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ABSTRACT
The first order isomorphism problem is to decide whether two non-
recursive types using product- and function-type constructors, are
isomorphic under the axioms of commutative and associative prod-
ucts, and currying and distributivity of functions over products. We
show that this problem can be solved in

������� �	��
���
time and

������
space, where

�
is the input size. This result improves upon the����� 
 � �	����

time and
����� 
 

space bounds of the best previous
algorithm. We also describe an

������
time algorithm for the lin-

ear isomorphism problem, which does not include the distributive
axiom, whereby improving upon the

������� �	����
time of the best

previous algorithm for this problem.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—Lambda calculus and related systems; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—
Type structure; D.3.3 [Programming Languages]: Language Con-
structs and Features—Data types and structures; G.4 [Mathematical
Software]: Algorithm design and analysis

General Terms
Algorithms, Design, Languages, Theory

Keywords
First order isomorphism, Linear isomorphism, Non-recursive types,
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1. Introduction
It is a matter of basic high school algebra to prove the equality� �

ab
 � ab
���� b �����

aabba
bbaab �

(1.1)

Yet, as we shall see in this paper, a systematic and efficient pro-
duction of such a proof is non-trivial. With the familiar perspec-
tive of viewing multiplication as product-types, exponentiation as
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function-types, and variables as primitive-types, (1.1) becomes an
instance of a simple, i.e., non-recursive, type isomorphism prob-
lem. In its turn, type isomorphism has close connections to cate-
gory theory [5] and intuitionistic logic [13].

The isomorphism variant which concerns us here is character-
ized by commutativity and associativity of products, and currying
and distributivity of functions over products. This variant has prac-
tical interest in the context of the search for compatible functions
in function libraries.1 (A detailed treatise of this application can be
found in Di Cosmo’s book [9], which discusses also extensions to
second order types and the ML type theory.)

More formally, we consider the set of first order isomorphisms
holding in all models of the lambda calculus with product-types
(surjective pairing), function-types, and unit types, as defined by
the following grammar

��� � ���� "!# �%$&�  �(')�+*
where

�
is the unit type,

!
stands for an arbitrary primitive-type, $

denotes a function-type, and ' denotes a product-type.
These isomorphisms can be derived from the following seven

axioms schemas., ' �-� ,, $ �-�.�� $ , � ,, '(/ � /0' , (Commutative), ' � /0'(1  � � , '2/  '31 (Associative)� , '(/  $41 � , $ � /5$41  (Currying), $ � /0'(1  � � , $6/  ' � , $71  (Distributive)

(Here and henceforth, the range of variables

,
, / and 1 is any

type expression.)
For a long time, the problem of deciding first order isomorphisms

of simple types was thought to require exponential time [5]. It was
recently shown [7] that the variant of our interest can be decided
in
������
8� �	����

time and
������
9

space, where
�

is the length of
some standard representation of the two input types. The main con-
tribution of this paper is an improvement of this result to������� �	� 
 ��
time and

������
space. We also give algorithms using

������
time

and space for important special cases.

1.1 Background
The arithmetic version of these seven axioms (substituting mul-

tiplication, exponentiation, and the constant one, for ' , $ and
�

)
was proved to be complete for the Cartesian closed categories [5,:
Besides being sufficient for the proof of equations such as (1.1).
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18]. Since the models of the lambda calculus with unit, product-
and function-types are exactly the Cartesian closed categories [5],
the set is also complete for the type isomorphisms we examine.
Through the Curry-Howard isomorphism [13], these isomorphisms
are also equivalent to equational equality in positive intuitionistic
logic so the same axioms apply there too (again, with appropriate
notational changes).

Besides their theoretical connections, type isomorphisms can be
used as a means of searching large program libraries. Specifically,
the desired type of a function is used as a search key and functions
with isomorphic types are returned as candidates. A famous ex-
ample [17] shows that even the simple function, folding a list, can
be implemented with many different types, varying argument or-
der and the use of “Curried” style. Employing type isomorphisms
in the search will retrieve all compatible function implementations.
Moreover, the isomorphism proof can often automatically generate
bridge code converting the functions found to the desired type.

Second order isomorphisms augment first order isomorphisms
with universal quantifiers, as in �

, � , $ , � � / � /0$ / . Uni-
versal quantifiers make second order isomorphisms more effective
in searching program libraries since they are necessary to capture
parametric polymorphism. While some of the issues of second
order isomorphisms are similar (some of the space sharing tech-
niques are applicable), they are known to be graph isomorphism
complete [4, 9] and we do not attempt to decide them in this work.
A different system of type isomorphisms is that of the core ML lan-
guage. It is known [8] that second order isomorphisms are insuf-
ficient to describe these, although the addition of one more axiom
suffices.

More recently, the Mockingbird project has renewed interest in
such searches when using recursive types [3]. One challenge still
remaining is to find a consistent scheme, as the first one considered
was later shown to be inconsistent [2, 15].

Other variants of the non-recursive type isomorphism problem
were considered in the literature. For example, Gil [11] describes
how algorithms for polynomial equality can be used for decid-
ing isomorphism in the “polynomial type system”, i.e., the system
comprising union and product-types, as well as the arithmetical
rules, i.e., commutative, associative rules for product and union,
and distributivity of product over union.

The more general isomorphism problem, for a non-recursive type
system which includes product, union and function-types along
with the arithmetical rules is equivalent to Tarski’s high school al-
gebra problem [19]. Such a system does not have a finite and com-
plete set of axioms. Nonetheless, there exists a (non-polynomial)
algorithm for determining isomorphism [12]. There also exists a
(non-polynomial) algorithm for deciding isomorphism in the “alge-
braic type system”, i.e., recursive types along with the arithmetical
rules [11]. Finally, we should mention that adding empty and sum
types breaks down the relationship between the equational theory
and type isomorphisms [10].

1.2 First Order Isomorphism and Variants
In this paper, we concentrate on first order isomorphism (the fol-

lowing Def. 1.1) and two restricted variants (Def. 1.2 and Def. 1.3
below):

DEFINITION 1.1 (FIRST ORDER ISOMORPHISM).
The first order isomorphism problem is to decide whether two types
are equal under a theory of equality plus the above seven axiom
schemas.

Deciding first order isomorphisms of simple types has been known
to be decidable for over a decade [5]. The theory describing these

isomorphisms is often referred to as ��� : ��� [5,6,9]. Previous to this
work, the best known bound was

������
8� �	����
time using

������
9
space [7]. Our main result is in reducing the time to

������� �	��
���
time and the space to

������
.

DEFINITION 1.2 (PRODUCT ISOMORPHISM).
The product isomorphism problem is to decide whether two types
are equal under a theory of equality plus the first five axiom schemas
above (that is, all but the Currying and Distributive laws).

When the Commutative and Associative axioms apply, we write
products without parenthesis, e.g.,

abracadabra
�

(1.2)

(Lower case, sanserif letters denote here and henceforth primitive-
types. We shall use the arithmetical and type notations interchange-
ably. No confusion will arise.) An instance of this problem variant
is to determine whether the above is isomorphic to

carrabadaba
�

(1.3)

One may be tempted to attack the problem by bringing each product
into a unique sorted normal form, which in this case is

aaaaabbcdrr
�

(1.4)

In this paper we show that (non-recursive) product isomorphism
is decidable in linear time.2 This result is based on the observation
that it can be determined that (1.2) and (1.3) are isomorphic without
a super-linear sorting procedure, but rather an algorithm for multi-
set comparison. More generally, to determine whether �	�
 � :

, 
 is
isomorphic to ���
 � : / � the multi-set comparison algorithm checks
whether there exists a permutation  such that

,
� � 
 � is isomorphic

to / 
 .
This product isomorphism variant was not considered previously

as such in the literature. Palsberg and Zhao [15] gave an
������
9

time algorithm for recursive product isomorphism, defined by the
addition of a grammar rule

�2� � ����� � �
where

�
is a type variable, and the folding/unfolding axiom��� � , � ,�� � ��� � , �� ��� �

(As usual, the notation

,�� / � ��� stands for a the type expression

,
where each occurrence of

�
is replaced by / .) Isomorphism be-

tween recursive product-types are defined in terms of their infinite
unfoldings which are regular trees. This result was later improved
to
������� �	����

time [14] using a reduction to the problem of finding
size-stable partitions of a directed graph.

DEFINITION 1.3 (LINEAR ISOMORPHISM).
The linear isomorphism problem is to decide whether two types are
equal under a theory of equality plus the first six axiom schemas
above (that is, all but the Distributive law).

Polynomial time results for this problem were known before those
of the first order problem. Linear isomorphism can be decided
in linear space and

������� �	� 
8��
time [1]. Although not previ-

ously mentioned, both algorithms [7, 14] improve the running time
to
������� �	����

. We show that linear isomorphism is also decidable
in linear time.

Jha (personal communication, September 2002) reports on inde-

pendent discovery of an algorithm for the this sub-problem, with
similar complexity bounds.

161



Linear isomorphism combined with the unfolding rule cannot be
treated by algorithms for recursive type isomorphisms, since the
application of this rule may produce infinite products, as in, e.g.,��� � �

a $ �  �
1.3 Reduction systems and Normal forms

Isomorphism proofs are usually based upon reduction systems
producing a normal form representation of the input, which can
be more easily compared. For example, the reduction system of
Rittri [17] has seven rules� � � , ' ��� ,� � � � ' , � ,� � � , $ ��� �� � � � $ , � ,� � � , ' � /0'31  � � , '2/  '31� � � , $ � /5$41  � � , '2/  $71� � 	 , $ � /0'31  � � , $6/  ' � , $41 

(1.5)

Rules
� � �

–
� � �

, i.e., those rules handling the unit type, are conflu-
ent. Since the rules are trivially implemented in linear time, we as-
sume here and henceforth that they are applied in a pre-processing
stage, in which all occurrences of

�
are eliminated. 3

After this stage, rules
� � �

and
� � 	

are repeatedly applied as
long as it is possible to do so. (We assume that types use a standard
expression-tree representation in memory, and that each rule appli-
cation is implemented as a transformation of this data structure.)
Note that these rules can always simplify the structure of the right
operand of $ , unless it is a primitive-type. The input is therefore
brought to the normal form described by the following grammar

�2� � � !  � $ !# �2'2� (1.6)

Next, rule
� � �

is repeatedly applied to “flatten” product-types.
Now we can write every product 
 as
 ������ � � � : '2� 
  '2��� � �� ')� ��� *
where � 
 , � � � * � � � *�� , is either a primitive- or function-type. We
will refer to � : * � � � * � � as the terms of 
 , and we will sometime
even write 
 as �	�
 � : � 
 to emphasize the associative-commutative
nature of product-types.

An algorithm for deciding first order isomorphism is to recur-
sively compare the resulting normal forms: two nodes are isomor-
phic if they are of the same kind (product or function) and their
operands are isomorphic. In function-nodes the comparison of ar-
guments is straightforward: the left (right) operand of one node
must be isomorphic to the left (right) operand of the other. In com-
paring product-nodes however we must solve an instance of the
product polymorphism problem to check whether the terms of one
node is pair-wise isomorphic to some permutation of the terms of
the other node. If this comparison is not done carefully it adds to
the complexity of the problem.

An even more serious inefficiency factor is that the system (1.5)
(specifically, the distributive rule

� � 	
) may introduce an exponen-

tial blowup in the size of the representation. Rules
� � �

–
� � �

do not
increase the representation size. However, each application of

� � 	
creates a duplicate copy of the subtree whose root is

,
. Repeated

applications may produce a very large normal form representation.
In the sequence of types ��� 
�� , defined by ��� � a and � 
 ��
b 
 c 
 �� �"!$# for �&%(' , we have that ��) �

b
� *+!$#) c

� �"!$#
 and�
In the degenerate case in which one or both of the inputs is re-

duced to
�

, the input types are isomorphic if and only if they both
reduce to

�
.

successive applications of this rule to each occurrence of � 
 , � ��-, � * � � � * � , will lead to exponentially many copies of a in the
normal form of ��) .

If graphs, rather than trees, are used to represent types, then an
application of

� � 	
, can be implemented by sharing the node rep-

resenting

,
. This sharing can be thought of as an application of a

slightly different transformation, $ � /0'31  �/. � � $4/  ' � � $41 � � , * (1.7)

where a newly introduced symbolic variable
�

is represented as a
pointer to the data-structure representation of type

,
.

Rittri [16] observed that using (1.7) ensures a polynomially sized
representation of the normal form: Each application of transforma-
tion (1.7) adds one edge to the graph. The application reduces the
nesting level of the ' node, and this nesting level cannot be in-
creased by the other rules. We obtain that the space of the graph
normal form is

������
9
by noticing that initially there are at most

�
product-nodes, and that even though additional product-nodes may
be created by

� � �
, these nodes cannot take part in the other two

rules.
To see that the representation can indeed by quadratic, consider

the following example (written using the arithmetical notation):0
b : � b 
 �� � b )21 
 � b )21 : ba *)  a *+!$# � a *+!43 �� � a 3�5 a # * (1.8)

whose normal form is

ba #: ba 3 a #
 ��
ba *+!$#76 6 6 a #)21 : ba * 6 6 6 a #) �

(1.9)

This normal form consumes quadratic space if derived by apply-
ing

� � 	
starting at the inner most parenthesis.

REMARK 1.4. Deriving (1.8) starting at the outer most paren-
thesis, yields a linear space representation

b 8 #: ��
b 8 *) *

where
� : � a : , and

� 
 � a 
 � 
 1 : for � � � * � � � * � .

Having bound the space explosion, Rittri stopped short of giv-
ing a polynomial time algorithm for the problem. By noticing that
the graph representation is acyclic, and by using a variant of Rit-
tri’s normal form, Considine [7] was able to reduce the runtime to
polynomial. His algorithm partitions all nodes in the DAG repre-
sentation of the input types into equivalence classes, such that all
nodes in the same equivalence class are isomorphic. This parti-
tioning is built in a bottom-up traversal of the DAGs, while main-
taining a hash table mapping each node into the unique identifier
of its equivalence class. The most difficult task was to determine
whether product-nodes4 are isomorphic. Two key properties made
the
������
8� �	����

time and
������

space result possible:

1. Expansion of product-types. Considine showed that his nor-
mal form, which includes complete expansion of product-
types, is such that each product consists no more than

�
terms.9

We should note that Considine rules were different than Rittri’s
in that rule

� � �
was applied in the opposite direction. The result-

ing normal form is such that instead of

,;:=<?>
, it uses the equiv-

alent representation
�A@ ,B:DC < � >

. Thus, strictly speaking, his nor-

mal form did not use product-nodes, other than in the upper most
level. However, the alternative representation must still deal with
the difficulties of associativity and commutativity as in the more
familiar representation of products.
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2. Sorting product terms. Since the graph is acyclic, terms in
product-types must have been visited and classified by the
bottom up traversal before the product itself. Each product-
node is first normalized by sorting the identifiers of the equiv-
alence classes of their terms. The fact that the order of terms
is completely determined by this sorting makes it possible to
employ a hash-consing technique to produce a unique identi-
fier for each product-type, whereby partitioning product-type
nodes into equivalence classes.

Our algorithm uses the same bottom-up classification of nodes into
equivalence classes. However, the reduction of space to

������
and

the time to
������� �	� 
8��

are made possible breaking away from the
above principles. Specifically, the new algorithm is characterized
by:

1. Application of
� � 	

to “outer-most” functions first. As demon-
strated in Remark 1.4 the space is kept linear if the distribu-
tive rule is applied starting at the outer most parenthesis.

2. Unexpanded product-types. The expansion of product-types
leads to quadratic time and space. Instead, we describe a
graph based representation, which keeps the space linear, and
show that unexpanded products can still be efficiently com-
pared.

3. Unsorted product terms. Isomorphism of product-nodes is
decided by a procedure which can be thought of as hashing or
range compaction, rather than sorting. A similar procedure
is used to partition the multi-sets of products in each stage of
the traversal into their equivalence classes.

Outline In Sec. 2 we develop a tool box for various multi-
set partitioning problems, which we apply later for classifying un-
sorted product terms. The first such application is in Sec. 3 which
describes our algorithms for the linear and product isomorphisms.
Sec. 4 describes the normal form which we use for type compar-
isons, and shows that this normal form can be efficiently generated
in a linear sized encoding, which we call the � ��� -graph. More-
over, we show that the unexpanded products in the � ��� -graph
form a tree structure, such that each product inherits the terms of
its parent.

Sec. 5 uses the multi-set partitioning toolbox in a procedure for
comparing unexpanded products in this tree structure. Sec. 6 fine-
tunes this procedure to its application in a bottom-up classification
of the nodes of the � ��� -graph. Finally, we present our main al-
gorithm for deciding first order isomorphisms of simple types in
Sec. 7. Sec. 8 lists some open questions.

2. Multi-set Partitioning Algorithms
For the purpose of processing product-nodes in which the terms

are unsorted, we need a linear time procedure for comparing multi-
sets. More generally, we develop in this section an algorithm for
partitioning a collection of multi-sets of integers into equivalence
classes. This algorithm runs in

������
time, where

�
is the size of the

input representation, while using temporary (uninitialized) storage
whose size is the maximal input value.

DEFINITION 2.1 (COMPACT INTEGER PARTITIONING).
Given integers � : * � � � * �4) , where � 
��

� � * � � for � � � * � � � * � , the
compact integer partitioning problem is to partition the input into
its equivalence classes, i.e., all equal integers will be in the same
partition (and only them).

The output partitioning is presented with respect to the input:
Each equivalence class is produced as a list of indices, � : * � � � * ��� ,
such that � 
 # � �� � � 
 � .

LEMMA 2.2. Compact integer partitioning can be solved in
������

time and
������

space.

PROOF. A standard bucket sort algorithm using
�

buckets achieves
these bounds.

More general than compact integer partitioning is the case that
the input range is not restricted to the range

� � * � � .
DEFINITION 2.3 (BROAD INTEGER PARTITIONING).

Given integers � : * � � � * �4) , where � 
	�
� � *�
 � for � � � * � � � * � , the

broad integer partitioning problem is to partition the input into its
equivalence classes.

To deal with this problem, we first reduce the input range.

DEFINITION 2.4 (RENAMING). Let � be an arbitrary domain
and let ���� ,

   � � . Then a partial function � � ���$
� � * � � is

a renaming of  if � is defined on  and for any � *�� �  ,

���� � � � � �  �� � � �  �
Alg. 1 finds a renaming function for a sequence of integers drawn

from the range

� � *�
 � . The algorithm uses the standard trick of in-
verse pointers to maintain

��� � 
access time into a sparse uninitial-

ized array of arbitrary size. Note that main loop invariant: After
processing index � , then �

�
� 
 � ��� and �

� � � � � 
 , for some
� �� � *�� � .

Algorithm 1 Rename( � : * � � � * �4) )

Given the sequence � : * � � � * �4) , where � 
��
� � *�
 � , � � � * � � � * � ,

return (i) � �  ��� : * � � � * �4) �  and (ii) a renaming function repre-
sented as an array �

� � * � � � *�
 � , such that �
�
� 
 � is a unique integer

in the range

� � *�� � . The values of the other entries of � are arbi-
trary.
1: � � new int[U] // An uninitialized array of size 

2: � � new int[n] // The inverse mapping of �
3: � � ' // � is the current number of distinct values in the input
4: For � � � * � � � * � do // Compute �

�
� 
 �

5:
� �!�

�
� 
 � //

�
may be arbitrary if the value of � 
 is new

6: If
�#" � " � andalso � � � �8� � 
 then

7: next � // No new mapping since � 
 � �%$ for some &(' �
8: else // Create a new mapping entry
9: � � ��) � // A new distinct input value

10: �
�
� 
 � � � // Store the mapping entry

11: �
�
� � �*� 
 // Record the inverse pointer

Renaming makes it possible to generalize Lemma 2.2.

LEMMA 2.5. Broad integer partitioning can be solved in
������

time and
��� 
+) �� space.

PROOF. After applying Alg. 1, we apply a renaming process,
i.e., the replacement � 
 �!� � � 
  for � � � * � � � * � . The problem is
then reduced to compact integer partitioning.

A more general partitioning problem is when the input consists
of ordered pairs.

DEFINITION 2.6 (PAIR PARTITIONING). Given a collection 
of
�

pairs of integers ,-� : *�� :�. * � � � * ,-�4) *�� ) . , where � 
 *�� 
/�
� � *�
 �

for � � � * � � � * � , the pair partitioning problem is to partition 
into its equivalence classes.

163



LEMMA 2.7. The pair partitioning problem can be solved in
������

time and
��� 
+) �� space.

PROOF. Apply broad integer partitioning first on � : * � � � * �4) to
obtain an initial partitioning of  . Each of the resulting equivalence
classes is then refined by broad integer partitioning with respect to
the � 
 ’s.

Renaming with pair partitioning is also easy. Each pair is re-
placed by the index of its equivalence class. In fact, every parti-
tioning algorithm gives rise to a corresponding renaming.

Lemma 2.7 can be generalized further.

LEMMA 2.8 (TUPLE PARTITIONING). Given a collection 
of
�

tuples of � integers each, where each integer is drawn from
the range

� � *�
 � , it is possible to partition  into its equivalence
classes, in

����� �  time and
��� 
+) �� extra space.

PROOF. Similar to Lemma 2.7, however, instead of two passes
we now have � passes. The input to the first pass is the entire
collection  , and the output is a partitioning of  according to the
first element of each tuple.

The output of pass � is a partitioning of  satisfying the following
invariant: all elements in the same partition have an equal � -prefix,
i.e., the same first � integers in their tuples. Pass � refines each
partition by applying broad integer partitioning according to the � th
element of each tuple. Since broad integer partitioning is performed
in linear time, the running time of a pass is linear in the sum of
partition sizes, which is exactly

� �6   . Thus the total running
time is

����� �  .
At the end of the � th pass the tuple partitioning problem is solved.

Broad integer partitioning requires (reusable)
��� 
+) �� space. In

addition, only
������

space is required for storing the current parti-
tioning of  in the form of indices to the input array.

Notice that the time requirement in the above is linear in the
size of the input, not the number of tuples. Also, observe that the
algorithm for the tuple partitioning problem is in fact incremental
in the sense that in the � th pass we only examine the � th integer in
each tuple.

COROLLARY 2.9 (INCREMENTAL TUPLE PARTITIONING).
Let  be a collection of

�
tuples of � integers each, where each inte-

ger is drawn from the range

� � *�
 � . Then, it is possible to incremen-
tally partition  in � passes where the � th component of each tuple
is specified in the � th pass, in

������
time for each pass and

��� 
 ) ��
extra space.

A more challenging situation occurs in the case that the input
consists of unordered tuples, rather than tuples. Next we will show
that multi-set partitioning can also be solved in time linear in the
size of the input.

DEFINITION 2.10 (MULTI-SET PARTITIONING). Given a col-
lection  of multi-sets of integers drawn from the range

� � *�
 � , the
multi-set partitioning problem is to partition  into its equivalence
classes.

LEMMA 2.11. Multi-set partitioning can be solved in
������

time
and
��� 
+) �� space, where

�
is the sum of sizes of all multi-sets.

PROOF. First, Alg. 1 is invoked to rename all integers in the
input to fit the range

� � * � � . Then each multi-set is sorted using
bucket-sort. We stress that we do not perform sorting of the initial
multi-sets; we sort the renamed integers. (This sorting is possible
in linear time since the renaming process is not order preserving.)

Next, the ordered multi-sets are partitioned according to size.
Each such partition is a collection of ordered multi-sets of equal
size; in other words, each partition is a collection of tuples of equal
size. All that is left is to solve the tuple partitioning problem, em-
ploying Lemma 2.8 in each partition.

3. Linear and Product Isomorphisms
In this section we use the multi-set partitioning algorithm in de-

veloping algorithms for linear and product isomorphisms. We first
demonstrate how to decide product isomorphism in

������
time and

space. Then we show a linear time and space reduction of linear
isomorphism to product isomorphism.

After applying the unit-type pre-processing stage, product iso-
morphism has only two remaining axioms:, '2/ � /0' , (Commutative), ' � / '31  � � , '(/  '31 (Associative)

Commutativity and associativity allow product components to be
reordered until the two types match. We see that product isomor-
phism is in essence a series of multi-set partitioning problems.

We use a flattened products normal form defined by the follow-
ing grammar.


 � � � ��
 � :�� ����� ' 

	� � � � ��
 � :�� ����� � 
�
� � � 
 $ !# 
	� $ 
	�

(3.1)

The start symbol 
 denotes products of any number of terms, in-
cluding 0 and 1, whereas 
 � denotes products of at least one term.
Each term � is a function-type. The symbol

!
denotes primitive-

types.
The flattened products normal form requires that the terms of

products are functions. This requirement can be obtained by ap-
plying the following simple transformation: if a primitive-type

!
is

involved in a product, it must be rewritten as a function from a unit
type (i.e., empty product) to

!
.

Conversely, function-types must receive and return products; the
only exception being that the return type of a function can be a
primitive-type. Also note that if this return type is a product then it
must include at least one term. In other words, functions returning
unity are not allowed in this normal form. This, and all other terms
in the return type, must in turn be function-types. We need the
following two transformation rules: (i) if the type of the argument
of a function-type is a primitive-type

!
, then

!
must be rewritten

as the singleton product
� � $ !  , and (ii) if a function-type has an

operand which is also a function-type, then these must be separated
by a singleton product.

Consider for example the following type,�
a ' b $ c

 $ � a ' b ' c ' � a $ b ' c
  �

(3.2)

Fig. 3.1 shows the abstract syntax tree of type (3.2) in the normal
form (3.1).

We see in the figure for example that a ' b $ c was rewritten
as � � $ a

 ' � � $ b
 $ c

�
The grammar (3.1) produces abstract syntax trees in which func-

tion and product-types occur alternately on the path from the root
to any leaf. We can thus define a height for each tree node, so that
all nodes of odd (even) height represent function (product) types.
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�
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Figure 3.1: Type (3.2) after flattening

DEFINITION 3.1 (HEIGHT). Let � be a type written in the
normal form (3.1). Then, the height of a type, denoted � � �  , is
the length of the longest path from � to any leaf, i.e.,

� � �  �����
��
' if � � ! or � is an empty product� )����
	 �
 � : � � � 
  if � � � : '

�� '
� � , � � �� )����
	 � � � 
  * � � �   if � � 
 $&�

(3.3)

Edges in Fig. 3.1 were stretched so that nodes of the same height
are drawn at the same level. Observe that product-types always
have even heights and function-types always have odd heights. This
can be easily proved by induction on the grammar of (3.1).

LEMMA 3.2. If two types in the normal form (3.1) are isomor-
phic, they have the same height.

PROOF. Omitted.

THEOREM 3.3. Product isomorphism can be decided in
������

time and space.

PROOF. Consider the types represented by all of the nodes of the
tree representations of flattened products normal forms of the two
input types. We will label each of these

������
types with an identi-

fier, such that two types are isomorphic iff they have the same iden-
tifier. These identifiers are integers drawn from the range

� � *�� � �
where � is some fixed constant.

Since two types cannot be equivalent unless their heights are the
same, identifiers may be assigned in ascending order of heights.
Let �� be the set of all types of height � . The set �=� is the set
of primitive-types and empty products. The algorithm starts by
passing �?� to the broad integer partitioning algorithm. A renam-
ing process then yields unique identifiers for all basic types, plus
an identifier for the empty product.

The processing of �� , � � �
depends on whether � is even or odd.

If � is odd, then types in �� correspond to � symbols in the grammar
of the normal form, i.e., function-types. Equivalence among these
are discovered using pair partitioning algorithm.

If however � is even, then the types in �� are products, i.e., 

symbols. We apply the multi-set partitioning algorithm to find all
equivalence classes among these.

In both even and odd levels, we apply a renaming process that
assigns identifiers to types in the current level, starting at the first
unused identifier.

Each node is passed to a partitioning algorithm at most twice,
first in the partitioning of nodes in its height, and then as component
of its parent. Therefore the total input size in all invocations of
partitioning algorithms is linear, and hence the total runtime of our
algorithm is linear.

The above algorithm is applicable also in the case that types use
a DAG rather than a tree representation. The runtime in this case
is linear in the number of nodes and the number of edges of the
graph.

We now turn to the problem of linear isomorphism, which adds
the currying axiom:, '(/ � /0' , (Commutative), ' � /0'(1  � � , '2/  '31 (Associative)� , '(/  $41 � , $ � /5$41  (Currying)

The Currying axiom is no longer needed after exhaustively applying
rule

� � �
, [1]. Note that these applications do not increase the size

of the representation. We can now bring the input to a form similar
to the flattened products normal form (3.1). More precisely, the
linear normal form is


 � � � ��
 � :�� ����� ' 

	� � � � ��
 � :�� ����� � 

	� � � � � ��
 � : � ����� � 
�
� � � 
 $ !# 
	� $ 
	� �

(3.4)

which is almost identical to (3.1), except that 
 � � must have at least
two terms. Once in this normal form, only the axioms used for
product-types are necessary. We therefore have

THEOREM 3.4. Linear isomorphisms can be decided in
������

time and space.

4. The � ��� -graph
To generalize the linear isomorphism algorithm to deal with the

first order isomorphism problem, we must take care of distributiv-
ity, which, as noted above, may lead to an exponential blow-up of
the representation. Inspired by the example set by Remark 1.4, we
describe an algorithm for applying the distributive rule

� � 	
more

economically to produce a linear size representation in linear time.
We assume that the input was first brought to the form (3.4)

in
������

time and space as described in the previous section. This
input uses the standard expression tree representation. Repeated
applications of

� � 	
will then bring this input to the distributive

normal form defined by the following grammar


 � � � ��
 � � � ��� � ' 
�
� � � 
 $ ! � (4.1)

The main difference between the two grammars is that the deriva-
tion

�
� � � 
	� $ 
	� �

does not occur in (4.1). In other words, all functions must return a
primitive-type. The transformation between (3.4) and (4.1) is car-
ried out by invoking rule

� � 	
whenever the return type of a function

is not primitive.
To maintain a linear size representation, rule

� � 	
is applied using

(a multiple-terms version of) the distributive transformation (1.7):
Consider an input node

, $ � / : ' �� ' / �  . Then, it follows
from the grammar (3.4) that this node must in fact be of the form
 $ @ � 
 : $&� :  ' �� ' � 
 � $&� �  C * (4.2)
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where 
 and 
 : * � � � * 
 � are products, while � : * � � � * � � are either
products- or primitive-types. Applying first the general version
of (1.7) and then � times

� � �
, we obtain� � ' 
 : $&� :  ' �� ' � � ' 
 � $&� �  � (4.3)

where the term
�

is represented as a pointer to the product 
 . We
say that the product

� ' 
 
 inherits all the terms of the product 
 .
Specifically, types in the distributive normal form (4.1) are rep-

resented as graphs (instead of trees), in which � -nodes represent
products. A � -node � has a field � � �  storing the set of point-
ers to the terms of the product, which are all

�
-nodes, i.e., nodes

representing function-types. To represent term inheritance, � also
has a field parent

� �  which is pointer to another � -node, from
which � inherits additional terms.

Let � be the � -node of the product 
 in (4.3). Then, each prod-
uct
� ' 
 
 is represented by a � -node � 
 , such that � � � 
  stores the

terms in the product 
 
 , while the shared term
�

is represented by
making the assignment

parent
� � 
  ��� �

An
�

-node � has two main fields: (i) arg
� �  , which is a pointer

to the � -node storing the function argument type, and (ii) ret
� �  ,

which is a primitive-type specifying the function return type.
Although the representation breaks away from the standard ex-

pression tree representation, it is not arbitrarily general, in that shar-
ing can only occur across parent edges. We require that the these
edges make a tree � , rooted at a dummy � -node, denoted ��� . � -
nodes are therefore initialized with their parent field pointing
at ��� . Node ��� has no terms, i.e., � � ���  �	� .

DEFINITION 4.1. A � ��� -graph is a rooted acyclic graph whose
nodes are either � -nodes or

�
-nodes.

Alg. 2 and Alg. 3 present two mutually recursive routines Nor-
malizeProduct and FunctionIntoProduct. Together, the
two describe a single pass traversal of an abstract syntax tree of the
input grammar (3.4). The output is a � ��� -graph of an isomorphic
type in the distributive normal form.

Algorithm 2 NormalizeProduct ( 
 )
Given an abstract syntax tree of a type 
 conforming to the gram-
mar (3.4), return a � -node � of an isomorphic type in the gram-
mar (4.1).
1: �(� new � -node // Initially parent

� �  � ��� , � � �  �	�
2: Let � and �


 , � � � * � � � *�� , be such that 
 � � �
 � : � 
3: For � � � * � � � *�� do // Normalized all terms in the product
4: Let 
 
 and � 
 be such that �


 � 
 
 $&� 

5: � 
 � NormalizeProduct

� 
 
 
6: � � FunctionIntoProduct

� � 
 * � 
 
7: � � �  �
� � � �� � � �  // Collect terms of �
8: Return �

The recursive process relies on the fact that products and function-
types occur alternately on a path from the root to any leaf. Ac-
cordingly, NormalizeProduct breaks the input product into its
terms (line 2), which must all be function-types (line 4). The recur-
sive conversion of the function type 
 
 � � 
 is done in two steps,
which must occur in order: At first (line 5), the function argument
type is normalized, and the resulting � -node product-node is stored
in � 
 . Only then (line 6), the function 
 
 � � 
 can be brought into
its normal form, which is a product of terms, where each such term
may internally include pointers to the � -node � 
 .

Algorithm 3 FunctionIntoProduct ( � * � )
Given a � -node � and an abstract syntax tree of a type � (which
might be either a product- or a primitive-type) return � , a new � -
node describing a type isomorphic to the function-type 
 $ � ,
where 
 is the type represented by the � -node � .
1: � � new � -node // Initially parent

� �  � ��� , � � �  �	�
2: If � is a primitive-type

!
then

3:  � new
�

-node
4: arg

�   ��� ; ret
�   � ! //  represents the type 
 $ !

5: � � �  � �� �
6: Return �
7: Let � and �


 , � � � * � � � *�� , be such that � � � �
 � : � 
8: For � � � * � � � *�� do // Process all terms in the return type
9: Let 
 
 and � 
 be such that �


 � 
 
 $&� 

// 
 $&� is 
 $ � � 
 : $&� :  ' �� ' � 
 � $6� �  

10: � 
 � NormalizeProduct
� 
 
 

11: parent
� � 
  ��� // Share the common argument 


12:  � FunctionIntoProduct
� � 
 * � 
 

13: � � �  �
� � � �� � �  
14: Return �

Alg. 3 recursively traverses a function-type, returning an iso-
morphic � -node. Lines 2–6 terminate the recursion in the case
that the function return type is primitive. In this case, a singleton,
non-inheriting product is returned. The remainder of this algorithm
(lines 7–14) puts the transition between (4.2) and (4.3) in algorith-
mic terms.

Observe again that the recursive call in line 12 is done only after
the function argument type was processed.

It is mundane to check that these two algorithms run in linear
time and produce a linear sized representation.

Fig. 4.1 shows the result of applying these algorithm on the tree
of Fig. 3.1. In the process, the two function-types whose right
operand was a product-type were eliminated.

F

c

a

F

P

F F

bP cP

F F

aP bP

F F

aP bP

F

cP

P

P

P

P

P
⊥

 

Figure 4.1: The ����� -graph of type (3.2)

The edges of the product tree are depicted in bold in the figure.
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We see in the figure that these edges indeed do not form a cycle.
It is easy to show that this is no coincidence by proving induc-
tively that calls to FunctionIntoProduct create edges which
always lead from the second to the first argument of this function.

DEFINITION 4.2 (EXPANDED TERMS). The expanded terms
of a � -node � , denoted � � �  , are the union of terms of its ancestors
in the product tree, i.e.,� � �  � � � � �� � � parent � �   *
where � � ���  �	� .

The following lemma shows that first order isomorphism of two
types can be decided by bringing each of these types into their � ���
representation, and then traversing the two graphs in tandem, com-
paring at each stage the expanded terms of the current nodes.

LEMMA 4.3. Two nodes � * � in a � ��� -graph represent iso-
morphic types if and only if one of the following holds:

1. � and � are both
�

-nodes, ret
� �  � ret

� �  and arg
� � 

and arg
� �  (recursively) represent isomorphic types.

2. � and � are both � -nodes, and � � �  � � � �  �	�
3. � and � are both � -nodes, and there exists a bijection 

from � � �  to � � �  , such that every � � � � � �  (recursively)
represents a type isomorphic to  � � �  .

PROOF. Omitted.

If the terms in � -nodes are expanded, then the size of the rep-
resentation may increase to

������
 
(as in (1.9)). With this expan-

sion, the problem becomes an instance of product isomorphisms,
which, as explained in the previous section, can be solved in linear
time. We can thus obtain a simple

����� 
 
time and space algorithm

for the first order isomorphism problem, whereby improving upon
the
������
8� �	����

best previous result.
To obtain a more efficient algorithm, we develop in the next sec-

tion the machinery for comparing unexpanded products.

5. Tree Partitioning
In this section we further develop our partitioning algorithms to

deal with the non-expanded representation of products in the tree
of � -nodes rooted at ��� . Formally, out interest lies with a variant
of the multi-set partitioning problem, in which the multi-sets are
organized in an inheritance tree. Consider a tree � of

�
nodes such

that a multi-set � � �  of integers is associated with each node � �
� . The expanded multi-set of a node � is the union of multi-sets of
the ancestors of � , i.e., � � � �������	� � � �  �
These expanded multi-sets will be in our applications the expanded
terms (Def. 4.2) of � -nodes.

DEFINITION 5.1 (TREE PARTITIONING). The tree partition-
ing problem is to solve the multi-set partitioning problem for the
expanded multi-sets �
� � �   � � � � .

A solution for the tree partitioning problem is useful in our at-
tempt to partition the � -nodes into equivalence classes, such that
two � -nodes are in the same class if and only if they represent iso-
morphic types. Types are isomorphic precisely when the expanded
terms of the respective nodes are the same.

Let � denote the total number of elements in multi-sets of this
tree, i.e., � ���
���  � � �   �
We can assume that the integers in the input to the problem are
condensed so that ��
��� � � �  � � � * � � �
(This condition can be ensured by a simple application of a renam-
ing process.)

Fig. 5.1a shows an example of a tree with
� ���

nodes with
their associated multi-sets (only four of which are non-empty). In
the example,

� � �
distinct integers take part in these multi-sets.

The total number of elements in these multi-sets is � ��� .

A

B H

C D

E F G

{ }

{1,2,3} {1,1}

{4}{ }

{ }
{1,3,4}

{ }

(a)

�� �

�
� �� �� � �� � �� � �

A

B H

C D

E F G

{1,1}

{1,2,3,4} {1,2,3,4,1,3,4}

{1,2,3}

{ }

(b)

Figure 5.1: A small multi-set tree (a) and its tree partitioning (b)

We have for nodes E and F, for instance,

� � E  �	�
� � F  � � � * � * � �� � E  � � � * � * � * � �� � F  � � � * � * � * � * � * � * � �

Fig. 5.1b depicts the solution of the tree partitioning problem for
the multi-set tree of Fig. 5.1a. We see that there are 5 partitions:� A � * � H � * � B * C � * � D * E * G � * � F � � (5.1)

The callout attached to each partition shows the expanded multi-
set of all nodes in this partition. For example, � � * � * � * � � is the
expanded multi-set of the partition � D * E * G � .

The naive solution to the tree partitioning problem is by directly
computing the expanded multi-sets � � �  . To do so, represent an
expanded multi-set � � �  as an integer array ���	���! � � � * � � � * � �
such that ���	���! � � � �3� � if integer � occurs � times in � � �  .
Array ���	���! � can be easily computed from � � �  and ���	���! � ,
where � is � ’s parent.

After having obtained the arrays ���	���! � , the tree partitioning
problem becomes the partitioning problem of these arrays, viewed
as
�

-sized tuples.
The total time for computing the expanded multi-sets in the above

fashion is
����� � ) �  . We now present a more efficient algorithm

which relies on the dual representation in which, instead of asso-
ciating a multi-set of integers with each node, a multi-set of nodes
is associated with each integer. The performance gain is due to the
fact that the multi-set of nodes in which a value participates is most
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often a subtree of � . With an implicit ordering of the tree nodes ob-
tained by  , a pre-order traversal of the tree, subtrees can be simply
encoded as intervals.

In our example, let the pre-order traversal be

 � � A * B * C * D * E * F * G * H  �
We see that the descendants of any given node form an interval. For
instance, �

���������
�
� ���	� � D  � � D * E * F * G � *�

���������
�
� ���	� � B  � � B * C * D * E * F * G � �

A family 
 
 , � � � * � � � * � , is the multi-set of nodes whose
multi-sets contain � . More precisely, if � occurs � times in � � �  ,
then � occurs � times in 
 
 . In our example, four such families are
defined:


 : � � B * F * H * H �

 
 � � B �

 � � � B * F �

 9 � � D * F � (5.2)

Each family 
 
 defines at most
 
 
  distinct intervals in  , one

for each distinct node in 
 
 . These intervals partition  into at
most

�  
 
  ) �
segments. This partitioning uniquely defines the

number of occurrences of � in each of the tree nodes: Consider
any arbitrary such segment, and let � range over the nodes of this
segment. Then, the multiplicity of the value � in � � �  is the same.

Instead of explicitly writing the multiplicity of � in � � �  for ev-
ery such node � , we associate the multiplicity with the entire seg-
ment. We shall even refer to this multiplicity as the segment id. A
partitioning of the pre-order traversal into segments and their iden-
tifiers is called a segment partitioning. The segment partitioning of
a family 
 is denoted ��
 . Let 

�

 � �  be the id of the segment of a

node � in ��
 
 . Then, the essence of the dual representation is that


�

 � �  � ���	���! � � � � � (5.3)

We therefore have

LEMMA 5.2. The sequence 
�
: � �  * � � � * ��� � � �  uniquely deter-

mines � � �  .
Fig. 5.2 depicts the segment partitionings of the families of (5.2).

A B C D E F G H

1 2 1 20

1 00

1 2 1 00

1 2 1 00

∇F2

∇F1

∇F4

∇F3

 

Figure 5.2: The segment partitionings of the families of Fig. 5.1a

We see in the figure that 
 � (for example) defines two intervals
which induce a partitioning of  into four segments. The largest
of these segments has nodes B * C * D * E. The id of this segment is
1, and indeed we can see in Fig. 5.1b the value

�
occurs exactly

the same number of times (i.e., 1) in the expanded multi-sets of
each of these nodes. The id 1 is also given to the singleton segment

of G; this is because the value
�

occurs once also in the expanded
multi-set of G

Also, note in the figure that � � �  can be read by inspecting the
segment id’s in each of the partitionings. For example, reading the
first row of the column headed F we see that

�
occurs twice in � � F  .

The intersection of two segment partitionings � : and � 
 is also
a segment partitioning, written as � : ' � 
 . It can be obtained by
intersecting each of the segments of � : with each of the segment
of � 
 . The identifiers of the segments in � : ' � 
 are the renamed
pairs of identifiers of the originating segments from � : and � 
 .
We can safely reuse the old identifiers, i.e., the new identifiers are
allocated starting from 0.

Fig. 5.3 depicts the intersection of the segment partitionings of ��
 :
and ��
 
 from (5.2).

A B C D E F G H

renaming
∇F1 × ∇F2

1 2 1 20

1 00

1 2 1 30

∇F2

∇F1

1,1 2,1 1,1 2,00,0

 

Figure 5.3: Computing the intersection of the two segment partition-
ings ��� : and ��� 
 defined by Fig. 5.1a.

The third row in the figure shows the intermediate stage in which
the segments in the intersection still use pairs of integers as identi-
fiers. For example, , � * � . is the identifier of the segment containing
nodes B, C, D, and E. This identifier was renamed to 1. Note that
the other segment (singleton with G) with the pair identifier , � * � .
was also renamed to 1.

We represent segment partitionings as a sorted array of the seg-
ment end-points with their associated identifiers. The intersection
of two such partitionings whose sizes are � : and � 
 is carried out
by merging their arrays in

��� � : ) � 
  time into a single � : ) � 

sized array. Lemma 2.7 can then be employed to rename the pair-
identifiers in the merged array.

It follows from Lemma 5.2 that the tree partitioning problem is
solved by computing

��
 : ' �� ' ��
 � �
LEMMA 5.3. There is an

����� ) � � �	� �3 time and
����� ) � 

space algorithm solving the tree partitioning problem.

PROOF. To compute ��
 : ' �� ' ��
 � we build a balanced
binary tree whose leaves are ��
 : * � � � * ��
 � . In each internal node
we compute the intersection of the two segment partitionings of its
two children. The segment partitioning at the root of this tree is
exactly the tree partitioning.

Since all the partitionings propagate to the root, we have that the
total size of all partitionings at each tree level, and thus the work
to generate the next level is

��� �  . Since the number of levels is
logarithmic, we have that the total time for computing

��
 : ' �� ' ��
 �
is
��� � � �	� �3 .
Fig. 5.4 depicts the balanced binary tree of the families of (5.2).
We see in the figure that the segment partitioning at the root of

this binary tree, i.e., ��
 : ' ��
 
 ' ��
 � ' ��
 9 , partitions the
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A B C D E F G H

1 2 1 20

1 00

1 2 1 00

1 2 1 00

1 2 1 30

2 3 2 010

2 3 2 410

∇F2

∇F1

∇F1 × ∇F2

∇F1 × ∇F2 × ∇F3 × ∇F4

∇F3 × ∇F4

∇F4

∇F3

 

Figure 5.4: The balanced binary tree of the families of Fig. 5.1

ordering  into 6 segments. The segment of types D and E has 
� ��

. This is also the 
�

of the segment of G. Together, these two
segments represent the partition � D * E * G � . We have thus obtained
the desired partitioning (5.1) of the tree in Fig. 5.1a.

6. Incremental Tree Partitioning
The tree partitioning problem (Def. 5.1) solved in the previous

section does not capture in full the intricacies of the bottom up
classification into isomorphism classes of the nodes of a � ��� -
graph. The difficulty is that the terms of � -nodes in any given
height are

�
-nodes. These

�
-nodes must be classified prior to the

classification of the � -nodes in this height. The algorithm behind
Lemma 5.3 however assumes that all multi-sets members are di-
rectly comparable. It is applicable only in the case when all terms
are basic types.

In this section, we develop the algorithm which after having clas-
sified all the � -nodes up to height � , will use this information to
classify the

�
-nodes in height � ) �

. The identifier found in the
classification of these

�
-nodes must take part in the classification

of the � -nodes at height � ) � .
To this end, this section deals with a more general variant of the

tree partitioning problem, in which the multi-sets are supplied in
a piecemeal fashion. In this variant, the different possible values
of the multi-sets in the tree nodes are exposed in iterations. The
algorithm for this variant will add another logarithmic factor to the
time complexity.

The requirements from a data structure for the incremental tree
partitioning problem are best defined in terms of the dual represen-
tation. Given a tree � , this data structure must support two kinds of
operations, which might be interleaved: insertions of the sequence
of families 
 : * 
 
 * � � � and classifications of a sequence of node
sets � : * � 
 * � � �

In our application, the multi-set of nodes 
 $ is inserted after hav-
ing discovered that a certain collection of

�
-nodes belong in the

isomorphism class whose identifier is & . (These identifiers are al-
located consecutively.) The set of nodes � $ is classified when we
carry out the classification of nodes whose height is

� & .
Accordingly, the sequence � � $ � cannot be arbitrary. We demand

that these sets are disjoint, that � $ � $ � � and that the data struc-
ture is never required to classify a node before its parent. The inter-
leaving of the two input sequences is also subject to restrictions. If
a node was classified then it can never appear again in any insertion.

With these restrictions, we use the notation � � classify � � 
and � � insert � 
 $  to describe these operations. Our main ob-
jective is to minimize the resources for processing the entire inter-
leaved sequence of data structure operations.

LEMMA 6.1. Incremental tree partitioning can be solved in����� ) � � �	� � ) � � �	��� � �	� �3
time and

����� ) �  space.

PROOF. We use a lazy representation of an infinite complete bi-
nary tree, similar to the binary tree of Lemma 5.3, The leaves of
this tree are given by the infinite sequence ��
 : * ��
 
 * � � �

Fig. 6.1 shows (part of) this tree, after families ��
 : * � � � * ��
��
have been inserted.

∇F2

∇F1

∇F4

∇F3

∇F6

∇F5

∇F7

∇F1 × ∇F2

∇F1× ∇F2 × ∇F3 × ∇F4

∇F3 × ∇F4

∇F5 × ∇F6

...

...

...

...

 
Figure 6.1: An embedding of seven families into an infinite balanced binary
tree

This infinite tree is used to guide the computation of the inter-
section of the partitioning which were inserted so far: we delay the
intersection of partitionings in an internal node until both its chil-
dren exist. A temporary root is a node in which the partitioning
was computed, but not in its parent.

In the figure the nodes at which partitionings were intersected
are drawn with thicker lines. Specifically, at this stage we have
computed ��
 : ' ��
 
 , ��
 � ' ��
 9 , ��
 : ' ��
 
 ' ��
 � ' ��
 9 ,
and ��
�� ' ��
�� . There are three temporary roots in figure, which
are the nodes corresponding to ��
 : ' ��
 
 ' ��
 � ' ��
 9 , ��
�� '��
�� and ��
��

Assume that a new family 
�� is inserted. We first calculate its
segment partitioning ��
�� , and proceed to compute the following
three intersections:

� : � ��
�� ' ��
�� *
� 
 � � : ' � ��
�� ' ��
��  *
� � � � 
 ' � ��
 : ' �� ' ��
 9  �

After this insertion we will have a single temporary root.
Note that after & families were inserted, there are at most � � �	� 
 &	�

temporary roots. Also note that the total time for all the insertions
is the same as in the non-incremental tree partitioning problem,
i.e.,
����� ) � � �	� �3 .

The classification of a set � is carried out by consulting the
list � : * � � � * ��
 of the segment partitionings at the temporary roots.
Recall that � 
 is represented as a sorted array. Since the size of this
array is bounded by

�
, we can support searches in � 
 in

����� �	����
time. For each � � � , we search for the id of the segment which
contains � , in � 
 for � � � * � � � *�� . Since � " � � �	� 
 � � , the total
time for these searches is

����� �	� � � �	����
.

After obtaining an � -tuple of ids for all � � � , we apply a tuple
partitioning algorithm to classify � . In order to keep the space lin-
ear, we cannot actually store

 �  tuples of length � . Therefore, we
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will use the incremental tuple partitioning algorithm. Specifically,
we will use

 �  memory cells to find the first elements of the tuples,
pass them to the tuple partitioning algorithm, and proceed to find
the second elements of the tuples, etc. The total time for the clas-
sify operation is

���  �  � �	� � � �	���� , while using
����� ) � 

space.
Since every node � � � can take part in a classification opera-

tion at most once, the total time for all classifications is����� � �	��� � �	� �3 �
The total time for insertion and classification operations is����� ) � � �	� � ) � � �	��� � �	� �3 *
while the total space used is

����� ) �  .
7. Algorithm for First Order Isomorphism

Having developed the algorithms for generating the linear size � ���
representation, and for efficiently comparing the multi-sets � with-
out actually creating them, we are ready to describe the main result
of this paper: an efficient algorithm for deciding first order iso-
morphisms. In essence, the algorithm uses Lemma 4.3. A naive
recursive application of the lemma may lead to an exponential run-
ning time. To bound the time complexity, we instead traverse the
graphs bottom-up, classifying the nodes into their isomorphisms
equivalence classes as we do so.

The bottom-up traversal is guided by height, where all nodes of
the same height are processed together. Height is defined as in
Def. 3.1. Alg. 4 shows how heights can be computed in linear time
even in the non-expanded, � ��� representation.

Algorithm 4 Height
� � 

Given a node � in a � ��� -graph, ensure that � � � �  stores the height
of � � for all nodes � � reachable from � and return � � �  .
1: If � was visited then
2: Return � � � 
3: mark � as visited
4: If � is an

�
-node then

5: � � �  � � ) Height � arg � �   ; return � � � 
6: If �

� ��� then // � � �  �	� and parent
� �  � nil

7: � � �  � ' ; return � � �  // Recursion base
// � must be an ordinary � -node

8: � � �  � Height(parent
� �  )

9: For all � � � � �  do // recurse on all (non-expanded) terms
10: � � �  � ���
	 � � � �  * � ) Height � �  
11: Return � � � 

Given a node � , the algorithm uses a standard recursive depth
first search to visit, compute and store the height of every node � �
reachable from � . Lines 4–5 deal with the case that � is an

�
-node.

The recursive call in this case is only on arg
� �  , since ret

� � 
must be a primitive-type.

Another easy case is that � is the ��� . Since there are no terms
in this product-node, its height is 0. Lines 8–11 deal with ordinary
� -nodes. The height of such nodes is one more than the maximum
height of all expanded terms. The reason is that in line 8 we do not
add 1 to Height(parent

� �  ) is that the expanded terms include
the terms � � parent � �   , and not parent

� �  as a term.
Once the height of all nodes in � ��� -graph is computed, Alg. 5

can be invoked to partition these nodes into equivalence classes.
We assume that unique identifiers, drawn from the range

� � * � � , are
given to all basic types. To process non-basic types, the algorithm

relies on the fact that nodes cannot represent isomorphic types un-
less they are of the same kind and the same height. Accordingly,
the nodes of � are processed by height.

Algorithm 5 NodesPartitioning ( � )

Given a � ��� -graph � representing a type in the distributive nor-
mal form (4.1), return a partitioning � of all the nodes of � into
equivalence classes, such that two nodes are in the same class if
and only if they represent isomorphic types.
1: Let � be an incremental tree partitioning data-structure for the

tree of � -nodes of �
2: & � ' // The identifier of current isomorphism class
3: Let � be the root of �
4: � � Height

� � 
5: For � � � * � � � * � do // Process the nodes by height
6: Let �� � ��� � �  � � �  � � �
7: If � is even then // �� is a collection of � -nodes
8: � ��� � � � classify � �� 
9: else // �� is a collection of

�
-nodes

10: Partition �� using pair partitioning
11: Let the resulting partition be �� � 1 : � �� � 1 �
12: �+��� � � 1 : * � � � *�1 � �

// Update �
13: For � � � * � � � *�� do // Inserting a new family
14: & � & ) � // Process a new isomorphism class &
15: Let 
 $ be the multi-set of � -nodes with a term in 1 

16: � � insert � 
 $ 
17: Return �

The main data-structure used by the algorithm is incremental tree
partitioning (Lemma 6.1). Nodes at even height are � -nodes. The
classification of these nodes is carried out by querying this data-
structure.

Lines 10–16 in the algorithm take care of
�

-nodes. Classifica-
tion of these nodes is carried out by a simple pair partitioning al-
gorithm. We then generate identifiers for each of the isomorphism
classes. All

�
-nodes take parts as terms of � -nodes. We must make

sure that two
�

-nodes in the same isomorphism class are regarded
as equal when comparing � -nodes in the next iteration. Line 15 de-
fines the multi-set 
 $ of � -nodes in which isomorphic

�
-nodes are

terms. Note that 
 $ is a multi-set since a � -node may have several
terms belonging to 1 
 . In line 16 the incremental tree partitioning
data structure is updated.

LEMMA 7.1. If � has
�

nodes and
������

edges then, Alg. 5
runs in

������� �	� 
8��
time and while consuming

������
space.

PROOF. We first note that computing the height as in Alg. 4
requires linear time, since every node and every edge is visited at
most once.

The algorithm uses linear space, since the two main procedures
it invokes: incremental tree partitioning algorithm (lines 8 and 16
and pair partitioning (line 10) use linear space.

The running time of all the applications of the pair partitioning
algorithm is

������
(see Lemma 2.7).

The total number of families inserted is
������

. Moreover, the
total size of those families is also

������
, and all the sets of classified

nodes are disjoint. It follows therefore from Lemma 6.1 that the
total time of all the operations performed on � is

����� � �	� 
 ��
.

The bottom-up node classification of Alg. 5 can be used to solve
the first order isomorphism problem. To do so, we first create
the � ��� -graphs of the two input types, and then merge these graphs,
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by e.g., making their roots descendants of a new � -node. (The ���
nodes of the respective graphs must be unified.) Alg. 5 is then in-
voked on the merged graph. The inputs are isomorphic if and only
if these two roots are placed in the same equivalence class.

THEOREM 7.2. First order isomorphism can be decided in������� �	� 
 ��
time and

������
space, where

�
is the size of the input.

PROOF. As noted above the � ��� -graph representation uses lin-
ear space. Moreover, bringing the input to this representation re-
quires linear time.

The complexity of comparing inputs in the � ��� -graph represen-
tation is given by Lemma 7.1.

8. Open Problems
Further research may take the following directions.

1. The only lower bound for the first order isomorphism prob-
lem is the trivial information theoretic linear time. It would
be interesting to bridge this gap by either reducing the time
complexity of our main algorithm even further, or obtaining
better lower bounds.

2. Most programming language allow the user to define types
indirectly, i.e., by giving names to non-primitive-types, and
then using these names in the definition of more complex
types. We would like therefore to generalize our algorithm
to deal with input represented as a graph rather than the stan-
dard expression tree.

3. Perhaps the most important problem which this paper leaves
open is efficient algorithms for subtyping (of products, func-
tions, or both) which include the distributive and the currying
axioms.
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