to send this message to any ancestor of H, e.g., type C. The
reason is that the type analyzer cannot infer [Gil and Itai 1998] that the dynamic
type is not H.

We shall assume a pre-processing stage in which all ambiguities are resolved by an
appropriate augmentation of the set implementors. In the example, we add type H

to the implementors I(c) since dispatch(c, H) resulted in message ambiguous. As
in previous work [Holst et al. 1998; Pang et al. 1999] in which this assumption
was made, our working hypothesis is that the ensuing increase of problem size is
insignificant in practice.

Figure 1.1 is an example of a multiple inheritance hierarchy, since, e.g., type D

has two parents: A and C. Single inheritance, in which each type has at most
one parent, is mandated by languages such as Smalltalk and ObjectiveC. The
fact that single inheritance hierarchies take a simple forest topology, makes single
inheritance an important special case, for which very efficient algorithms exist.

Definition 1.1. Given a hierarchy 〈T ,¹〉, a set of messages M, and the set
of implementors I(m) ⊆ T for every m ∈ M, the dispatching problem is to en-
code the hierarchy in a data structure supporting dispatch(m, t) queries for every
message m ∈M and every type t ∈ T .

We assume that each object includes an accessible type-id, and tacitly ignore the
object space overheads and the time of retrieving such type-id. This assumption
is justified by the practice of implementation of OO languages, which invariably
attach a run-time type identifier to each object.

Also, we assume that a message is supplied to the dispatching mechanism at
runtime as an integer selector. In the batch (non-incremental) variant, we assume
that this selector is known at compile time, and accordingly allow any pre-processing
which is dependent solely on this selector. Given the object type-id and this selector,
the dispatch query means that the runtime system must compute the address of the
method defined in the smallest candidate, and jump to it.

A solution to the dispatching problem is measured by the following three metrics:
(i) the space that the data structure occupies in memory, (ii) the time required for
processing a query, and (iii) the time for generating the data structure from the
input hierarchy. The incremental version of the problem, is to maintain this data
structure in the face of additions of types (with their accompanying methods) to
the bottom of the hierarchy, as done in languages such as Java.

We would like to express these metrics as a function of the following parameters
of the problem:

—The number of types in the hierarchy

n ≡ |T |. (1.4)

—The number of different messages that can be sent during runtime

m ≡ |M|. (1.5)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

6 · J. Gil and Y. Zibin

—The total number of different method implementations

i ≡
∑

m∈M
|I(m)|. (1.6)

—The number of valid message-type combinations, i.e., combinations which do not
result in null

w ≡ |{〈m, t〉 | dispatch(m, t) 6= null}|. (1.7)

In Figure 1.1 for example, we have n = 10, m = 12, i = 27 and w = 46.

1.2 Simple Solutions

The most obvious solution to the dispatching problem is in a n ×m dispatching
matrix, storing the outcomes of all possible dispatching queries. We stress that
the order of rows and columns in the dispatching matrix is arbitrary, and the
performance of some algorithms for compressing the matrix may depend heavily on
the chosen ordering.

The dispatching matrix of our running example is presented in Figure 1.2a, where
the nm−w type-message pairs which result in null are represented as empty entries.

a b c d e f g h i
A
B
C
D
E
F
G
H
K
J

j lk

(a) (b)

C
D
C

D
D
F
F

F

A

D
A

A
D

A

G

B

E

G G
H

K
J

B
C
D

E
C

B
D

F

A

E
E

H
K

F
E

C
D

K

G

E

B

D

H

n

m

H

b
B
E
H
K

B

B

B

H

Fig. 1.2. (a) The dispatching matrix, and (b) the sorted dictionary for message b

The figure depicts in grey all i entries which represent a method implemented in a
certain type. For example, the top right grey entry is to say that type A has an im-
plementation of message l. (Recall that type H was added to the implementors I(c)
to resolve an ambiguity. Therefore, the cell corresponding to 〈H, c〉 is rendered in
grey.)

In the matrix representation, queries are answered by a quick indexing operation.
However, the space consumption is inhibitively large, e.g., 512MB for the dispatch-
ing matrix in the largest hierarchy in our benchmarks (8,793 types and 14,575
messages).

There are two opportunities for compressing the dispatching matrix: null elimi-
nation and duplicates elimination.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 7

1.2.1 Null elimination. There is much empirical evidence to show that dispatch-
ing matrices are very sparse. Null elimination is the attempt to store only the
non-null elements in the matrix. Examples of null-elimination schemes are row dis-
placement [Driesen 1993; Driesen and Hölzle 1995], selector coloring [Dixon et al.
1989; Pascal and Royer 1992], and virtual function tables (VFT) [Stroustrup 1994].
In single inheritance and static-typing setting of the problem, the VFT technique
uses precisely w memory cells.

The ratio (nm)/w is an upper bound on the compression rate which null elim-
ination might achieve. The matrix of Figure 1.2a has 120 = 10 × 12 entries, out
of which, 46 are non-null. Null elimination in this case gives a compression factor
of no more than 120/46 ≈ 2.6. In our benchmarks we found that on average, null
elimination might achieve compression by a factor of circa 150.

Null elimination can be achieved by storing each column as a sorted dictionary,
i.e., a sorted array of 〈key,value〉-pairs. In the running example, the sorted dictio-
nary for message b is depicted in Figure 1.2b. In this implementation, the query
time is logarithmic in the number of non-null entries in each column. Space is linear
in this number.

Dynamic perfect hashing (DPH) [Dietzfelbinger et al. 1994] is theoretically better
than sorted dictionaries. In this algorithm, each column (or the entire matrix for
that matter) is stored as a hash table. Indices (or their concatenation) serve as
keys. The space requirement is linear in w. More importantly, query time is
constant! Unfortunately, DPH is of mere theoretical interest since it carries large
hidden constants, which might offset any saving of space due to null elimination.
Even though dispatching time is constant in perfect hashing, it is complicated by
the finite-field arithmetic incurred during the computation of the hash function.

The more sophisticated previously published practical algorithms, try, and in
most cases achieve, complete, or almost complete null elimination with no hidden
constants and constant search time.

1.2.2 Duplicates elimination. Even though optimal null elimination may give
very good results, it still leaves something to be desired. In one hierarchy of our data
set, featuring 3,241 types, an optimal null elimination scheme still requires 2.4MB.
Duplicates elimination improves on null elimination by attempting to store only
the distinct i entries of the dispatching matrix. Therefore, the compression factor
of duplicates elimination is at most

ι ≡ (nm)/i. (1.8)

We shall refer to ι as the optimal compression factor, and to schemes attempting
to reach ι as duplicates-elimination schemes. In our data-set of 35 large hierarchies
(see Section 8), ι ≈ 725.

The ratio w/i gives the factor by which duplicates elimination can improve on
null elimination. This ratio was as high as 122.4 in one of our benchmarks. In
the matrix of Figure 1.2a there are 27 distinct entries, i.e., i = 27, so duplicates
elimination has the potential of compressing the dispatching matrix by a factor
of 120/27 ≈ 4.44.

It is not difficult to come close to full duplicates elimination, with a simple
representation of the hierarchy as a graph where types are nodes and immediate

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

8 · J. Gil and Y. Zibin

inheritance relations are edges. The cost is of course the search time, which be-
comes O(n), since each dispatch must traverse all the ancestors of a receiver in order
to find the smallest candidate. Sophisticated caching algorithms (as employed in
the runtime system of Smalltalk) make the typical case more tolerable than what
the worst case indicates.

The two dispatching techniques described in this paper (TS and CT) are both
duplicates elimination. Our challenge is to come as close as possible to optimal
duplicates elimination, i.e., space linear in the number of implementations i, while
still maintaining small, preferably constant, query time.

1.3 Contribution

There is a large body of research on the dispatching problem (see e.g., [Deutsch and
Schiffman 1984; Dixon et al. 1989; Hölzle et al. 1991; Pascal and Royer 1992; Driesen
1993; Vitek and Horspool 1994; Driesen and Hölzle 1995; Vitek and Horspool 1996;
Zendra et al. 1997; Zibin and Gil 2002; 2003]). The focus in these was on “practi-
cal” algorithms, which were evaluated empirically, rather than by provable upper
bound on memory usage. The main theoretical research on the topic [Ferragina
and Muthukrishnan 1996; Muthukrishnan and Müller 1996] produced algorithms
(for the single inheritance setting) which using minimal space (O(i) cells) supported
dispatching in doubly logarithmic, O(lg lg n), time. However, the hidden constants
are large, and the implementation is complicated.

Our two new algorithms are simple, efficient in practical terms, and their theo-
retical analysis does not carry any hidden constants. Both algorithms uses a novel
type slicing technique, whose efficiency is parameterized by the complexity of the
topology of a multiple inheritance hierarchy, denoted κ. In practice, this factor is
small, but in arbitrary hierarchies it might be in the order of the number of types.
In all single inheritance hierarchies, κ ≡ 1.

We are unaware of any non-exponential method for finding κ. Instead we use
the PQ-trees heuristic [Zibin and Gil 2001] which gives an upper-bound on κ. In a
benchmark of 19 multiple inheritance hierarchies with 34,810 types, we found the
median value of an upper bound for κ is 5, the average is 6.4, and the maximum is 18.
To achieve fast creation times in the TS algorithm we use an incremental heuristic
(see Appendix A) instead of using PQ-trees. When using the incremental heuristic
the median value of κ increases to 6.5, the average to 7.3, and the maximum to 19.

1.3.1 TS algorithm. Informally, we can say that our TS algorithm (first pub-
lished in [Zibin and Gil 2002]) generalizes the linear space interval containment
algorithm [Muthukrishnan and Müller 1996; Ferragina and Muthukrishnan 1996]
which is restricted to the single inheritance setting. Our main theoretical result
is that the generalization to the multiple inheritance case comes with a κ factor
increase in space, but in practice we find much better results.

In a collection of 35 hierarchies, totaling over 60,000 types, its space requirement
improves those of the famous row displacement (RD) algorithm [Driesen and Hölzle
1995] (arguably the best previously published algorithm in this category), in 32 out
of the 35 hierarchies of our data set; the median reduction in space is by a factor
of 2.6. The slowest runtime of our TS algorithm was less than a third of a second on
a modern processor; this time was on a hierarchy of circa nine thousand types and
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 9

fourteen thousand messages. In the vast majority of the hierarchies, the creation
time was less than a hundredth of a second. This is an improvement by one, two
and sometimes three orders of magnitude compared to RD.

The improvement of creation time and of space requirement comes with a penalty
of a small increase to dispatching time. Specifically, dispatching requires a binary
search in which the number of branches is logarithmic in the number of implementa-
tions of the dispatched message, or alternatively, doubly-logarithmic in the number
of types. Each dispatch requires about 2.5 branches on average, as well as one deref-
erencing operation. These numbers may be compared with the two dereferencing
steps required by the Virtual Function Tables (VFT) [Ellis and Stroustrup 1994]
standard implementation strategy of C++ in the single inheritance setting. Note
that in contrast with our results and most other dispatching algorithms, the VFT
technique is valid only in statically typed languages [Vitek and Horspool 1996].
Some dispatching schemes, such as RD and selector coloring (SC), require addi-
tional space and one more comparison at runtime in order to work in dynamically
typed languages.

Interestingly, there is a strong practical evidence that binary searches, which
are used in our implementation, may be faster than the simple VFT implementa-
tion. The trick is to inline the binary search by generating what was called “static
branch code” by the implementors of the SmallEiffel compiler [Zendra et al. 1997],
instead of the more general binary search routine. It was shown that with this op-
timization a binary search between fewer than 50 results was faster than the VFT
implementation in most architectures.

One of the explanations of this phenomenon is that indirect branches do not
schedule well on modern processors [Driesen et al. 1995b; Driesen and Hölzle 1996;
Driesen et al. 1995a; Driesen 1999]. Other, less direct, advantages of inlined binary
search is that it can take better advantage of type inference and that it is more
susceptible to inlining of method code and any ensuing optimization. The cost
of inlining is (of course) in an increase to the code size. Note that several other
previous publications suggested using a combination of binary searches, array look-
ups, and even linear searches [Hölzle et al. 1991; Chambers and Chen 1999; Naik
and Kumar 2000; Alpern et al. 2001] for dispatching.

1.3.2 CTd algorithm. Our CTd algorithm (first published in [Zibin and Gil
2003]) presents a different tradeoff than all previous work: constant-time dispatch-
ing in d steps, while using at most di d

√
ι cells. Stated differently, our results are

that d steps in dispatching (provably) achieve a compression rate of ι
d d
√

ι
. For ex-

ample, with d = 2 the compression is by a factor of at least half of the square
root of ι, the optimal compression rate. Also, the compression factor is close to
optimal, ι

2 lg m , when the dispatching time is logarithmic, lg m.
An important advantage of these results in comparison to previous theoretical

algorithms is that they are simple and straightforward to implement, and bear
no hidden constants. In fact, our algorithms are based on a successful practical
technique, namely compact dispatch tables (CT), which was invented by Vitek and
Horspool [Vitek and Horspool 1996]. Viewed differently, the results presented here
give the first proof of a non-trivial upper bound on practical algorithms.

Even though the algorithms carry on to multiple inheritance with the same
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

10 · J. Gil and Y. Zibin

time bounds of dispatching, the memory consumption increases by a factor of at
most (2κ)1−1/d.

We give empirical evidence that the algorithms perform well in practice, in many
cases even better than the theoretically obtained upper bounds.

We also describe an incremental version of the algorithms for languages such as
Java, and prove that updates to the dispatching data structures can be made in
optimal time. The cost is in a small constant factor increase (e.g., 2) to the memory
footprint.

Readers may also take interest in some proof techniques, including the representa-
tion of dispatching as search in a collection of partitionings, the elegant Lemma 6.1,
and the amortization analysis of the incremental algorithm.

Outline The remainder of this article is organized as follows. A survey of prior
dispatching techniques is the subject of Section 2.

Our TS algorithm is described in Section 3. Section 4 presents the generalized
CT schemes for single inheritance hierarchies. Section 5 shows how these schemes
can be made incremental. A (non-incremental) version of these schemes for multiple
inheritance hierarchies is described in Section 6.

The data set of the 35 hierarchies used in our benchmarking is presented in Sec-
tion 7. Section 8 presents the experimental results, comparing the performance of
both algorithms with those of previous algorithms. Finally, Section 9 mentions open
problems and directions for future research. Appendix A describes our heuristic for
performing type slicing.

2. PREVIOUS WORK

This section gives an overview of some of the dispatching techniques proposed in
the literature. The performance of these techniques might be improved by using
various forms of caching at runtime (see e.g., [Conroy and Pelegri-Llopart 1983;
Deutsch and Schiffman 1984; Hölzle et al. 1991]).

VFT: Virtual Function Tables [Ellis and Stroustrup 1994] As mentioned
above, the VFT technique is valid only in statically typed languages [Vitek and
Horspool 1996]. In a single inheritance setting, VFT achieves optimal null elimi-
nation and constant dispatch time. A distinguishing property of the technique is
that it does not require whole program information. The VFT of any type can be
constructed using only information regarding its ancestors.

The multiple inheritance version of the VFT is much more complicated than the
single inheritance version, with complicated space and time overheads. Each type
stores multiple VFTs, and if a method is inherited along more than one path, then
it will be stored in these more than once. Further, in presence of shared (virtual) in-
heritance, searching for an implementation is carried out by either following a chain
of pointers to ancestors, or by additional increase to object size using inessential
virtual base pointers [Gil and Sweeney 1999]. It was shown [Eckel and Gil 2000] that
these space overheads can be very significant. Even with this overhead, dispatching
time increases due to what is known in the C++ jargon as this-adjustment.3

3In general, dispatching in C++ is tightly coupled with its peculiar object-layout, and is therefore
not directly applicable to languages with different layout scheme. Simple object-layout have the
advantage of fast synchronization, hash-codes, and easier garbage collection.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 11

RD: Row Displacement [Driesen 1993; Driesen and Hölzle 1995] Another
null elimination technique is due to Driesen [Driesen 1993] who suggested to dis-
place the rows in the dispatching matrix by different offsets so that they could be
merged together in a master array. Later [Driesen and Hölzle 1995] it was found
that selector-based RD, i.e., a displacement of columns rather than rows, gives
much better compression values. In fact, this technique comes very close (median
value 94.7%) to optimal null elimination.

In dynamically typed languages vanilla RD does not work, since null entries
which correspond to message not understood will usually become occupied. It is
possible to amend RD with an increase to space requirement and adding one more
comparison at runtime.4 We stress that duplicates elimination (which we use) does
not suffer from this limitation.

It is obvious that selector-based RD is not incremental, but we note that even
type-based RD does not perform well incrementally since it relies on a global heuris-
tic for reordering of the selectors.

Figure 2.1 shows parts of the selector-based RD compression of our running
examples. Note that the types are reordered to achieve better compression values.

a b c d e f g h i j lk d

f

h

H
D

F

K

F

D
G

.
.
.

A

B
C

D

E

F

G

H
K

J

A
D

A
H

A
D

G G

H
K

J

B

C

D

E

C

B
D

F

H
K

F

E

C

D

K

G
E

B

D

H
K

F

D
H

D
G

.
.
.

.
.
.

C

D

C
D

D
F

F
F

A

B

E
G
A

E
E

F

(a) (b) (c)

Fig. 2.1. (a) The dispatching matrix of Figure 1.2a with a different type ordering, (b) the columns
with different offsets, and (c) the master array of row-displacement

CT: Compact dispatch Tables [Vitek and Horspool 1994; Vitek 1995; Vitek
and Horspool 1996] The very good compression results of RD were improved sig-
nificantly by Vitek and Horspool on some hierarchies. Their CT technique aims at
duplicates elimination. The idea is to partition the set of messages M into disjoint
slices M1, . . . ,Mk. (Vitek and Horspool recommend that each slice contains 14
messages.) Slicing breaks the dispatching matrix into k sub-matrices, also called
chunks. Identical rows within each chunk are then merged. Each slice Mi has an
array ri of size n. Entry ri[t] points to the row of t in chunk i. Dispatching in
CT requires an extra load compared to the dispatching matrix, but the merging of
rows may reduce the space requirement.

4The trick is to add a prologue to each method which checks that the method indeed corresponds
to the sent message.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

12 · J. Gil and Y. Zibin

Figure 2.2 shows a CT representation of the matrix of Figure 1.2a, using 4 slices:

M1 = {a, b, c},M2 = {d, e, f},M3 = {g, h, i},M4 = {j, k, l}.

A
B
C
D
E
F
G
H
K
J

A
B
C
D
E
F
G
H
K
J

A
B
C
D
E
F
G
H
K
J

A
B
C
D
E
F
G
H
K
J

g h i

j lk

a b c d e f
C
D
C

D
D
F
F

F

A
B

EG
GH

K

J

A

E
E

A

D
A

HD
G

B
D

C

E

B

D

H
D H

K

F
E

D

K

G

r1 r2 r3 r4
M1 M2

M3
M4

Fig. 2.2. CT representation of Figure 1.2a

Section 4 presents our CTd algorithms, where CT1 is the dispatching matrix,
and CT2 is similar to CT except CT2 performs a precise analysis that dictates an
optimal slice size, instead of the arbitrary universal recommendation of 14. Using
this optimal slice size, we give the first proof of a non-trivial upper bound on the
memory usage of a constant-time dispatching algorithm.

SC: Selector Coloring [Dixon et al. 1989; Pascal and Royer 1992] SC aims at
null elimination by slicing the set of messages. Each slice must satisfy the following
property: no two messages in the slice can be recognized by the same type. In other
words, in each chunk, a row can have at most one non-null entry. This property
makes it possible to merge together all the columns in a chunk, resulting in a space
requirement of n× k.

Note that with the addition of a new type, existing slices may violate the slicing
property. Therefore, SC is not suitable for incremental algorithms.

Figure 2.3 shows a SC representation of Figure 1.2a, in which there are a total
of eight slices. This is the smallest possible such number, since the row of H (for
example) has eight non-null entries.

The performance of SC is improved as the number of slices decreases. Since it is
computationally hard to find an optimal slicing, the slices must be found using a
heuristic. As in RD, null entries are treated as empty in SC and therefore additional
storage and an extra comparison are required in dynamically typed languages. CT
also uses SC in each of the chunks.

Our MI algorithms also use a slicing property, and a heuristic for finding a good
slicing. As it turns out, slicing the set of types, rather than the set of message, as
well as our particular choice of the slicing property, guarantees that the addition of
new types does not invalidate existing slices. We rely on the fact that only types
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 13

lkg h i jed fcba
a b c e lkd,f g,h,i,j

A
B

E
G

A

E
E

C
D
C
D
D
F
F

F
G

H
K

J
H

E

K
D

F
K

F
D

G
H
C
D
E
C

C
E
D

B

B

B

H

A

D
A

A
D
G

A

D
A

A
D
G

B

B

B

H H
C
D
E
C

C
E
D

D
F
K

F
D

G
H

E

K
G
H
K
J

C
D
C
D
D
F
F

F

A
B

E
G

A

E
E

A
B
C
D
E
F
G
H
K
J

A
B
C
D
E
F
G
H
K
J

(a) (b)

Fig. 2.3. (a) The eight chunks of the dispatching matrix of Figure 1.2a, and (b) their selector
coloring representation

with their associated methods can be added and that it is forbidden to add methods
to existing types.5

Jalapeño [Alpern et al. 2001] Jalapeño, an IBM implementation of Java vir-
tual machine, uses a fast incremental variant of SC in realizing invokeinterface
instructions (used for dispatching messages sent to an interface). Messages are
hashed into k slices, where k is an a-priori fixed number. Each type has an interface
method table of length k. When the slicing property of SC does not hold, i.e., some
type recognizes more than one message in the same slice, then a conflict resolution
thunk must be generated by the compiler. Since there is no bound on the number
of conflicting messages in each hash table entry, dispatch time is not necessarily
constant. It is easy to see that the total memory requirement is nk for the tables,
plus O(w) memory for conflict resolution.

Interval Containment for single inheritance hierarchies [Muthukrishnan
and Müller 1996; Ferragina and Muthukrishnan 1996] Interval containment achieves
optimal duplicates elimination at the cost of non-constant dispatch time. Our
TS technique (Section 3) is a generalization of interval containment for multiple
inheritance hierarchies. Let us describe this technique in greater detail.

Interval containment assigns id’s to types in a preorder traversal of the tree
hierarchy. An important property of the preorder traversal is that descendants of
a type t define an interval. Therefore, each message m, defines a set of intervals,
one for each type t ∈ I(m).

Figure 2.4(a) shows a tree hierarchy with three implementations of a message a in
types: A, B, and F, i.e., I(a) = {A, B, F}. Then, as can be seen in Figure 2.4(b), these
implementors define three intervals in the preorder traversal: [1, 7], [5, 7], and [3, 3],
respectively. The intersections of those three intervals partition the types into four
segments: [1, 2], [3, 3], [4, 4], and [5, 7], which correspond to implementors: A, F, A,
and B, respectively. The dispatch of message a on any given type depends only on

5Ferragina and Muthukrishnan [1996] study the less natural dispatching problem of a fixed SI
hierarchy, where methods can be dynamically added and removed. Their results include vari-
ous tradeoffs between space,randomization, query time, and update time. For instance, there
is an optimal space algorithm, whose update and query times are o(nε), ε ¿ 1 and O(

√
log n)

(respectively). A randomized version of this algorithm reduces the query time to O(log log n).

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

14 · J. Gil and Y. Zibin

the segment this type belongs to. If, for example, the receiver is of type G whose id
is 6, then we find that it belongs to segment [5, 7], and therefore return B.

CF G

BE D

A a A E F GD B C

A

1 2 3 4 5 6 7

)a(

)b(

)c(1 3 4 5
B

a

a

A
F B

A F A B B B

AFA

Fig. 2.4. (a) A message a, I(a) = {A,B,F} in a tree hierarchy, (b) the intervals and segments I(a)
defines, and (c) the representation of I(a) as a sorted dictionary

Given a message m, there are |I(m)| intervals which partition the preorder of T
into at most 2|I(m)| + 1 segments, where all types in a segment have the same
dispatching result. Message m is represented as a sorted dictionary, mapping seg-
ments’ starting point to methods. In our example, Figure 2.4(c) shows a sorted
dictionary that represents the segment partitioning. This dictionary serves as the
dispatching table for I(a).

Note that the sorted dictionary representation is linear in |I(m)|. The total
memory for representing all messages is therefore O(i). In fact, the number of
memory cells required by this representation is at most

∑

m∈M
2(2|I(m)|+ 1) = 2m + 4

∑

m∈M
|I(m)| = 2m + 4i.

It remains to describe the representation of the sorted dictionary and the proce-
dure to determine the segment to which a specific type belongs. Algorithmically,
the problem is characterized as follows: Given a set of integers S ⊆ [1, . . . ,n], build
a data structure to implement the predecessor operation, pred(x), defined as

pred(x) = max{y ∈ S | y ≤ x}, (2.1)

for any integer x ∈ [1, . . . ,n]. Let s = |S|. In our case, s, which is smaller than
twice the number of different implementations, is typically much smaller than n.
We will therefore be more interested by algorithms whose resource demands are
dependent on s, rather than on n.

In an array implementation it is possible to implement pred(x) using a binary
search in O(log s) time, while the space requirement is O(s). The hidden constants
are small.

If the number of integers is not so small, then a theoretically superior algorithm is
the Q-fast trie [Willard 1984], which achieves O(

√
log n) time while still maintaining

the space linear in s. Stratified trees, also called van Emde Boas data structure [van
Emde Boas et al. 1977; van Emde Boas 1977], offer a different tradeoff, with space
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 15

linear in n and time O(log log n). In the randomized version of stratified trees the
expected space requirement is reduced to O(s). In practice we expect the simple
binary search algorithm to outperform these asymptotically better competitors.

3. TS DISPATCHING TECHNIQUE

Our dispatching technique for multiple inheritance hierarchies is a generalization
of interval containment for single inheritance hierarchies. The idea behind interval
containment is that there is an ordering of the tree hierarchy in which the descen-
dants of any given type are consecutive. The difficulty in the multiple inheritance
case is that an ordering of T with the above property might not exist. Figure 3.1
shows the smallest hierarchy for which such an ordering is impossible. The reason
is that such an ordering imposes the contradicting constraints that A, B and C must
be adjacent to D.

D

A B C

Fig. 3.1. The smallest multiple inheritance hierarchy for which no ordering exists where all de-
scendants of any type are consecutive

Instead of imposing a global ordering, we partition the set of types T into disjoint
slices T 1, . . . , T κ and impose a local ordering condition on each of the slices. For
a slice T i and a type t (not necessarily in T i), let Di(t) be the set of descendants
of t in T i, i.e.,

Di(t) = descendants(t) ∩ T i .

Figure 3.2 shows a partitioning of the hierarchy of Figure 1.1 into two slices:

T 1 = {B, A, D, G, C, F, J},
T 2 = {E, H, K}.

The grey entries in any column represent a set of descendants of some type. The
sets of descendants of type A, for example, in the two slices are

D1(A) = {A, D, G},
D2(A) = {E, H, K}. (3.1)

The type slicing technique is based on the demand that the sets Di(t) are con-
secutive in some ordering of the rows. Visually this means that the grey entries are
consecutive within each chunk. For instance, in Figure 3.2 the sets of (3.1) define
the intervals

D1(A) = [2, 4],
D2(A) = [1, 3].

(3.2)

Formally, each slice T i must satisfy the following slicing property:

There is an ordering of T i in which Di(t) is consecutive for all types t ∈
T .

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

16 · J. Gil and Y. Zibin

A B C D E F G H K

A
B

C

D

E

F

G

H
K

J

J

1
2
3
4
5
6
7

1
2
3

Fig. 3.2. Type slicing for the hierarchy of Figure 1.1

Each type t is identified by a pair 〈st, idt〉, where st is an id of the slice to which t
belongs, and idt is the position of t in the ordering of this slice. Thanks to the
slicing property, the set Di(t) defines an interval for each i, 1 ≤ i ≤ κ.

Definition 3.1. The complexity of a hierarchy is the minimal number κ such
that there exists a partitioning of T into sets T 1, . . . , T κ, such that each T i satisfies
the slicing property.

A partitioning of T into slices which satisfy the slicing property always exists,
since this property trivially hold for singletons. We will strive to minimize κ, the
total number of slices.

Finding the slices We are unaware of any non-exponential method for finding
the minimal number of slices. Instead we use a greedy heuristic: “try to make the
current slice as large as possible without violating the slicing property”. Specifically,
we traverse the types in a topological order, and try to insert each type into each
of the slices. If all these insertion attempts fail then a new slice is created.

Given a slice T i and a type t, PQ-trees [Zibin and Gil 2001; Booth and Leuker
1976] can be used to check whether there is any ordering of T i ∪{t} which satisfies
the slicing property, in O(n · |T i|) time. In inserting n types using this strategy,
the total time might be cubic in n, which is highly undesirable.

Instead we use a heuristic which, by not disturbing the existing order of T i,
achieves a run time that depends only on the number of ancestors of t. Therefore,
the total runtime of the above algorithm for finding the slices is O(κ|¹|). The exact
details of this order preserving heuristic are presented in Appendix A.

Dispatching using type slicing Given a type t and a message m, a dispatching
query returns the smallest type t′ ∈ I(m) such that t′º t. Let T i be the slice of t.
Given a type t′, we have that t′º t if and only if t ∈ Di(t′). We therefore must
consider all intervals of Di(t′), Di(t′) 6= ∅, where t′ ∈ I(m). Since there are at
most |I(m)| such intervals, we obtain a partition of T i into 2|I(m)|+ 1 segments,
where the result of the dispatch on t depends only on the segment to which t
belongs.

Figure 3.3 shows the dispatching representation for the message c,

I(c) = {C, D, E, H}
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 17

in the hierarchy of Figure 1.1. Consider, for example, the first slice. Only types C

and D define non empty intervals, which are [3, 7] and [3, 4], respectively. We
also consider the implicit interval [1, 7] for the method message not understood.
Those three intervals partition the types into three segments: [1, 2], [3, 4], and [5, 7].
Message c is represented in the first slice using an appropriate data structure storing
those three segments, and mapping them to: null (message not understood), D,
and C, respectively.

A
B

C

D

E

F

G

H
K

J
C

1
2
3
4
5
6
7

1
2
3

C D

D
E

H
C

C

D
C

D

H
E

E

0
0

)a()b(

C
D
0

5
3
1

H
E

E
2
1

3

Fig. 3.3. (a) The intervals and segments of message c in the two slices of Figure 3.2, and (b) the
message representation in each slice

In general, a message m is encoded in slice T i by a data structure of choice
which represents a set of segments, mapping each one to the appropriate method
implementation. As in vanilla interval containment, this data structure can be a
simple array, a Q-fast trie, or a stratified tree. Obviously, each slice has its own
unique such data structure.

Dispatching on type t ∈ T and message m ∈M is carried out in three stages:

(1) Finding st, the id of the slice of t,
(2) following this slice to find the respective data structure of m, and then
(3) carrying on as in single inheritance in a search of idt in this data structure to

find the dispatching result.

Thus, dispatching in multiple inheritance hierarchies requires only two more steps in
comparison to dispatching in single inheritance hierarchies. The space requirement
in multiple inheritance hierarchies increases by a factor of at most κ. Curiously,
this factor depends only on the topology of the hierarchy and the quality of the
slicing algorithm. It does not depend in any way on the number of messages.

Reducing the number of slices We now describe one optimization that given
the set of messages reduces the number of slices κ. In our multiple inheritance
benchmarks, κ is reduced by an average of 1.35. (In the LOV hierarchy, for example,
the number of slices is reduced from 12 to 7.) The key observation is that the
dispatching algorithm assumes that each implementor t ∈ I(m) defined an interval

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

18 · J. Gil and Y. Zibin

for each slice. Therefore, Di(t) must be consecutive in T i, only for those types t
which are indeed implementors of some message m.

Formally, we say that a type t is significant if there exists a message m such
that t ∈ I(m), and redefine the slicing property as follows:

There is an ordering of T i in which Di(t) is consecutive for all significant
types t ∈ T .

Optimizations for statically typed languages We also note that in statically
typed languages, the binary search algorithm can be optimized. Suppose that we
dispatch on an object whose static type is a. Then, at runtime, the binary search
can begin at a smaller interval, restricted only to the interval of descendants of a
in each of the slices.

Moreover, we can even discard segments which correspond to message not un-
derstood, since such a case does not occur in statically typed languages.

4. CT DISPATCHING TECHNIQUE FOR SINGLE INHERITANCE HIERARCHIES

For simplicity, assume w.l.o.g. that the hierarchy is a tree (rather than a forest)
rooted at a special node > ∈ T . There cannot be a message ambiguous in a
single inheritance setting. To avoid the other error situation, namely message not
understood, we assume that > ∈ I(m) for all m ∈M. With this assumption, every
dispatching query returns a single implementor. The cost is in (at most) doubling
the number of implementations i, since we add at most m ≤ i methods to the
root >. (At the end of this section we will show that the memory toll can be made
much smaller.)

Vitek and Horspool’s CT algorithm [Vitek and Horspool 1996] partitions the
messages M into k disjoint slices M = M1 ∪ . . . ∪ Mk . These slices break the
dispatching matrix into k sub-matrices, also called chunks. The authors’ experience
was that chunks with 14 columns each give best results, and this number 14 was
hard-coded into their algorithm.

For example, consider the single inheritance hierarchy in Figure 4.1a.

GE F

DB C

A
a,b,c
d,e,f

c
d

b
e

a c,e
f

f b

(a) (b)

a b c d e f
A
B
C
D
E
F
G

A

A

C

A

B

F

D

G

B

EE

A

D

A A A A

DA

A

A

A

A

A

A

B

A

D

D

A

A A A

A

B

A

A

A D

D D

A

Fig. 4.1. (a) A small example of a single inheritance hierarchy, and (b) its dispatching matrix

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 19

Figure 4.2 shows the three chunks of the dispatching matrix of Figure 4.1b for
following partitioning:

M1 = {a, b},
M2 = {c, d},
M3 = {e, f}.

(4.1)

As Vitek and Horspool observed, and as can be seen in the figure, there are many
identical rows in each chunk. Significant compression can be achieved by merging
these rows together, and introducing, in each chunk, an auxiliary array of pointers
to map each type to a row specimen.

a b c d e f
A
B
C
D
E
F
G

A

A

C

A

B

F

D

G

B

EE

A

D

A A A A

DA

A

A

A

A

A

A

B

A

D

D

A

A A A

A

B

A

A

A D

D D

A

Fig. 4.2. Three chunks of the dispatching matrix of Figure 4.1b

Why should there be many duplicate rows in each chunk? There are two con-
tributing factors: (i) since the slices are small, there are not too many columns in
a chunk, and (ii) that the number of distinct values which can occur in any given
column is small, since, as empirical data shows, the number of different implemen-
tations of a selector is a small constant. Hence, there could not be too many distinct
rows.

However, these considerations apply to any random distribution of values in the
dispatching matrix. The crucial observation we make is that a much stronger bound
on the number of distinct rows can be set relying on the fact that the values in
the dispatching matrix are not arbitrary; they are generated from an underlying
structured hierarchy.

Consider for example a chunk with two columns, with n1 and n2 distinct imple-
mentations in these columns. Simple counting considerations show that the number
of distinct rows is at most n1n2. Relying on the fact that the hierarchy is a tree we
can show that the number of distinct rows is at most n1 + n2.

To demonstrate this observation, consider Figure 4.3a which focuses on the first
chunk, corresponding to slice M1 = {a, b}.

As can be seen in the figure, the rows of types A, D, and F are identical. Fig-
ure 4.3b shows the compressed chunk and the auxiliary array. We see that this
auxiliary array maps types A, D, and F to the same row.

We call attention to the (perhaps surprising) fact that it is possible to select
from the elements of each row in Figure 4.3b a distinguishing representative. These

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

20 · J. Gil and Y. Zibin

A
B
C
D
E
F
G

a b
A
B
C
D
E
F
G

a b
A
B
C
G

(a) (b) (c)

A
B
C
D
E
F
G

a b
A

C

A

B

A

B

G

A

A

C

A

B

G

A

A

A

A

A

A

A

B

A

A

C

B

G

A

A

A

A

A

C

B

G

A

A

A

Fig. 4.3. (a) The first chunk of Figure 4.1c, (b) the chunk compressed using an auxiliary array of
pointers, and (c) the chunk compressed using an array of labels

representatives are members of what we call the master-message M1,

I(M1) = I(a) ∪ I(b) = {A, B, C, G}.
(We use the same notation for a slice and its master-message. No confusion will arise
since the context will determine if we treat M1 as a slice or as a master-message.)

The representatives of the four rows in the first chunk are A, B, C and G, in this
order. The figure highlights these in grey. Also note that each implementor of the
master-message serves as a representative of some row.

Figure 4.3c gives an alternative representation of the chunk, where each row is
labeled by its representative. The auxiliary array now contains these labels instead
of pointers. For example, the second row is labeled B ∈ I(b); the second and the
fifth entry of the auxiliary array store B rather than the row specimen address.

Our improvement is based on the observation that the distinguishing represen-
tatives phenomenon is not a coincidence and on the observation that CT applies
a divide-and-conquer approach to the dispatching problem: The search first deter-
mines the relevant master-message, and then continues to select the appropriate
result among its implementors.

Let Ai denote the compressed ith chunk of the dispatching matrix, and let B
be the master dispatching matrix, whose columns are the auxiliary arrays of the
chunks. Figure 4.4 shows matrices A1, A2, A3 and B, which constitute the complete
CT representation for the hierarchy of Figure 4.1. Note that the first column of B
is the auxiliary array depicted in Figure 4.3c.

For each slice Mi, its master-message is the union of implementors of its mes-
sages, i.e., I(Mi) ≡

⋃
m∈Mi

I(m). Then, answering the query dispatch(m, t) at
runtime requires three steps:

(1) Determine the slice of m. That is, the slice Ms, such that m ∈ Ms. If the
partitioning into slices and the message m are known at compile-time, as it
is usually the case in dispatching of static-loading languages, then this stage
incurs no penalty at runtime.

(2) Fetch the first dispatching result t′ = dispatch(Ms, t). This value is found at
the row which corresponds to type t and the column which corresponds to the
master-message Ms, i.e., t′ = B[t, s].

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 21

a b c d e fA
B
C
D
E
F
G

A
B
D
F

A
D
E

A
B
C
G

A1

A1 A2 A3

A2 A3

B

A

A

C

B

F

D

G

B

EE

A

D

A A A A

D

A

A

A A

D

A

C

B

E

A

D

A

A

B

A

A

D

B

A

D

D

B

G

A

D

F

Fig. 4.4. CT representation for the hierarchy of Figure 4.1

(3) Fetch the final dispatching result t′′ = dispatch(m, t). This type is found in the
row of t′ and the column of m in the compressed chunk As, i.e., t” = As[t′,m].

The algorithm merges together all the different messages in Ms. At step 2, we
find t′º t, which is the smallest candidate in the merged master-message. Ma-
trix B (of size n × k) is the dispatching matrix of the types T and the master-
messages {M1, . . . ,Mk}.

The search then continues with t′, to find t”º t′, the smallest candidate in I(m).
Each matrix Ai (of size |I(Mi)| × |Mi|) is the dispatching matrix of the types
in I(Mi) and the messages Mi.

To understand the space saving, consider just two messages M = {m1, m2}.
The naive implementation of dispatch is using two arrays, each of size n = |T |,
which map each type t to two types t”1 ∈ I(m1) and t2” ∈ I(m2), such that ti” =
dispatch(mi, t), i = 1, 2. A more compact representation can be obtained by using a
single array of size n, to dispatch first on the merged master-message M, I(M) =
I(m1) ∪ I(m2). Let t′ ∈ I(M) be the result of this dispatch. The crucial point is
that the smallest candidate for t′, in either I(m1) or I(m2), is the same as for t.
Since there are |I(M)| ≤ |I(m1)|+ |I(m2)| different values of t′, a continued search
from t′ (for either I(m1) or I(m2)) can be implemented using two arrays, each of
size |I(M)|. The first such array maps I(M) to I(m1); the second to I(m2). Total
memory used is n + 2|I(M)| instead of 2n cells, while the cost is an additional
dereferencing operation.

More generally, given a dispatching problem for the messages M, the CT reduc-
tion partitions M into k disjoint slices

M = M1 ∪ . . . ∪Mk, (4.2)

and merges together the messages in each slice by defining a master-message

I(Mi) ≡
⋃

m∈Mi

I(m), (4.3)

for all i = 1, . . . ,k. Let Ai be the matrix whose dimensions are

|I(Mi)| × |Mi|, (4.4)
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

22 · J. Gil and Y. Zibin

corresponding to the ith slice. Then, the query dispatch(m, t) is realized by the
fetch

As[dispatch(Ms, t),m], (4.5)

where m ∈Ms.
Since both steps 2 and 3 in the dispatching are in essence a dispatching operation,

better compaction of the dispatching data structure might be achieved by applying
the CT technique recursively to either the matrix B, or all the matrices Ai. It is not
difficult to see that each of the recursive applications will yield the same dispatching
data structure, in which the set of selectors is organized in a three-level hierarchy of
partitions: messages, master-messages, and master-master-messages (so to speak).
We chose to describe this 3-level system by applying the CT technique to the
matrix B. The (potential) saving in space comes at a cost of another dereferencing
step during dispatch. Clearly, we could recursively apply the reduction any number
of times.

We need the following notation in order to optimize these recursive applications,
i.e., find the optimal number of slices k, and the size of each slice. Let memd(n,m, i)
denote the memory required for solving the dispatching problem of n types, m
messages and i method implementations, using d dereferencing operations during
dispatch. A simple dispatching matrix representation gives

mem1(n,m, i) = nm. (4.6)

Each application of the CT reduction adds another dereferencing, while reducing
a dispatching problem with parameters 〈n,m, i〉 to a new dispatching problem with
parameters 〈n,k, i′〉, where

i′ =
k∑

i=1

|I(Mi)| =
k∑

i=1

∣∣∣∣∣
⋃

m∈Mi

I(m)

∣∣∣∣∣ .

Note that i′ ≤ i. To see this recall that

i =
∑

m∈M
|I(m)| =

k∑

i=1

∑

m∈Mi

|I(m)|,

and apply the fact that the cardinality of the union of sets is at most the sum of
cardinalities of these sets

i′ =
k∑

i=1

∣∣∣∣∣
⋃

m∈Mi

I(m)

∣∣∣∣∣ ≤
k∑

i=1

∑

m∈Mi

|I(m)| = i. (4.7)

The reduction generates the matrices A1, . . . , Ak. To estimate their size suppose
that all slices are equal in size, i.e., they all have x messages. (For simplicity we
ignore the case that m is not divisible by x, in which slices are almost equal.) Then,
the total memory generated by the reduction is

k∑

i=1

|I(Mi)| × |Mi| =
k∑

i=1

|I(Mi)| × x = x

k∑

i=1

|I(Mi)| = xi′ ≤ xi.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 23

To conclude, the costs of the CT reduction are another dereferencing and an
additional space of xi. In return, a dispatching problem with parameters 〈n,m, i〉
is reduced to a new dispatching problem with parameters 〈n,k, i′〉, where k = m/x
and i′ ≤ i. Formally,

memd+1(n,m, i) ≤ ix + memd(n,m/x, i), (4.8)

where x is arbitrary.
Let CTd be the algorithm obtained by applying the CT reduction d− 1 times to

the original dispatching problem. The recursion is ended by applying simple dis-
patching matrix at the last step. Thus, CT1 is simply the dispatching matrix, while
CT2 is similar to Vitek and Horspool’s algorithm (with x = 14). By making d− 1
substitutions of (4.8) into itself, and then using (4.6), we obtain

memd(n,m, i) ≤ ix1 + · · ·+ ixd−1 +
nm

x1x2 · · ·xd−1
, (4.9)

where xi is the slice size used during the ith application of the CT reduction.
Symmetry considerations indicate that the bound in (4.9) is minimized when all xi

are equal. We have,

memd(n,m, i) ≤ (d− 1)ix +
nm
xd−1

, (4.10)

which is minimized when x = (nm/i)1/d.
Table I summarizes the space and time requirements of algorithms CTd, where ι ≡

(nm)/i is the optimal compression factor.

Scheme Slice size Time Space Compression factor

CT1 N/A 1 iι 1
CT2

2
√

ι 2 2i 2
√

ι ι
2 2√ι

CT3
3
√

ι 3 3i 3
√

ι ι
3 3√ι

· · · · · · · · · · · · · · ·
CTd

d
√

ι d di d
√

ι ι

d d√ι

· · · · · · · · · · · · · · ·
CTlogx m x logx m (logx m)ix ι

x logx m

Table I. Generalized CT results for single inheritance hierarchies

The last row in the table is obtained by applying the CT reduction a maximal
number of times. In each application the slice size is x (typically, x = 2). The
messages M are then organized in a hierarchy of logx m levels, which is also the
number of dereferencing steps during dispatch. The memory used in each level is ix
(see (4.8)).

The generalizations (Table I) of CTd over Vitek and Horspool’s algorithm is in the
following directions: (i) a sequence of algorithms which offer a tradeoff between the
size of the representation and the dispatching time, and (ii) precise performance
analysis, which dictates an optimal slice size, instead of the arbitrary universal
recommendation, x = 14.

In reflecting on the generalized CT algorithm we see that they are readily adapted
to the case where message not understood are allowed as is the case in dynamically

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

24 · J. Gil and Y. Zibin

typed languages. Whenever the search in a master-messageM returns >, we can be
certain that the search in every constituent of M will also return >. Therefore, it is
possible to check after each dereferencing operation whether the fetched type is >,
and emit the appropriate error message. A more appealing alternative is to continue
the search with >, using an array which maps > into itself for each constituent
of I(M). Now, since this array does not depend on the identity of I(M), we can
store only one such copy for each application of the CT reduction. The memory
toll that CTd bears for these arrays is (d− 1)x cells.

Note also that Vitek and Horspool’s idea of using selector coloring [Dixon et al.
1989; Pascal and Royer 1992] in each chunk is still applicable. If certain columns in
a chunk contain many > elements, it might be possible to collapse these columns
together.

5. INCREMENTAL CT DISPATCHING TECHNIQUE FOR JAVA

This section describes an incremental variant of the CT scheme for the single in-
heritance, dynamically typed, and dynamic loading, model. A prime example for
the model is the Smalltalk programming language. Curiously, even though Java
is a statically typed language, the implementation of the invokeinterface byte-
code instruction (used for dispatching messages sent to an interface) matches
this model. To see this, recall that all implementations of a method defined in an
interface must reside in classes, and that these classes take a tree topology.
The locations of these implementations in this tree are however totally unrelated,
and additional implementations can be introduced as a result of dynamic class load-
ing. By simply ignoring the interfaces, we can view dispatching in Java as in a
single inheritance and dynamically typed language. Note that the VFT method is
unsuitable for invokeinterface instructions.

The incremental variant of the CT scheme achieves two important properties:
(i) the space it uses is at most twice that of the static algorithm, and (ii) its total
runtime is linear in the final encoding size. (We cannot expect an asymptotically
better runtime since the algorithm must at least output the final encoding.) Sec-
tion 5.1 describes ICT2, the incremental variant of CT2. Section 5.2 gives the
generalization for CTd.

The main idea is to rebuild the entire encoding whenever the ratio between the
current slice size and the optimal one reaches a high- or low-water mark (for exam-
ple 2 and 1/2). Therefore, some insertions will take longer to process than others.
We therefore obtain bounds on the amortized time for an insertion.6 The amortized
time of an insertion is asymptotically optimal since the total runtime is linear in
the final encoding size. Using techniques of “background copying” [Dietzfelbinger
et al. 1994], it is possible to amend the algorithms so that the worst case insertion
time is optimal as well.

Note that unlike the static version of the problem, we cannot assume that the
implementors always include the root >. The reason is that this assumption would

6We remind the reader that the amortized time of an operation is c(n), if a sequence of n such
operations requires at most nc(n) time. The worst case time of any single operation can however
be much greater than c(n). For more information on amortized complexity see [Sleator and Tarjan
1985].

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 25

require > to include implementation of all messages, and the initial value of the
number of messages will jump to m.

5.1 Algorithm ICT2 in a Single Inheritance Setting

The CT2 scheme applies a single CT reduction and uses a dispatching matrix for
the resulting master-messages. This process divides the dispatching problem into
independent sub-problems: one dispatching matrix, and a set of matrices Ai, i =
1, . . . ,k, which (in a single inheritance setting) are in fact dispatching matrices as
well.

We first describe how to maintain a plain, single-level, dispatching matrix subject
to type insertions. The insertion time will be linear in the encoding size, and the
cost in dispatching time is in an additional comparison to guard against array
overflows.

Each message is assigned a unique identifier in increasing order. The mapping
of message-to-identifier is maintained as a hash-table. Consider a newly added
type t. The newly introduced messages are assigned new identifiers and inserted
into the hash-table. Observe that the dispatching result for such a newly introduced
message and every other type is always null. However, instead of extending all the
other rows with null entries, we perform a range-check before accessing any given
row. In the case of array-overflow we return null, otherwise we proceed as usual.

The row of t in the dispatching matrix maps each message to its dispatching
result. More precisely, the row of t is an extension of the row of its parent, except for
entries corresponding to messages in which t is a member. Note that the insertion
time of a type is linear in its row size, and the total runtime is therefore linear in
the final encoding size.

The space requirement of CT2 in a single inheritance setting is (see Table I)

mem(x) = ix + nm/x, (5.1)

which is minimized when the slice size is

xOPT =
√

nm/i. (5.2)

Algorithm ICT2 will maintain the following invariant

xOPT

2
≤ x ≤ 2xOPT, (5.3)

and will rebuild the encoding whenever this condition is violated. Algorithm 1
shows the procedure to apply whenever a new type is added to the hierarchy.

Substituting (5.2) in (5.1) we find the optimal encoding size

mem(xOPT) = 2
√

nmi.

Let us write this as a function of the problem parameters,

f(n,m, i) ≡ mem(xOPT) = 2
√

nmi.

and study the properties of this function.

Fact 5.1. Function f is monotonic in all three arguments n,m, i.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

26 · J. Gil and Y. Zibin

Algorithm 1 Insertion of a new type t in ICT2

1: Let x be the current slice size.
2: Let 〈n,m, i〉 be the current problem parameters.
3: xOPT ←

√
nm/i // The optimal slice size.

4: If not
(

xOPT
2 ≤ x ≤ 2xOPT

)
then

5: x ← xOPT

6: Rebuild the entire CT2 encoding
7: fi
8: Insert t to the CT2 encoding

Fact 5.2. There are constants c1, c2, c3, such that
∞∑

i=0

f
(n

2i
,m, i

)
≤ c1f(n,m, i),

∞∑

i=0

f
(
n,

m
2i

, i
)
≤ c2f(n,m, i),

∞∑

i=0

f

(
n,m,

i
2i

)
≤ c3f(n,m, i).

(5.4)

Proof. Note that
∞∑

i=0

f
(n

2i
,m, i

)
=

∞∑

i=0

√
n
2i

mi

=
√

nmi
∞∑

i=0

√
1
2i

≤ 2
2−√2

√
nmi ∈ O(f(n,m, i)).

The proof for parameters m and i is identical.

Lemma 5.3. The space requirement of ICT2 is at most

2f(n,m, i).

Proof. From the algorithm invariant (5.3) it follows that

mem(x) = ix + nm/x

≤ i(2xOPT) + nm/
(xOPT

2

)

= 2(ixOPT + nm/xOPT)
= 2mem(xOPT) = 2f(n,m, i).

Our next objective is to prove that the total runtime of ICT2 is linear in f(n,m, i).
To do so, we will breakdown the sequence of insertions carried out by the algorithm
into phases, according to the points in time where rebuilding took place. No re-
building occurs within a phase, and all that is required is to maintain several plain
dispatching matrices. Hence, the total runtime of the insertions in a phase is linear
in the encoding size at the end of this phase.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 27

The main observation is that rebuilding happens only when at least one of the
problem parameters is doubled. We distinguish between three kinds of rebuilds,
depending on the parameter which was doubled. We then show that the total
runtime of rebuilds of the same kind is linear in f(n,m, i).

Formally, phase i begins immediately after phase i−1, and ends after the encoding
was built for the ith time (the last phase ends when the program terminates).
Let 〈ni,mi, ii〉, i = 1, . . . , p, be the problem parameters at the end of phase i.
Observe that the problem parameters can only increase, i.e., ni+1 ≥ ni, mi+1 ≥ mi,
and ii+1 ≥ ii. Phase i finishes with an encoding size of at most 2f(ni,mi, ii),
therefore its runtime is linear in f(ni,mi, ii). Thus, the total runtime is linear in

p∑

i=1

f(ni,mi, ii). (5.5)

We need to show that this sum is linear in f(np,mp, ip).

Lemma 5.4. Invariant (5.3) is violated only when at least one of the problem
parameters is doubled, i.e., one of the following holds

ni+1 ≥ 2ni,

mi+1 ≥ 2mi,

ii+1 ≥ 2ii.
(5.6)

Proof. Let xj denote the slice size at the beginning of phase j, i.e.,

xj ≡
√

njmj

ij
. (5.7)

At the end of phase i one of the following conditions must hold

xi+1 ≥ 2xi, or

xi+1 ≤ 1
2
xi.

(5.8)

From (5.7) and (5.8), we have
ni+1mi+1

ii+1
≥ 4nimi

ii
, or

ni+1mi+1

ii+1
≤ nimi

4ii
.

(5.9)

Since the problem parameters can only increase,

ni+1mi+1 ≥ 4nimi, or
ii+1 ≥ 4ii,

(5.10)

which implies that at least one of the parameters was doubled.

Lemma 5.5. The total runtime of ICT2 is linear in

f(np,mp, ip).

Proof. Let {(N1,M1, I1), . . . , (Nq,Mq, Iq)} be the problem parameters of phases
where n was doubled, i.e., Ni+1 ≥ 2Ni. Therefore,

Nq ≥ 2Nq−1 ≥ . . . ≥ 2q−1N1. (5.11)
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

28 · J. Gil and Y. Zibin

Using Fac. 5.2, the total runtime of these phases is linear in
q∑

i=1

f(Ni,Mi, Ii) ≤
q∑

i=1

f(Ni,Mq, Iq)

≤
q∑

i=1

f

(
Nq

2q−j
,Mq, Iq

)

∈ O(f(Nq,Mq, Iq)).

(5.12)

The same consideration applies to phases in which the number of methods or the
number of messages was doubled. So, the runtime of the entire algorithm is the
total runtime of the three kinds of phases, which is linear in f(np,mp, ip).

5.2 Algorithm ICTd in a Single Inheritance Setting

The generalization to d > 2 is mostly technical, as outlined next. Function mem(x),
the space requirement of CTd as defined in (4.10) is minimized when the slice size
is

xOPT = d
√

nm/i.

Let function fd denote the optimal encoding size

fd(n,m, i) ≡ mem(xOPT) = di d
√

ι.

Algorithm ICTd will preserve the following invariant

xOPT

21/(d−1)
≤ x ≤ 2xOPT. (5.13)

Lemma 5.6. The space requirement of ICTd is at most 2fd(n,m, i).

Proof. Similar to that of Lemma 5.3

Fact 5.7. There are constants c1, c2, c3, such that
∞∑

i=0

fd

(n
2i

,m, i
)
≤ c1fd(n,m, i),

∞∑

i=0

fd

(
n,

m
2i

, i
)
≤ c2fd(n,m, i),

∞∑

i=0

fd

(
n,m,

i
2i

)
≤ c3fd(n,m, i).

(5.14)

Lemma 5.8. Rebuilding only takes place when at least one of the problem pa-
rameters is doubled.

Proof. Similar to that of Lemma 5.4

Lemma 5.9. The total runtime of ICTd is linear in fd(np,mp, ip).

Proof. Similar to Lemma 5.5.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 29

6. CT DISPATCHING TECHNIQUE FOR MULTIPLE INHERITANCE HIERARCHIES

This section explains how to generalize the CT reduction as described in Section 4 to
the multiple inheritance setting. In a single inheritance hierarchy, there could never
be more than one most specific implementor in response to a dispatch query. The
fact that this is no longer true in multiple inheritance hierarchies makes it difficult
to apply the CT reduction to such hierarchies. Even if the original messages are
appropriately augmented to remove all such ambiguities, ambiguities may still occur
in the master-messages as they are generated by the reduction.

We will therefore use a novel notion of a generalized dispatching query, denoted
by g-dispatch(m, t), which returns the entire set of smallest candidates, rather
than null in case that this set is not a singleton. Formally,

g-dispatch(m, t) ≡ min(cand(m, t)).

dispatch(m, t) ≡
{

t′ if g-dispatch(m, t) = {t′},
null otherwise.

(6.1)

Generalized dispatching is a data-structure transaction rather than an actual run-
time operation which must result in a single method to execute. Generalized dis-
patching is more informative than a regular dispatching query, because instead of
returning null in error cases, it returns either an empty set (for message not un-
derstood) or the entire set of smallest candidates (for message ambiguous). When
a generalized dispatching query returns a singleton, then the dispatching result is
that singleton element.

Consider for example the hierarchy of Figure 6.1.

FD E

B C

A
a
b

a b

Fig. 6.1. A small example of a multiple inheritance hierarchy with two messages

The figure shows two messages, a and b,

I(a) = {A, B},
I(b) = {A, C}. (6.2)

The dispatching matrix of these two messages is depicted in Figure 6.2a. Note
that the results of all dispatching queries on types D and E (for example) are the
same. The corresponding rows in the table are identical and can be compressed.
Figure 6.2b shows a representation of the dispatching matrix obtained by merging

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

30 · J. Gil and Y. Zibin

together all identical rows and an auxiliary array of pointers to all different rows
specimens.

A
B
C
D
E
F

(a) (b)

a b
A
B
C
D
E
F

a b a bA
B
C
D
E
F

(c)

{B,C}

{A}

{B}

{C}

A

A C

C

B

A

B

B

A

A

C

C

A

A C

B

A

B

A

C

A

A C

B

A

B

A

C

{B,C}

{A}

{B}

{C}

{B,C}

{C}

Fig. 6.2. (a) The dispatching matrix of Figure 6.1, (b) the matrix compressed using an auxiliary
array of pointers, and (c) the matrix compressed using an array of set-labels

This compressed representation can be understood in terms of a new master-
message M = {a, b}, whose implementors are the union of the implementors of its
members:

I(M) ≡ I(a) ∪ I(b) = {A, B, C}.
The auxiliary array represents all the possible results of a generalized dispatch on
this master-message. For example,

g-dispatch(M, D) = g-dispatch(M, E) = {B, C}.
Therefore, the D and E entries in the auxiliary array point to the same row specimen
whose label is the set {B, C}.

In total there are four different results of generalized dispatching with respect
to I(M). Implementors I(M) therefore partition the types in the hierarchy into
four sets, as shown in Figure 6.2c. The figure shows the same compressed repre-
sentation of the dispatching matrix, where the results of generalized dispatch are
used to label row specimens instead of pointers in the auxiliary array.

In order to derive bounds on the quality of the CT compression in the multiple
inheritance setting we need to estimate the number of distinct rows in chunks. The
difficulty is that the result of a generalized dispatch is a set rather than a singleton,
and hence the number of distinct rows might be exponential in the number imple-
mentors. To show that this is not the case, we first define the notion of a partition
imposed by the set of implementors, and then show that the size of this partition
is at most 2κ times the number implementors, where 1 ≤ κ ≤ n is the complexity
of the hierarchy as defined in Definition 3.1.

6.1 Implementors Partitionings

Given a partially ordered set of types T and a message m, the partitioning of T
by I(m), also called the implementors partitioning of I(m), is

∇I(m) ≡ {T 1, . . . , T n},
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 31

such that all types in partition T i have the same generalized dispatch result. In
other words, types a, b ∈ T are in the same partition T i ∈ ∇I(m) if and only if

g-dispatch(m, a) = g-dispatch(m, b). (6.3)

Figure 6.3 shows the implementors partitioning of the implementors I(a), I(b)
of (6.2) and their master-message M = {a, b}, I(M) ≡ I(a) ∪ I(b).��

FD E

B C

A

(a)

FD E

B C

A

(b)

FD E

B C

A

(c)

Fig. 6.3. The implementors partitionings of the implementors I(a), I(b) of (6.2) and their master-
message M, I(M) ≡ I(a) ∪ I(b)

Types D and E, for example, are in the same partition in ∇I(M) since

g-dispatch(M, D) = g-dispatch(M, E) = {B, C}.
The partitionings are

∇I(a) ≡ {{A, C, F}, {B, D, E}},
∇I(b) ≡ {{A, B}, {C, D, E, F}},

∇I(M) ≡ {{A}, {B}, {C, F}, {D, E}}.
(6.4)

Figure 6.4 overlays∇I(a) and∇I(b). The dotted lines are the partitions of∇I(a),
whereas the full lines are the partitions of ∇I(b).�����������������������������������

Fig. 6.4. The overlay of ∇I(a) and ∇I(b) of Figure 6.3

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

32 · J. Gil and Y. Zibin

In comparing Figure 6.3c with Figure 6.4, we see that the partitioning ∇I(M)
can be obtained by a simple overlay of the two partitionings ∇I(a) and ∇I(b). We
will next prove that this was no coincidence.

Given two partitionings π, π′, their overlay π ·π′ is the coarsest partitioning con-
sistent with both π and π′. Constructively, the overlay is obtained by intersecting
all partitions of π with all partitions of π′:

π ·π′ = {T i ∩T ′j | T i ∈ π, T ′j ∈ π′}. (6.5)

For example, the overlay of ∇I(a) and ∇I(b) of (6.4) is

∇I(a) · ∇I(b) = {{A, C, F} ∩ {A, B}, {A, C, F} ∩ {C, D, E, F},
{B, D, E} ∩ {A, B}, {B, D, E} ∩ {C, D, E, F}}

= {{A}, {C, F}, {B}, {D, E}}.
(6.6)

Lemma 6.1. ∇I(m1) ·∇I(m2) = ∇(I(m1) ∪ I(m2)) for all m1, m2.

Proof. It is a well known fact that for every partitioning π there is a binary
equivalence relation whose set of equivalence classes are the same as the partition-
ing π. Instead of proving that the partitioning∇(I(m1)∪I(m2)) and∇I(m1) · ∇I(m2)
are equal, we will prove that their equivalence relations are the same.

On the one hand, types a, b are in the equivalence relation of

∇(I(m1) ∪ I(m2))

if and only if they have the same generalized dispatching results with respect
to I(m1) ∪ I(m2) (see (6.3)), i.e.,

g-dispatch(m1 ∪ I(m2), a) = g-dispatch(m1 ∪ I(m2), b). (6.7)

On the other hand, the overlay partitioning, ∇I(m1) ·∇I(m2), is defined by in-
tersecting all partitions of ∇I(m1) with those of ∇I(m2) (see (6.5)). Therefore,
types a, b are in the equivalence relation of ∇I(m1) ·∇I(m2) if and only if the
following two conditions hold

g-dispatch(m1, a) = g-dispatch(m1, b),
g-dispatch(m2, a) = g-dispatch(m2, b).

(6.8)

We must show that (6.7) holds if and only if (6.8) holds. Formally, using the
definition of generalized dispatch (6.1), we must show that

min(cand(m1 ∪ I(m2), a)) = min(cand(m1 ∪ I(m2), b))
⇔

min(cand(m1, a)) = min(cand(m1, b)) ∧
min(cand(m2, a)) = min(cand(m2, b)).

(6.9)

Since two sets of candidates (for the same message) have the same smallest elements
if and only if they are equal, our objective is to prove (see the definition of candidates
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 33

in (1.2))

(I(m1) ∪ I(m2)) ∩ ancestors(a) = (I(m1) ∪ I(m2)) ∩ ancestors(b)
⇔

I(m1) ∩ ancestors(a) = I(m1) ∩ ancestors(b) ∧
I(m2) ∩ ancestors(a) = I(m2) ∩ ancestors(b).

(6.10)

Given two sets X, Y , their symmetric difference is defined as

X 4 Y ≡ (X ∪ Y) \ (X ∩ Y).

Observe that

Z ∩X = Z ∩ Y ⇔ Z ∩ (X 4 Y) = ∅. (6.11)

By combining (6.10) and (6.11) we find that we need to prove that

(I(m1) ∪ I(m2)) ∩ (ancestors(a)4 ancestors(b)) = ∅
⇔

I(m1) ∩ (ancestors(a)4 ancestors(b)) = ∅ ∧
I(m2) ∩ (ancestors(a)4 ancestors(b)) = ∅.

(6.12)

The above trivially holds since for all sets X, Y, Z,

(X ∪ Y) ∩ Z = ∅
⇔

X ∩ Z = ∅ ∧
Y ∩ Z = ∅.

6.2 Memory Requirements of the Reduction

As in the single inheritance version, the CT reduction partitions the messages M
into disjoint slicesM1, . . . ,Mk, and generates for each sliceMi its master-message,
where I(Mi) are the union of the implementors of messages in Mi. To answer the
generalized dispatching query g-dispatch(m, t), where m ∈Mi, we first (recursively)
answer the query g-dispatch(Mi, t). This recursive call returns one of the partitions
of ∇I(Mi). The next step is to find the unique containing partition of ∇I(m).

To understand this better, recall that I(m) ⊆ I(Mi). To apply Lemma 6.1 note
that there exists a set X such that I(Mi) = I(m) ∪X, and hence

∇I(Mi) = ∇(I(m) ∪X) = ∇I(m) ·∇X.

Therefore, every partition of ∇I(Mi) is contained in a partition of ∇I(m). A ma-
trix Ai with |∇I(Mi)| rows and |Mi| columns is used to map each of the partitions
of ∇I(Mi) to a partition of ∇I(m), for all I(∈)Mi. Matrices A1, . . . , Ak are noth-
ing other than the dispatching data structure of the CT reduction. (Clearly, there
is an additional data structure which the recursive call uses.)

To bound the size of these matrices, we need to bound |∇I(m)|. In single in-
heritance, the root of each partition correspond to a different implementor, and
therefore |∇I(m)| ≤ |I(m)|. An easy, but not so useful bound in multiple inheri-
tance, is |∇I(m)| ≤ 2|I(m)|.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

34 · J. Gil and Y. Zibin

We will show below how to use κ, the complexity of a hierarchy (see Defini-
tion 3.1), to give a better bound:

|∇I(m)| ≤ 2κ|I(m)|. (6.13)

Using slices with x messages in each, the total memory of matrices A1, . . . , Ak is
k∑

i=1

|∇I(Mi)| × |Mi| =
k∑

i=1

|∇I(Mi)| × x ≤ x

k∑

i=1

2κ|I(Mi)| ≤ 2xκi.

The recursive equations then become

mem1(n,m, i) = nm,

memd+1(n,m, i) ≤ 2κi · x + memd(n,m/x, i).
(6.14)

By using 2κi instead of i, the analysis of the previous section holds.

Corollary 6.2. Let ϕ ≡ (nm)/(2κi). In a hierarchy whose complexity is κ,
CTd performs dispatching in d dereferencing operations, and reaches a compression
factor of at least 1

dϕ1−1/d (when using a slice size of ϕ1/d).

In other words, in a hierarchy whose complexity is κ, the space requirements of
CTd in the multiple inheritance setting is worse than the single inheritance setting
by a factor of at most (2κ)1−1/d.

6.3 Hierarchy Complexity

We now show how to use κ, the complexity of a hierarchy (see Definition 3.1), to
bound the size of a implementors partitioning, i.e., show that |∇I(m)| ≤ 2κ|I(m)|.
Figure 6.5 is an example of a multiple inheritance hierarchy of complexity 1, i.e.,
there exists an ordering of T in which the descendants of every type define an
interval. Within each type we write its position in that ordering.

9

2 5 7

6 843

1
A B

EDC

F G H I

Fig. 6.5. An example of a multiple inheritance hierarchy of complexity 1

Figure 6.6 shows the implementors partitioning of I(m) = {A, B, E} in the hier-
archy of Figure 6.5. Observe that |∇I(m)| = 5.

Since the complexity of this hierarchy is 1, the descendants of each type define
an interval. Therefore the implementors I(m) defines the three intervals depicted
in Figure 6.7.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 35��������������������A B

EDC

F G H I

9

2 5 7

6 843

1

Fig. 6.6. The implementors partitioning of I(m) = {A,B,E} in the hierarchy of Figure 6.5

A C F G D H E I B

A

B
E

Fig. 6.7. The intervals of the implementors I(m) = {A,B,E} in the hierarchy of Figure 6.5

The intervals in Figure 6.7 partition the types into 5 segments. (We will show
that there are at most 2|I(m)| segments.) Types in the same segment have the
same set of candidates and therefore belong to the same partition. So we conclude
that the number of partitions is at most the number of segments, which in turn is
at most 2|I(m)|. In our example,

|∇I(m)| = 5 ≤ 6 = 2|I(m)|.
We need the following fact, whose proof is elementary:

Fact 6.3. A set of f intervals partition any consecutive set into at most 2f + 1
segments. Out of these segments at most 2f − 1 are contained in one interval or
more. (See illustration in Figure 6.7.)

Lemma 6.4. |∇I(m)| ≤ 2κ|I(m)| for each message m.

Proof. Let f = |I(m)|. Recall (Definition 3.1) the partitioning of T into
sets T 1, . . . , T κ with their respective ordering. Let i be fixed. We write the list of
members of the set T i, enumerated in its respective order πi.

Consider a type t ∈ T i. The result of g-dispatch(m, t) is uniquely determined
by the subset of all types t′ ∈ I(m), such that t is among the descendant of t′.
From Definition 3.1, we have that the descendants are consecutive in the list of T i.
Implementors I(m) define therefore f intervals (which may be empty) in this list.
These intervals partition the list into at most 2f + 1 segments such that the result
of g-dispatch(m, t) is uniquely determined by the segment of t. These segments give
the restriction of ∇I(m) to T i.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

36 · J. Gil and Y. Zibin

We have thus obtained |∇I(m)| ≤ κ(2f + 1). To obtain a tighter bound we
need a more careful counting. Let us remove from T i all types which are not
descendants of any of the members of I(m). The remaining types are divided
by I(m) into 2f − 1 segments. Generalized dispatching on the removed types
returns the empty set, irrespective of i. The total number of equivalence classes
in ∇I(m) is therefore κ(2f − 1) + 1 ≤ 2κf .

Remark 6.5. The actual partitioning T 1, . . . , T κ is not required in order to ap-
ply the CT reduction; only the integer κ is needed for determining the slice size. We
found that in practice the single inheritance analysis closely models even hierarchies
which use multiple inheritance heavily. (Therefore there is no need even to find κ.)

7. DATA SET

Thirty-five hierarchies collected from eight different programming languages and
totaling 63,972 types, were assembled from the following sources:

(1) The four hierarchies (Self, Unidraw, LOV, Geode) used in benchmark of RD in
multiple inheritance hierarchies [Driesen and Hölzle 1995].

(2) The eight Smalltalk, ObjectiveC and C++ hierarchies used for bench-
marking RD and CT [Vitek and Horspool 1996] in single inheritance hierar-
chies.

(3) The ensemble of seven Java hierarchies used in the definition of the “common
programming practice” [Cohen and Gil 2000], augmented by version 1.3.1 of the
Java Development Kit. Each of these eight hierarchies, was also used both for
benchmarking multiple inheritance dispatching algorithms and, after pruning
interfaces, for benchmarking single inheritance dispatching algorithms.

(4) The two Cecil [Chambers 1993] and Dylan [Shalit 1997] hierarchies used in all
benchmarking of multiple dispatching algorithms [Holst et al. 1998; Dujardin
et al. 1998; Pang et al. 1999; Dujardin 1996] contributed by Eric Dujardin.
We regard each multi-dispatch query as several independent single-dispatch
queries on each of the arguments, as done in the first step of the major algo-
rithms for multi-dispatching [Zibin and Gil 2002].

(5) A collection of five other multiple dispatching hierarchies contributed by Wade
Holst: Cecil- and Cecil2 are two older versions of the Cecil run time library.
Vortex3 is a Cecil compiler written in Cecil, while Vor3 is an old version of
this compiler. Harlequin is a commercial implementation of Dylan including
its GUI library.

The data set for benchmarking dispatching algorithms has 16 single inheritance
hierarchies with 29,162 types, 12 multiple inheritance hierarchies with 27,728 types,
and seven multiple dispatch hierarchies with 7,082 types.

This benchmark includes 5 hierarchies out of 13 hierarchies used in previous
experimental work on subtyping. (We were unable to obtain information on the
definition of messages and methods in the other eight hierarchies.) As observed pre-
viously [Eckel and Gil 2000] many of the topological properties of these hierarchies
are similar to those of balanced binary trees. The average number of ancestors in
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 37

these hierarchies is less than 9 for all hierarchies, with the exception of Geode, in
which it is 14.0 and Self, in which it is 30.9.

All degenerate messages, i.e., messages with a single implementor (singletons),
were eliminated from the data set prior to running the experiments. The reason for
doing so is that sending a degenerate message requires no dispatching, and is the
same as static procedure call. (In dynamically typed languages there is an earlier
step, which is equivalent to a subtyping test, in which it is made sure that the
message is valid for the receiver type.)

Table II gives a summary of the pruned hierarchies. The three blocks in the
table correspond to single inheritance-, multiple inheritance-, and multiple dispatch-
hierarchies. We see that the hierarchies span a range of sizes, from about a hundred
types up to almost 9,000 types.

The row denoted Total in this and some of the subsequent tables corresponds to
the total or universal hierarchy obtained by a simple disjoint union of all hierarchies
in the ensemble. In most cases, the “Total” row therefore corresponds to an average
of the different hierarchies, weighted by size. In Table II, this row indicates that in
total the dispatching benchmark spanned some 64 thousand types and 70 thousand
messages.

The i/n column shows the average number of method implementations per type.
Examining the entries along this column we see that in many multiple dispatch
hierarchies, there are about one or two methods per type. A typical value of
the other hierarchies is four or five implementations per type. The San Francisco
(SI: IBM SF) project gives the largest number of methods per type (13.3).

In checking the i/m column we find that the number of implementors tend to
be small, with average values of around four to six methods per message in most
hierarchies. We note that the average number of comparisons in a binary search
in the set of implementors is no greater than dlog2

i
me. The reason is that the

geometrical mean is no greater than the arithmetical mean, and therefore

1
m

∑

m∈M
log2|I(m)| = log2

(∏

m∈M
|I(m)|

) 1
m

≤ log2

(
1
m

∑

m∈M
|I(m)|

)
= log2

i
m

.

(7.1)

Thus, just by inspecting the i/m column we learn that the number of comparisons
is about 3.

The next (nm)/w column gives the best possible factor by which null elimination
can improve upon the complete dispatching matrix. As can be seen from the table,
this matrix is very sparse. In most cases, 90% or more of its cells are null. In
hierarchies such as MI: JDK 1.3.1 and MI: IBM SF we even find that the potential
compression is by a factor as high as 300.

How much can duplicates elimination improve on an optimal null elimination?
The answer is in the w/i column. We observe a potential for additional compression
by factors of about 10. Duplicates elimination performs very well precisely on the
multiple dispatch hierarchies, where mere null elimination is not as effective as it
is in other hierarchies.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

38 · J. Gil and Y. Zibin

Hierarchy n m i/n i/m (nm)/w w/i

S
in

g
le

In
h
e
rita

n
c
e

Visualworks1 774 1,170 6.0 4.0 11.4 17.1
Visualworks2 1,956 3,196 6.9 4.2 21.6 21.3
Digitalk2 535 962 6.2 3.5 7.1 21.7
Digitalk3 1,357 2,402 7.0 3.9 9.0 38.3
IBM Smalltalk 2 2,320 4,335 7.0 3.8 49.1 12.6
VisualAge 2 3,241 6,529 8.1 4.0 35.6 22.7
NextStep 311 499 6.8 4.2 9.6 7.7
ET++ 371 296 3.8 4.8 9.0 8.6
SI: JDK 1.3.1 6,681 4,392 3.6 5.4 228.8 5.4
SI: Corba 1,329 222 1.9 11.6 42.5 2.7
SI: HotJava 644 690 4.5 4.2 18.6 8.2
SI: IBM SF 6,626 11,664 13.3 7.6 268.9 3.3
SI: IBM XML 107 131 5.5 4.5 10.8 2.2
SI: Orbacus 1,053 980 3.6 3.9 55.3 4.9
SI: Orbacus Test 579 368 4.1 6.5 37.6 2.4
SI: Orbix 1,278 535 2.3 5.4 62.7 3.8

M
u
ltip

le
In

h
e
rita

n
c
e

Self 1,802 2,459 12.1 8.8 18.9 10.8
Unidraw 614 360 3.8 6.5 27.3 3.5
LOV 436 663 6.5 4.3 20.5 5.0
Geode 1,318 1,413 7.2 6.7 15.2 12.9
MI: JDK 1.3.1 7,401 5,724 3.9 5.0 300.7 4.9
MI: Corba 1,699 396 1.9 8.1 49.6 4.2
MI: HotJava 736 829 4.6 4.1 24.5 7.3
MI: IBM SF 8,793 14,575 13.2 8.0 328.3 3.4
MI: IBM XML 145 271 6.5 3.5 16.9 2.5
MI: Orbacus 1,379 1,261 3.6 4.0 70.1 5.0
MI: Orbacus Test 689 379 4.0 7.3 34.9 2.7
MI: Orbix 2,716 786 1.4 4.7 95.1 6.1

M
u
ltip

le
D

isp
a
tch

in
g

Cecil 932 1,009 4.5 4.2 12.9 17.3
Dylan 925 428 1.9 4.2 5.6 39.5
Cecil- 473 592 5.0 4.0 17.4 6.8
Cecil2 472 131 1.2 4.3 3.6 30.6
Harlequin 666 229 1.5 4.4 6.6 22.7
Vor3 1,660 328 1.1 5.7 35.3 8.3
Vortex3 1,954 476 1.3 5.2 3.0 122.4

Total 63,972 70,680 6.5 5.9 N/A 8.7
Median 1,053.0 690.0 4.5 4.4 21.6 7.3
Minimum 107 131 1.1 3.5 3.0 2.2
Maximum 8,793 14,575 13.3 11.6 328.3 122.4

Table II. Statistical and topological properties of the 35 hierarchies used in benchmarking dis-
patching algorithms

8. EXPERIMENTAL RESULTS

In this section we compare the theoretical prediction of algorithms TS and CTd with
their empirical performance. All tests were run on 900Mhz Pentium III computer,
equipped with 256MB internal memory and controlled by a Windows 2000 operating
system.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 39

8.1 Space requirement

In order to evaluate the quality of the order-preserving heuristic used in our TS
technique, we compared it with a much more powerful, but time consuming, heuris-
tic which uses PQ-trees. The superscript PQ shall denote the variant which use
the PQ heuristic.

We follow the popular convention of ignoring code space requirement, i.e., as-
suming that there is a single generic dispatching routine which receives a message-
selector and a type-id. Although our results indicate that inlining of the binary
search might be worthy, further research is required to estimate the incurred code
space penalty.

The following definition is pertinent to the comparison of algorithms.

Definition 8.1. redundancy Let W be the number of 4-bytes words the algo-
rithm uses to encode the dispatching tables of a certain hierarchy, then the algo-
rithm’s redundancy factor on this hierarchy is W/i.

In other words, the redundancy factor of a dispatching algorithm in a certain hi-
erarchy is the ratio between the total space requirement of that algorithm and the
lower bound ideal implementation which uses 4 bytes for storing the address of each
method.

Table III gives the redundancy factor of different algorithms on the 35 hierar-
chies in our dispatching benchmark. In reading the table, remember that better
algorithms have lower redundancy factors.

Algorithms CT, CT2, CT3, TS, and TSPQ attempt to achieve duplicates elim-
ination. The other algorithms rely on null elimination. The results in the table
do not include the additional provisions mentioned above for the RD and SC algo-
rithms to support dynamically typed languages. The redundancy factors have to
be appropriately adjusted to include selector verification information.

Since we did not have access to the original implementation and heuristics of
SC and CT, redundancy factors reported in the respective columns present a lower
bounds on these values: In SC, the number of slices is no less than the maximal
number of messages that a type understands. In estimating CT, the set of messages
was divided into chunks of 14 messages each (as prescribed in [Vitek and Horspool
1996]). We then applied the SC lower bound estimate in each chunk.

Memory usage of CT2 and CT3 were obtained using the empirically found best
slice size (which may be different than the prescription of column 2 of Table I).

The results of the VFT technique are calculated in the traditional manner [Driesen
and Hölzle 1995], under the assumption that there are no virtual bases. The size of
a type VFTs equals the sum of its parents VFTs plus the number of newly intro-
duced messages. However, in practice inheritance is usually shared (not repeated),
giving rise to other overheads [Eckel and Gil 2000].

In studying the last column of the table (labeled “Mem”) we see that the total
space requirement of type slicing ranges between 5KB to almost 1.7MB. When
viewed in relative- rather than absolute-terms (in the penultimate column labeled
TS showing redundancy factors), we find that the space requirement of type slicing
is about three or four times larger than a theoretic optimal duplicates elimination.

In comparing the columns TS and TSPQ we find that using the PQ-heuristic
does not always improve the space performance. In fact, in all single inheritance

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

40 · J. Gil and Y. Zibin

Hierarchy CTa CT2 CT3 VFT SCb RD TSPQ TS Memc

S
in

g
le

In
h
e
rita

n
c
e

Visualworks1 18.3 17.9 9.9 17.1 24.3 17.3 2.8 2.5 45
Visualworks2 37.5 28.8 13.9 21.3 39.8 21.7 2.6 2.5 134
Digitalk2 15.8 17.0 9.9 21.7 59.8 22.0 3.0 2.7 35
Digitalk3 29.8 26.1 13.3 38.3 92.5 38.8 3.0 2.7 98
IBM Smalltalk 2 48.9 30.5 13.8 12.6 37.5 15.4 3.0 2.6 165
VisualAge 2 63.0 35.3 15.3 22.7 62.3 29.2 3.0 2.6 267
NextStep 10.7 12.7 8.3 7.7 21.8 7.9 2.9 2.6 22
ET++ 9.9 12.1 8.1 8.6 26.0 8.9 2.6 2.4 13
SI: JDK 1.3.1 91.9 45.1 18.3 5.4 67.9 6.2 2.6 2.4 219
SI: Corba 10.1 12.2 7.1 2.7 25.2 3.7 2.8 2.7 27
SI: HotJava 15.5 16.4 9.5 8.2 33.7 8.5 2.8 2.5 28
SI: IBM SF 66.0 26.9 10.8 3.3 26.0 3.5 2.4 2.2 744
SI: IBM XML 4.2 4.8 3.8 2.2 8.4 2.5 2.5 2.1 5
SI: Orbacus 22.6 18.8 9.4 4.9 35.0 5.1 2.8 2.4 36
SI: Orbacus Test 8.4 8.4 5.0 2.4 43.9 2.9 2.5 2.3 21
SI: Orbix 21.3 21.2 11.5 3.8 35.7 4.6 2.8 2.5 29

M
u
ltip

le
In

h
e
rita

n
c
e

Self 17.6 14.3 7.4 10.8 27.3 11.1 3.0 2.8 240
Unidraw 10.7 12.8 8.2 3.5 15.3 4.0 2.7 2.5 23
LOV 12.1 14.2 9.1 12.8 11.8 5.2 4.4 4.5 50
Geode 19.2 19.0 10.8 44.9 40.4 16.2 5.5 6.1 228
MI: JDK 1.3.1 109.2 48.3 18.5 5.8 62.4 5.5 4.1 4.1 463
MI: Corba 18.5 16.4 8.5 6.5 35.6 4.9 3.4 3.3 42
MI: HotJava 17.3 17.4 9.7 8.5 39.0 7.6 4.2 4.6 60
MI: IBM SF 82.3 31.6 11.8 5.9 26.2 3.5 3.8 3.7 1,663
MI: IBM XML 5.7 6.3 4.4 3.5 8.7 2.6 3.5 3.3 12
MI: Orbacus 28.0 20.9 10.2 6.9 37.5 5.3 4.0 3.8 75
MI: Orbacus Test 8.8 8.8 5.1 3.5 45.3 3.0 3.2 3.2 35
MI: Orbix 45.1 31.6 14.7 7.0 64.5 6.7 3.6 3.4 49

M
u
ltip

le
D

isp
a
tch

in
g

Cecil 19.5 27.2 15.8 34.0 34.6 17.8 4.2 4.1 68
Dylan 20.5 23.9 13.5 46.3 71.6 40.2 3.5 3.5 24
Cecil- 12.7 18.3 11.8 12.7 27.7 7.2 4.5 4.8 45
Cecil2 11.6 11.6 6.7 100.3 69.7 31.2 3.3 3.9 9
Harlequin 14.2 16.7 10.0 47.9 83.3 23.5 4.3 4.4 18
Vor3 24.1 25.5 13.9 19.4 50.8 9.3 3.4 3.5 26
Vortex3 29.2 29.2 14.8 375.7 159.7 124.0 3.5 4.1 40

Total 55.7 29.7 13.0 22.8 48.5 13.3 3.3 3.2 433
Median 18.5 18.3 10.0 8.5 37.5 7.6 3.0 2.8 42
Minimum 4.2 4.8 3.8 2.2 8.4 2.5 2.4 2.1 5
Maximum 109.2 48.3 18.5 375.7 159.7 124.0 5.5 6.1 1,663

aThe original CT with slice size 14 and SC within each chunk
bA lower bound on SC redundancy factor
cThe space requirements of TS in kilo-bytes

Table III. The redundancy factor of different dispatching algorithms and the total memory re-
quirements of TS in kilo-bytes

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 41

hierarchies, and several multiple inheritance hierarchies, it increases the memory
consumption of the algorithm. The improvement, in the few cases it occurs, is quite
small; a maximum of 15% in the Vortex3 hierarchy.

RD is better than our TS algorithm in three out of 35 hierarchies: IBM SF
(redundancy factor 3.5 in RD vs. 3.7 in TS), IBM XML (2.6 vs. 3.3), and Orbacus
Test (3.0 vs. 3.2) multiple inheritance hierarchies. We see that even in these cases
the space requirement of TS is comparable to that of RD.

TS however always wins against CT, VFT, SC, and against RD in all other
hierarchies, sometimes by factors as large as 30. For instance, in the Vortex3
hierarchy, RD uses 1.24MB, an optimal null elimination scheme will use 1.22MB,
while TS uses 40KB!

The average improvement of TS over RD is by a factor of 4.6, while the median
improvement is by a factor of 2.6. In fairness, it should be said that all these al-
gorithms dispatch in constant time, using simple array references, while TS uses a
non-constant time binary search. This constant time must be extended to include
selector verification in dynamically languages, which is not required in TS. Con-
versely, as we saw in Section 3, the search time in TS can be reduced in statically
typed languages.

In general, the VFT algorithm is the next best algorithm among single inheritance
hierarchies. The RD algorithm is usually the second best for multiple inheritance
hierarchies, while the CT techniques perform well on multiple dispatch hierarchies.
The median improvement of CT3 over CT2 is 44%.

We remind the reader that the comparison presented in Table III is different than
that reported in the literature, since even though we used the same hierarchies, we
eliminated degenerate messages from the benchmark. Different algorithms compress
such messages to different levels.

8.2 Creation time

Table IV compares the times for creating the compressed dispatching data struc-
tures using RD with those of TS and those of TSPQ. Since we could not obtain
the original implementations of SC and CT, their runtime is not reported. Vitek
and Horspool [Vitek and Horspool 1996] report that CT required 1.5 seconds for
NextStep hierarchy, and 4.8 seconds for Visualworks2, on a Sparc station 5. The
implementation of VFT is so straightforward and fast that its runtime overhead
can be considered as zero for many practical purposes.

TS is consistently better than RD, sometimes by a factor of hundreds. The
average improvement of TS over RD is by a factor of 37.4, while the median is 6.3.
(Since RD is a heuristic it may sometimes find a good solution quickly.) TSPQ is
very slow.

The runtimes for generating the CT encodings (without actually copying the val-
ues into matrices) of the first four schemes (CT2 through CT5) were 0.7 Sec, 1.4 Sec,
2.1 Sec and 2.9 Sec. Since our data-set included in total 418,839 methods we find
that the time per implementation is measured in microseconds. For example, we
found that the creation time per implementation ranged between 0.3 and 1.7 µSec
in CT2 in single inheritance hierarchies (the median being 0.6 µSec). These times
increase in multiple inheritance hierarchies: the range being 1.1 to 6.7 µSec; the
median being 2.4 µSec.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

42 · J. Gil and Y. Zibin

Hierarchy RD CT2 CT3 CT4 CT5 TS TSPQ

S
in

g
le

In
h
e
rita

n
c
e

Visualworks1 54 3 5 6 8 5 261
Visualworks2 250 9 17 25 29 13 2,430
Digitalk2 54 2 4 4 5 3 130
Digitalk3 281 7 11 16 23 9 1,040
IBM Smalltalk 2 3,430 11 19 26 35 15 3,790
VisualAge 2 18,800 20 35 47 63 24 8,160
NextStep 13 1 1 2 2 1 50
ET++ 9 1 1 1 2 1 60
SI: JDK 1.3.1 162 16 28 39 52 26 33,600
SI: Corba 11 1 2 1 2 3 561
SI: HotJava 22 1 3 3 4 2 211
SI: IBM SF 1,620 45 73 107 134 69 30,300
SI: IBM XML 1 1 1 1 1 1 10
SI: Orbacus 27 1 4 5 5 4 401
SI: Orbacus Test 12 1 1 1 1 1 110
SI: Orbix 18 1 3 3 4 3 571

M
u
ltip

le
In

h
e
rita

n
c
e

Self 242 84 159 250 354 30 27,600
Unidraw 9 5 10 14 18 3 371
LOV 18 6 12 19 22 5 3,430
Geode 182 40 83 128 162 38 66,800
MI: JDK 1.3.1 240 82 161 237 316 88 324,000
MI: Corba 26 6 10 17 22 9 10,400
MI: HotJava 30 7 15 26 32 7 3,390
MI: IBM SF 903 277 568 874 1180 307 1,740,000
MI: IBM XML 2 1 2 4 4 1 140
MI: Orbacus 31 11 22 31 45 11 12,700
MI: Orbacus Test 11 3 6 8 10 4 1,740
MI: Orbix 31 9 19 24 28 14 12,400

M
u
ltip

le
D

isp
a
tch

in
g

Cecil 57 21 42 66 80 9 6,410
Dylan 48 12 29 36 64 5 1,870
Cecil- 18 9 23 32 44 4 2,490
Cecil2 16 1 3 4 4 1 2,650
Harlequin 23 3 6 9 11 2 2,710
Vor3 24 8 17 25 33 9 23,400
Vortex3 394 16 31 47 59 11 42,100

Table IV. Encoding creation time in milliseconds of different dispatching algorithms

8.3 Dispatching time

The dispatching sequence of CTd has exactly d dereference steps in the batch
version. The incremental version has additional constant-time overhead, such as a
range check before accessing the dispatching matrix and an additional dereference
to retrieve the slice of the dispatching message.

In TS we associate with each message an array of the κ addresses of the appropri-
ate sorted dictionaries of each slice. The dispatching sequence therefore starts with
a single dereference to retrieve the sorted dictionary, followed by a binary search
routine. The main performance metric of such code is the number of conditionals
in the search routine.

We computed the average number of such conditionals, taking care to weigh each
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 43

slice proportionally to the number of types in it. The average number of such condi-
tionals in the 35 hierarchies ranged between 0.6 and 3.4; the median value being 2.5.
(Even though the experiments used only non-degenerate messages, i.e., messages
with two or more methods, it turned out to be that the number of conditionals
was sometime zero, precisely when there was only one method implementation in
a slice.)

A potentially better technique eliminates the dereference by coalescing all the
sorted dictionaries of each message. Observe that with this technique dispatching
time increases from O(log|I(m)|) to O(log κ|I(m)|). In practice, if this is imple-
mented, then the average number of comparisons ranges between 2.5 to 3.8; the
median becomes 2.9. We see that the dereference is substituted by about one or two
comparisons on average. We should also say that this coalescing technique reduces
the total memory requirement, since it eliminates the array of the κ addresses which
was associated with each message. We finally note that, for this technique, we can
use a weaker definition for the complexity of an hierarchy, which is: there exists an
ordering of T in which the descendants of any type define at most κ intervals.

8.4 Experimental Results for CTd

Figure 8.1 shows the memory used by the first four CT schemes relative to the w
baseline in the 35 hierarchies in the data-set.

The figure shows that compared to the optimal null-elimination, CT2 is better
in 6 hierarchies, CT3 in 13 hierarchies, CT4 in 15 hierarchies, and CT5 in 16
hierarchies. In a few cases, the improvement is by an order of magnitude from the
baseline. We also see that CT2 is at most one order of magnitude worse than this
idealized baseline.

We can also learn from Figure 8.1 that the incremental improvement by the series
of CT schemes is diminishing. In fact, examining the actual memory requirements,
we find that the median incremental improvements are: CT3 over CT2: 44%, CT4

over CT3: 18%, and CT5 over CT4: 8%. This finding is consistent with the theo-
retical prediction.

The figure also plots another idealized algorithm, i.e., the optimal duplicates-
elimination scheme, which uses i cells. We see that this ideal is about one order of
magnitude better than the various CT schemes. Finally, we see a certain correlation
between i and the series of CT schemes, as predicted by the theoretical analysis.
When i ¿ w the CT schemes outperform even an optimal null-elimination scheme.

We now turn to comparing the actual performance of the various CT schemes
with the theoretically obtained bounds.

In single inheritance hierarchies, the upper bound on the memory requirement are
given by the fourth column of Table I. Figure 8.2a shows the memory requirement
relative to these values. We see that in all schemes and in all hierarchies, the
memory requirement is significantly smaller than the upper bounds. Also, the
extent of improvement of CTd over the upper bound increases with d.

Corollary 6.2 provides the upper bounds in multiple inheritance hierarchies de-
pending on their complexity κ. Figure 8.2b shows the memory, relative to these
upper bounds, of the actual CT performance. Again, we see that the extent of
improvement of CTd over the upper bound increases with d. Interestingly, in
comparing Figure 8.2b with Figure 8.2a, we see that the improvement of the imple-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

44 · J. Gil and Y. Zibin

1%

10%

100%

1000%

1 17 33

CT2 / w

CT3 / w

CT4 / w

CT5 / w

l/w

w

Fig. 8.1. Memory used by CT2, CT3, CT4, CT5 and optimal duplicates-elimination (i) relative to
optimal null-elimination (w – marked as the 100%); hierarchies are sorted in ascending memory
used by CT3

mentation upon the upper bound is much greater in multiple inheritance vs. single
inheritance hierarchies.

A possible explanation for this seemingly better performance in multiple inher-
itance hierarchies is exaggerated upper bounds. Examining Corollary 6.2, we see
that the upper bounds increase with κ. Since our heuristics only finds an upper
approximation of κ, it could be that the true upper bounds are actually smaller,
and hence the improvement upon the upper bound is not as great.

Figure 8.2c tries to test this hypothesis, by comparing the performance on mul-
tiple inheritance hierarchies with the upper bounds obtained by assuming κ = 1
(as in single inheritance hierarchies).7 We see that the improvement upon the up-
per bounds computed thus is almost the same as in single inheritance hierarchies
(Figure 8.2a). Such a similarity could not be explained by an overestimation of κ.

The reason that the CT algorithms perform better than the theoretically ob-
tained bounds is that the analysis of the CT reduction bounded the number of

7In fact, we used the bound for single inheritance in Table I, which is smaller by a factor
of (2κ)1−1/d than the bound for multiple inheritance in Corollary 6.2.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 45

0%

25%

50%

75%

100%

SI:
Orb

ac
us

 T
es

t

SI:
IB

M
 S

F

SI:
IB

M
 X

M
L

SI:
Cor

ba

SI:
Orb

ac
us

IB
M

 S
m

all
ta

lk
2

Visu
alA

ge
 2

Visu
alw

or
ks

1

SI:
JD

K 1
.3

.1

SI:
Hot

Ja
va

Visu
alw

or
ks

2

Digi
ta

lk2

ET++

SI:
Orb

ix

Digi
ta

lk3

Nex
tS

te
p

CT2

CT3

CT4

CT5

0%

25%

50%

75%

100%

M
I:

Orb
ac

us
 T

es
t

M
I:

IB
M

 S
F

M
I:

IB
M

 X
M

L
Self

Cec
il2

M
I:

Orb
ac

us

M
I:

Cor
ba

M
I:

JD
K 1

.3
.1

M
I:

Hot
Ja

va

Unid
ra

w

M
I:

Orb
ix

Geo
de

Har
leq

uin

LO
V

Vor
3

Vor
te

x3

Dyla
n

Cec
il-

Cec
il

CT2

CT3

CT4

CT5

0%

25%

50%

75%

100%

M
I:

IB
M

 S
F

Geo
de

M
I:

Orb
ac

us
 T

es
t

M
I:

Cor
ba

M
I:

JD
K 1

.3
.1

M
I:

Hot
Ja

va

Self

Har
leq

uin

LO
V

Cec
il2

M
I:

Orb
ac

us

M
I:

IB
M

 X
M

L

M
I:

Orb
ix

Vor
3

Vor
te

x3

Cec
il-

Cec
il

Dyla
n

Unid
ra

w

CT2

CT3

CT4

CT5

(a)

(b)

(c)

Fig. 8.2. The memory requirement of CT2, CT3, CT4 and CT5 relative to the theoretically
obtained upper bounds in single inheritance hierarchies (a), multiple inheritance hierarchies where
the upper bound was computed using κ (b), and multiple inheritance hierarchies, where the upper
bound is computed as in single inheritance hierarchies (κ = 1) (c)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

46 · J. Gil and Y. Zibin

implementors of a master-message by the sum of implementors of its constituents,
i.e.,

|I(Mi)| =
∣∣∣∣∣

⋃

m∈Mi

I(m)

∣∣∣∣∣ ≤
∑

m∈Mi

|I(m)|.

In fact, especially when the messages are large, the probability of finding shared
elements may be significant, and the master-message is likely to have a smaller
number of implementors. As a result, i′, the number of implementations after the
reduction, may be much smaller than the original value i. For example, with x =
29 for CT2 in Digitalk3, the CT reduction transforms the problem 〈n,m, i〉 =
〈1357, 2402, 9444〉 to 〈1357, 83, 4616〉, i.e., the number of implementations decreased
by a factor of more than 2. Our analysis assumed (see (4.7)) however that i′ = i.

This effect increases also with slice size, which is the reason that choosing a slice
size greater than the theoretical prescription may improve the performance of the
reduction. In IBM SF, for example, the theoretical analysis suggested that xOPT =
30 as optimal slice size for CT2. However, by using instead a slice size x = 70, we
were able to further reduce the number of cells from 3.3M to about 2.4M.

Figure 8.3 compares the actual memory used by the CT2 scheme with the theo-
retical prediction (4.10) in the Digitalk3 hierarchy. (The graphs of other hierarchies
and higher order schemes are similar.) We see that the extent by which the empir-
ical performance is superior to the theoretically obtained bound increases with the
slice size.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 7 121722273237424752576267727782879297
slice size

m
em

o
ry

 r
eq

u
ir

em
en

ts

lx + (nm)/x
CT2

Fig. 8.3. Space requirements vs. slice size in the single inheritance hierarchy of Digitalk3 for CT2

and its theoretical upper bound (4.10)

9. OPEN PROBLEMS

The incremental CTd algorithm can be generalized to the multiple inheritance
setting, but there are subtle issues in the theoretical analysis of the performance
of this generalization. Another natural extension to the incremental dispatching
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 47

problem is in allowing also deletion of leaves from the hierarchy, as supported,
at least in part, by Java. Other extensions include addition of new methods to
existing types, or as it might be the case in knowledge representation, reasoning,
database management, and query processing, allowing insertion of types anywhere
in the hierarchy (and not just as leaves).

When comparing CTd and TS we find a gap in the theoretical bounds for multiple
inheritance hierarchies. CTd achieves 2κi lg m space when d = lg m. TS however
uses only O(κi) cells, while achieving O(lg lg n) dispatching time. There is therefore
a reason to believe that the tradeoff offered by CTd can be improved, especially for
higher values of d.

In the more pure algorithmic front, it would be both interesting and useful to gen-
eralize the PQ-tree data structure to support modifications of existing constraints
when a new element is added to the universe.

Our algorithms assumed that ambiguities are resolved by an appropriate aug-
mentation of implementors. Some OO languages resolve ambiguities based on a
linearization of the partial order ¹. CommonLoops [Bobrow et al. 1986], for ex-
ample, uses a global type ordering, while CLOS [Bobrow et al. 1988] uses a local
type ordering. Extending our algorithms to support linearization based ambiguity
resolution appears to be a worthy prospect.

Dispatching also occur in Java exception handling, as the following code excerpt
shows.

try {...}
catch(D d) {...}
catch(E e) {...}
catch(A a) {...}

When an object o of a dynamic type a = a(o) is thrown in a try block, the program
executes the first catch block whose argument is a supertype of a. Thus, each of
the catch clauses is a subtyping test. When the number of such clauses is large, it
might be worthwhile to choose the exception handler using a dispatching algorithm
which will find the clause with the smallest supertype.8 There is no possibility
for ambiguity in Java exception handling. The reason is that a type in the catch
block must be a subtype of the class Throwable, and Java has a single inheritance
class hierarchy (and ambiguities cannot occur in a single inheritance hierarchy).

Finally, incorporating our algorithms into a runtime system requires careful at-
tention to details, including selecting a heuristic for determining the optimal slice
size, which might perform better than the theoretical value, a wise strategy for
background copy to avoid stagnation, tweaking and fine tuning of the partitioning
algorithm, etc. We leave this empirical evaluation to continuing research.

REFERENCES

Alpern, B., Cocchi, A., Fink, S., Grove, D., and Lieber, D. 2001. Efficient implementation
of Java interfaces: invokeinterface considered harmless. See OOPSLA’01 [2001].

8The above code, if read in C++ [Stroustrup 1997], leads to the same problem. This is due to
the separate compilation model of C++ , in spite of the fact that exceptions are caught according
to the static type of the thrown object.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

48 · J. Gil and Y. Zibin

Arnold, P. and Gosling, J. 1996. The Java Programming Language. The Java Series. Addison-
Wesley Publishing Company, Reading, Massachusetts.

Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E., Kiczales, G., and Moon,
D. A. 1988. Common Lisp object system specification. X3J13 Document 88-002R.

Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel, F. 1986. Com-
monLoops: Merging Lisp and object-oriented programming. In Proc. of the 1st Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’86),
N. K. Meyrowitz, Ed. ACM SIGPLAN Notices 21(11), Portland, Oregon, USA, 17–29.

Booth, K. S. and Leuker, G. S. 1976. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. of Comp. and Sys. Sci. 13, 3 (Dec.), 335–379.

Chambers, C. 1993. The Cecil language, specification and rationale. Tech. Rep. TR-93-03-05,
University of Washington, Seattle.

Chambers, C. and Chen, W. 1999. Efficient multiple and predicate dispatching. See OOPSLA’99
[1999], 238–255.

Cohen, T. and Gil, J. 2000. Self-calibration of metrics of Java methods. In Proc. of the 37th In-
ternational Conference on Technology of Object-Oriented Languages and Systems (TOOLS’00
Pacific). Prentice-Hall, Englewood Cliffs, New Jersy 07632, Sydney, Australia, 94–106.

Conroy, T. J. and Pelegri-Llopart, E. 1983. An assessment of method-lookup caches for
Smalltalk-80 implementations. In Smalltalk-80: bits of history, words of advice. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Cox, B. J. 1986. Object-Oriented Programming - An Evolutionary Approach. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Deutsch, P. and Schiffman, A. 1984. Efficient implementation of the Smalltalk-80 system. In
Proc. of the 11th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’84). ACM Press, New York, NY, USA, Salt Lake City, Utah, 297–302.

Dietz, P. F. and Sleator, D. D. 1987. Two algorithms for maintaining order in a list. In Proc.
of the 19th Annual ACM Symposium on Theory of Computing (STOC’87). ACM Press, New
York, NY, USA, New York, New York, USA, 365–372.

Dietzfelbinger, M., Karlin, A. R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert,
H., and Tarjan, R. E. 1994. Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23, 4 (Aug.), 738–761.

Dixon, R., McKee, T., Vaughan, M., and Schweizer, P. 1989. A fast method dispatcher
for compiled languages with multiple inheritance. In Proc. of the 4th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’89), N. K.
Meyrowitz, Ed. ACM SIGPLAN Notices 24(10), New Orleans, Louisiana, 211–214.

Driesen, K. 1993. Selector table indexing & sparse arrays. In Proc. of the 8th Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’93),
A. Paepcke, Ed. ACM SIGPLAN Notices 28(10), Washington, DC, USA, 259–270.

Driesen, K. 1999. Software and hardware techniques for efficient polymorphic calls. Tech. Rep.
TRCS99-24, Computer Sciences Department, University of California, Santa Barbara. July 15,.

Driesen, K. and Hölzle, U. 1995. Minimizing row displacement dispatch tables. In Proc.
of the 10th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’95). ACM SIGPLAN Notices 30(10), Austin, Texas, USA, 141–155.

Driesen, K. and Hölzle, U. 1996. The direct cost of virtual functions calls in C++. In Proc.
of the 11th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’96). ACM SIGPLAN Notices 31(10), San Jose, California, 306–323.

Driesen, K., Hölzle, U., and Vitek, J. 1995a. Message dispatch on modern computer archi-
tectures. Technical Report TRCS94-20, University of California, Santa Barbara. Computer
Science. Feb. 9,.

Driesen, K., Hölzle, U., and Vitek, J. 1995b. Message dispatch on pipelined processors. In
Proc. of the 9th European Conference on Object-Oriented Programming (ECOOP’95), W. G.
Olthoff, Ed. Lecture Notes in Computer Science, vol. 952. Springer Verlag, Åarhus, Denmark,
253–282.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 49

Dujardin, E. 1996. Efficient dispatch of multimethods in constant time using dispatch trees.
Technical Report RR-2892, Inria, Institut National de Recherche en Informatique et en Au-
tomatique.

Dujardin, E., Amiel, E., and Simon, E. 1998. Fast algorithms for compressed multimethod
dispatch table generation. ACM Trans. on Prog. Lang. Syst. 20, 1 (Jan.), 116–165.

Eckel, N. and Gil, J. 2000. Empirical study of object-layout strategies and optimization
techniques. In Proc. of the 14th European Conference on Object-Oriented Programming
(ECOOP’00), E. Bertino, Ed. Lecture Notes in Computer Science, vol. 1850. Springer Ver-
lag, Sophia Antipolis and Cannes, France, 394–421.

Ellis, M. A. and Stroustrup, B. 1994. The Annotated C++ Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Ferragina, P. and Muthukrishnan, S. 1996. Efficient dynamic method-lookup for object ori-
ented languages (extended abstract). In Proc. of the 4th Annual European Symposium on
Algorithms (ESA’96), J. Dı́az and M. J. Serna, Eds. Lecture Notes in Computer Science, vol.
1136. Springer Verlag, Barcelona, Spain, 107–120.

Gabow, H. N., Bentley, J. L., and Tarjan, R. E. 1984. Scaling and related techniques for
geometry problems. In Proc. of the 16th Annual ACM Symposium on Theory of Computing
(STOC’84). ACM Press, New York, NY, USA, Washington, DC, United States, 135–143.

Gil, J. and Itai, A. 1998. The complexity of type analysis of object oriented programs. In Proc.
of the 12th European Conference on Object-Oriented Programming (ECOOP’98), E. Jul, Ed.
Lecture Notes in Computer Science, vol. 1445. Springer Verlag, Brussels, Belgium, 601–634.

Gil, J. and Sweeney, P. F. 1999. Space- and time-efficient memory layout for multiple inheri-
tance. See OOPSLA’99 [1999], 256–275.

Goldberg, A. 1984. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Holst, W., Szafron, D., Leontiev, Y., and Pang, C. 1998. Multi-method dispatch using single-
receiver projections. Tech. Rep. TR-98-03, University of Alberta, Edmonton, Alberta, Canada.

Hölzle, U., Chambers, C., and Ungar, D. 1991. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In Proc. of the 5th European Conference on Object-
Oriented Programming (ECOOP’91), P. America, Ed. Lecture Notes in Computer Science, vol.
512. Springer Verlag, Geneva, Switzerland, 21–38.

ISE. 1997. ISE EIFFEL The Language Reference. ISE, Santa Barbara, CA.

Kiczales, G. and Rodriguez, L. 1990. Efficient method dispatch in PCL. In Proc. of the ACM
Conference on Lisp and Functional Programming. ACM Press, New York, NY, USA, Nice,
France, 99–105.

Muthukrishnan, S. and Müller, M. 1996. Time and space efficient method-lookup for object-
oriented programs. In Proc. of the 7thSoda, Giovanni (SODA’96). Society for Industrial and
Applied Mathematics, New York / Philadelphia, 42–51.

Naik, M. and Kumar, R. 2000. Efficient message dispatch in object-oriented systems. ACM
SIGPLAN Notices 35, 3 (Mar.), 49–58.

OOPSLA’01 2001. Proc. of the 16th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’01). ACM SIGPLAN Notices 36(11), Tampa
Bay, Florida.

OOPSLA’99 1999. Proc. of the 14th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’99). ACM SIGPLAN Notices 34 (10), Denver,
Colorado.

Pang, C., Holst, W., Leontiev, Y., and Szafron, D. 1999. Multi-method dispatch using
multiple row displacement. In Proc. of the 13th European Conference on Object-Oriented
Programming (ECOOP’99), R. Guerraoui, Ed. Lecture Notes in Computer Science, vol. 1628.
Springer Verlag, Lisbon, Portugal, 304–328.

Pascal, A. and Royer, J. 1992. Optimizing Method Search with Lookup Caches and Incremental
Coloring. In Proc. of the 7th Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’92), A. Paepcke, Ed. ACM SIGPLAN Notices 27(10),
Vancouver, British Columbia, Canada, 110–126.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

50 · J. Gil and Y. Zibin

Shalit, A. 1997. The Dylan Reference Manual: The Definitive Guide to the New Object-Oriented
Dynamic Language. Addison-Wesley Publishing Company, Reading, Massachusetts.

Sleator, D. and Tarjan, R. 1985. Self-adjusting binary search trees. Journal of the ACM 32, 3
(July), 652–686.

Stroustrup, B. 1994. The Design and Evolution of C++. Addison-Wesley Publishing Company,
Reading, Massachusetts.

Stroustrup, B. 1997. The C++ Programming Language, 3rd ed. Addison-Wesley Publishing
Company, Reading, Massachusetts.

van Emde Boas, P. E. 1977. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Processing Letters 6, 3, 80–82.

van Emde Boas, P. E., Kaas, R., and Zijlstra, E. 1977. Design and implementation of an
efficient priority queue. Math. Systems Theory 10, 99–127.

Vitek, J. 1995. Compact dispatch tables for dynamically typed programming languages. M.S.
thesis, University of Victoria.

Vitek, J. and Horspool, R. N. 1994. Taming message passing: Efficient method look-up for
dynamically typed languages. In Proc. of the 8th European Conference on Object-Oriented
Programming (ECOOP’94), M. Tokoro and R. Pareschi, Eds. Lecture Notes in Computer Sci-
ence, vol. 821. Springer Verlag, Bologna, Italy, 432–449.

Vitek, J. and Horspool, R. N. 1996. Compact dispatch tables for dynamically typed object
oriented languages. In Proc. of the 6th International Conference on Compiler Construction
(CC’96), T. Gyimothy, Ed. Lecture Notes in Computer Science, vol. 1060. Springer Verlag,
Linköping, Sweden, 309–325.

Willard, D. E. 1984. New trie data structures which support very fast search operations. J. of
Comp. and Sys. Sci. 28, 379–394.

Zendra, O., Colnet, D., and Collin, S. 1997. Efficient dynamic dispatch without virtual
function tables: The SmallEiffel compiler. In Proc. of the 12th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’97). ACM SIGPLAN
Notices 32(10), Atlanta, Georgia, USA, 125–141.

Zibin, Y. and Gil, J. 2001. Efficient subtyping tests with PQ-encoding. See OOPSLA’01 [2001],
96–107.

Zibin, Y. and Gil, J. 2002. Fast algorithm for creating space efficient dispatching tables with
application to multi-dispatching. In Proc. of the 17th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’02). ACM SIGPLAN Notices
37(11), Seattle, Washington, 142–160.

Zibin, Y. and Gil, J. 2003. Incremental algorithms for dispatching in dynamically typed lan-
guages. In Proc. of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’03). ACM Press, New York, NY, USA, New Orleans, Louisiana, USA,
126–138.

A. AN ORDER-PRESERVING HEURISTIC FOR FINDING THE SLICES

In Section 3 we describe how algorithm TS uses an order-preserving heuristic as
an internal procedure in partitioning T into slices T 1, . . . , T κ. Recall that the
partitioning is built incrementally as new types are added to the hierarchy. For
each new type, we try to find the first slice it can be added to, without violating
the slicing property. If no such slice is found, we create a new slice.

The heuristic maintains for each slice an ordered list of all types in that slice.
Given the order list of slice T i and a type t, we give an algorithm whose runtime
is |ancestors(t)|, which checks whether there is a valid list location for inserting t,
and if so, finds it. The slicing property is slightly modified so that the sets Di(t)
are consecutive in the ordered list of slice T i.

An ordered list is a data structure supporting two kinds of operations: Insert
transactions and Order queries of the following sort. Given two positions in the
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 51

list (usually as pointers to list nodes), determine which one precedes the other.
In a paper entitled “Two Algorithms for Maintaining Order in a List”, Dietz and
Sleator [Dietz and Sleator 1987] give the best algorithm for this problem, achiev-
ing O(1) worst-case time per operation. However, the authors comment that their
other algorithm “is probably the best algorithm to use in practice”, even though it
is theoretically inferior, since its amortized9 insertion time is O(log n). This other
algorithm is based on a technique known as self-adjustment. In a nutshell, each list
node is assigned an integer position in an increasing order, thus Order queries are
answered in constant time. “Holes” are left to support future insertions, and if a
“hole” is filled, then we redistribute the positions in some “sufficiently large and
uneven” list interval. We implemented this simple algorithm and indeed found it
to be very fast in practice.

Before describing the order-preserving heuristic we need to make the notions of
list locations and list intervals more precise.

Definition A.1. location A location of a linked list is either (i) the beginning
of the list, (ii) the end of the list, or (iii) any point between two consecutive nodes
of the list. An interval in the list is a set of consecutive locations. The boundary
of an interval comprises its first and last locations. All other locations are called
the interior of the interval.

The boundary usually contains two locations, the first and the last. For example,
the interval marked as D1(A) in Figure A.1 has two interior locations and two
boundary locations.

AB CD FG J

0

D1(A)

0 1 3 1 1 2 0

1 12

D1(C)

Fig. A.1. Addition of a new type to the first slice of Figure 3.2

The interior of degenerate intervals is empty; in such intervals the first and last
locations are the same. An empty interval has an empty boundary and an empty
interior.

Definition A.2. interval:set The interval of the set Di(t) in the ordered list
of T i includes all locations in the sub-list defined by Di(t).

In other words, the interval of the set Di(t) also includes the location prior to the
first element of Di(t), as well as the location following its last element.

9The amortized time of an operation is c(n), if a sequence of n operations requires at most nc(n)
time. The worst case time of any single operation can however be much greater than c(n).

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

52 · J. Gil and Y. Zibin

In the example, we see in Figure 3.2 that A has three descendants in the first slice,
i.e., D1(A) = {A, D, G}. In Figure A.1 we see that these three types are consecutive
in the ordered list of the first slice and that the interval of D1(A) has four locations.

When inserting a new type t to the ordered list of T i, we search for a list location
where inserting t will not violate the slicing property. Such locations must belong
to the interval of Di(t′) for all ancestors t′ of t, i.e., t′º t. Let I denote the set
of all such intervals, and let Λ denote the intersection of all intervals in I. A list
locations in Λ is called a candidate for inserting t.

Algorithmically, Λ is computed by finding the largest first location of the intervals
in I, and the smallest last location of these intervals. (Comparisons are carried out
using simple Order queries.) If Λ is empty, then we conclude that t cannot be
inserted into T i. The time for computing the intersection and for checking whether
it is empty is in the following asymptotic growth class:

O(|parents(t)|) ⊆ O(|ancestors(t)|).
It is also required that t does not “break” any interval of Di(t”), t” 6 º t. More

precisely, a location is an invalid candidate if it belongs to the interior of these
intervals. Although it is possible to check each candidate location ` ∈ Λ against
every interval of a type t” ∈ T \ ancestors(t), the running time of this exhaustive
search may be linear in the size of the hierarchy!

Figure A.1 shows the ordered list of the first slice of Figure 3.2. We try to
insert to that slice a new type whose parents are A and C. We see the intervals
of D1(A) and D1(C), and their intersection Λ. The new type can only be inserted
in a candidate location ` ∈ Λ. The candidate location between types D and G, for
example, is invalid since it belongs to the interior of the interval of D1(D), and D

is not an ancestor of the new type. The other two candidate locations are valid.
The counts λ` associated with each location in Figure A.1 are a part of a more

efficient implementation for determining if a location is an invalid candidate. For
each location ` in the ordered list, let λ` be the number of all intervals Di(t), such
that ` is in the interior of Di(t). For instance, the location between types D and G

has a count of 3, since it is in the interior of D1(A), D1(C) and D1(D).
A location ` in the interior of Λ is contained in the interior of all intervals defined

by Di(t′), t′º t. Therefore, for all candidate locations ` ∈ Λ we have that

λ` ≥ |ancestors(t)|. (A.1)

The location is an invalid candidate if it is contained in the interior of any other
interval, and therefore

λ` > |ancestors(t)|. (A.2)

In the example of Figure A.1, the location between types D and G is an invalid
candidate, since its count is strictly higher than the number of ancestors.

We must be more careful in checking a location ` in the boundary of Λ. Let I ∈ I
be arbitrary. Then, by definition ` ∈ I. It is not however guaranteed that ` is in the
interior of I. We therefore compute the number n` of intervals I ∈ I such that ` is
in the interior of I. A boundary location ` is an invalid candidate if and only if

λ` > n`. (A.3)
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

Efficient Dynamic Dispatching with Type Slicing · 53

In our example, both boundary locations are valid candidates.
Although there are several special cases and many nitty-gritty details, it is a

straightforward matter to update in O(1) time the counts λ` with every insertion.
(Note that the count may change only for two locations: before and after the inser-
tion point.) Also, computing n` and checking (A.3) can be done in O(|ancestors(t)|)
time. It is potentially more time consuming to do the check (A.2) since we have no
a priori bounds on |Λ|.

Non-exhaustive techniques for finding a valid insertion location We
found empirically that if t could not be inserted at the boundary of Λ, then it was
rarely possible to insert it to the interior of Λ. For example, out of the 4339 types
of JDK 1.22, only 22 types (less than 0.5%) were inserted in the interior of Λ. In all
other hierarchies of our data set, the total number of such types was even smaller,
and their fraction was always lower than 1%.

Therefore, it does not seem necessary to apply the check (A.2) at all. Never-
theless, we should note that there are ways of implementing (A.2) more efficiently
than an exhaustive search. It follows from (A.1) and (A.2) that there exists a valid
location ` in the interior of Λ if and only if

min{λ` | ` is in the interior of Λ} = |ancestors(t)|.
Therefore, the problem of finding a valid location in the interior of Λ is reduced to
the famous range minima problem [Gabow et al. 1984]. A simple solution to the
range minima problem is to maintain a balanced binary search tree (BBST) over
the ordered list of T i, such that each internal node in it stores the minimum of λ` of
all locations ` in the subtree rooted at this node. This representation adds O(log n)
time to each insertion operation. It is standard to use this BBST to compute the
minimum of any given interval. More sophisticated solutions to the range minima
problem require only constant time per operation [Gabow et al. 1984]. It is not
clear whether these algorithms have any practical utility.

Inserting types with a single parent into multiple inheritance hierar-
chies Finally, we present an optimization for quickly inserting a type t with a single
parent p. Let i be the slice of p, i.e., p ∈ T i. Consider the ordered list of T i, and
a list location ` immediately to the left (or to the right) of p. We claim that ` is
valid for t. Assume the contrary, i.e., ` is in the interior of some interval defined
by Di(t”), and that t” is not a supertype of t. Combined with the fact that p is
adjacent to `, we conclude that p ∈ Di(t”), and therefore, p¹ t”. Since t¹ p, it
follows that t¹ t”, which contradicts our assumption.

Received October 2005

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2005.

