
Incremental Algorithms for Dispatching in
Dynamically Typed Languages �

Yoav Zibin Joseph (Yossi) Gil
�

Technion—Israel Institute of Technology
zyoav � yogi @ cs.technion.ac.il

ABSTRACT
A fundamental problem in the implementation of object-oriented
languages is that of a frugal dispatching data structure, i.e., sup-
port for quick response to dispatching queries combined with com-
pact representation of the type hierarchy and the method families.
Previous theoretical algorithms tend to be impractical due to their
complexity and large hidden constant. In contrast, successful prac-
tical heuristics, including Vitek and Horspool’s compact dispatch
tables (CT) [16] designed for dynamically typed languages, lack
theoretical support. In subjecting CT to theoretical analysis, we are
not only able to improve and generalize it, but also provide the first
non-trivial bounds on the performance of such a heuristic.

Let �������
	 denote the total number of types, messages, and dif-
ferent method implementations, respectively. Then, the dispatch-
ing matrix, whose size is ��� , can be compressed by a factor of at
most �������������	 . Our main variant to CT achieves a compression
factor of ���� � . More generally, we describe a sequence of algo-
rithms CT � , CT � , CT � , . . . , where CT � achieves compression by a
factor of (at least) �� � ������� � , while using memory dereferencing
operations during dispatch. This tradeoff represents the first bounds
on the compression ratio of constant-time dispatching algorithms.

A generalization of these algorithms to a multiple-inheritance
setting, increases the space by a factor of ! ���"��� � , where ! is a met-
ric of the complexity of the topology of the inheritance hierarchy,
which (as indicated by our measurements) is typically small. The
most important generalization is an incremental variant of the CT �
scheme for a single-inheritance setting. This variant uses at most
twice the space of CT � , and its time of inserting a new type into the
hierarchy is optimal. We therefore obtain algorithms for efficient
management of dispatching in dynamic-typing, dynamic-loading
languages, such as SMALLTALK and even the JAVA invokein-
terface instruction.

�
Research supported by the Bar-Nir Bergreen Software Technol-

ogy Center of Excellence�
Research supported in part by the fund for the promotion of re-

search at the Technion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Run-time envi-
ronments; D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language Constructs
and Features—Inheritance; G.4 [Mathematical Software]: Algo-
rithm design and analysis

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords
CT, Dispatch, Dynamic-typing, Hierarchy, Incremental, Message

1. Introduction
Message dispatching stands at the heart of object-oriented pro-

grams, being the only way objects communicate with each other.
To implement dynamic binding during dispatch, the runtime sys-
tem of object-oriented languages uses a dispatching data structure,
in which a dispatching query finds the appropriate implementation
of the message to be called, according to the dynamic type of the
message receiver. A fundamental problem in the implementation of
such languages is then a frugal implementation of this data struc-
ture, i.e., simultaneously satisfying (i) compact representation of
the type hierarchy and the families of different implementations
of each method selector, and (ii) quick response to dispatching
queries.

Virtual function tables (VFT) are a simple and well known (see
e.g., [14]) incremental technique which achieves dispatching in con-
stant time (two dereferencing operations), and very good compaction
rates. The VFT of each type is an array of method addresses. A lo-
cation in this array represents a message, while its content is the
address of an implementing method. The VFT of a subtype is an
extension of the VFT of its supertype, and messages are allocated
locations at compile time in sequential order. The static type of
the receiver uniquely determines the location associated with each
message. VFTs rely on single-inheritance. Multiple-inheritance
implementations exist [9], but they are not as elegant or efficient.

The challenge in the dispatching problem is therefore mostly
in dealing with dynamically typed and/or multiple-inheritance lan-
guages. Also very important is the incremental version of this prob-
lem, in which types (together with their accompanying messages
and methods) are added at the bottom of the hierarchy.

Our contribution (described in greater detail in Section 1.3) in-
cludes a provable tradeoff between space and dispatching time with
extensions to multiple-inheritance hierarchies. The pinnacle of the
results is an incremental algorithm for maintaining a compact dis-
patch table in dynamically typed languages.

126

1.1 The Problem
We define the dispatching problem in a similar fashion to the

colored-ancestors abstraction described by Ferragina and Muthukr-
ishnan [7]: a hierarchy is a partially ordered set (� , �) where � is
a set of types1 and � is a reflexive, transitive and anti-symmetric
subtype relation. The ����� operator return the set of smallest types
in any given set:

����� ��� �
	������� ��� ���������������	� ������ "!$# (1.1)

Let %'&�� denote the family of types which have a method imple-
mentation for the same message.2

For example, consider the single-inheritance hierarchy in Fig-
ure 1.1a. Type names are uppercase and messages are lowercase,
e.g., type D implements the messages c, e and f. Then, � A � D � E ! is
the family of method implementations of c.

GE F

DB C

A
a,b,c
d,e,f

c
d

b
e

a c,e
f

f b

(a) (b)

a b c d e f
A
B
C
D
E
F
G

A

A

C

A

B

F

D

G

B

EE

A

D

A A A A

DA

A

A

A

A

A

A

B

A

D

D

A

A A A

A

B

A

A

A D

D D

A

Figure 1.1: (a) A small example of a single-inheritance hierarchy, and (b) its
dispatching matrix

Given a family % and a type , cand �(% ���� is the set of candidates
in % , i.e., those ancestors of in which an implementation of the
given message exists:

cand �(% ����)%�*�+��-,/.�0�132�430��5��6# (1.2)

In the figure, we have for example cand �7� A � D � E ! � G �8	9� A � D ! .
A dispatching query dispatch �(% ���� returns either the smallest

candidate or �;:-<�< if no such unique candidate exists. (A �;:-<�< result
represents either the message not understood or message ambigu-
ous error conditions.) Specifically,

dispatch �(% ����
= � if ���>� � cand �(% �?����@	9�A � ! ��B:C<�< otherwise # (1.3)

DEFINITION 1.1. Given a hierarchy (� , �) and a family col-
lection DE&GF �(� � , the dispatching problem is to encode the hi-
erarchy in a data structure supporting dispatch �(% ���� queries for
all %'��D , ���� .

A solution to the dispatching problem is measured by the fol-
lowing three metrics: (i) space, (ii) query time, and (iii) encoding
creation time. We would like to express these as a function of the
following problem parameters H������ �
	�I : the number of types, fam-
ilies, and implementations (or family members). Specifically,

�� � � �
� � D��
	 KJLNMPO � % �

(1.4)

� The distinction between type, class, interface, signature, etc., as it
may occur in various languages does not concern us here. We shall
refer to all these collectively as types.�

We abstract away from the nomenclature of different languages,
and use the terms message (also called selectors or signature) for
the unique identifier of a family of implementation (also called
methods, member functions, operations, features, etc.)

In Figure 1.1 for example, we have �Q	SR , �T	SU and 	V	XWAU .
The incremental version of the problem, is to maintain this data

structure in the face of additions of types (with their accompanying
methods) to the bottom of the hierarchy, as done in languages such
as JAVA [1].

1.2 Simple solutions
The most obvious solution is an �QY � dispatching matrix, stor-

ing the outcomes of all possible dispatching queries. Figure 1.1b
shows the dispatching matrix of Figure 1.1a, where the 	 gray en-
tries correspond to (non-inherited) family members.

In the dispatching matrix representation, queries are answered
by a quick indexing operation. However, the space consumption
is prohibitively large, e.g., 512MB for the dispatching matrix in
the largest hierarchy in our benchmarks (8,793 types and 14,575
families).

Note that an encoding that does not try to compress pointers must
use at least 	 cells for representing the 	 different method addresses.
We would like to get as close as possible to this space requirement
while preserving a constant and small query time. The dispatching
matrix can be potentially compressed by a factor of

������������ 	�# (1.5)

We shall refer to � as the optimal compression factor, and to schemes
attempting to reach � as duplicates-elimination schemes. In our
data-set of 35 large hierarchies (see Section 5), �NZ9R�[P\ .

Let] denote the number of non- �;:-<�< entries in the dispatching
matrix, i.e.,

] � ��H(% ��3I � dispatch �(% ����^�	_�;:-<�<`! �/# (1.6)

By eliminating �B:C<�< memory cells, the dispatching matrix might be
compressed by a factor of ��� � ���a] , which is around 150 in our
data-set. Examples of �;:-<�< -elimination schemes are row displace-
ment [5, 6], selector coloring [4, 12], and virtual function tables
(VFT) [14]. In single-inheritance and static-typing setting of the
problem, the VFT technique uses precisely] memory cells.

In the more general setting, the matrix can also be compressed
into b ��] � cells (with fairly large constants) by using perfect hash-
ing [8] or one of its variants. Even though dispatching time is con-
stant in perfect hashing, it is complicated by the finite-field arith-
metic incurred during the computation of the hash function.

With additional increase to the complexity of dispatching, there
are variations to the famous FKS [8] scheme which use]dc e ��] �
cells. There is also a dynamic version of perfect hashing [3] which
can support incremental dispatching. The memory toll is even larger,
with constants in the range of a thousand.

Notice that even complete null-elimination gives suboptimal com-
pression, since] might be substantially larger than 	 . In our bench-
mark of 35 large hierarchies,] � 	 is on average 8.3, and in one
hierarchy it is 122.4!

It is not difficult to come close to complete duplicates-elimination,
i.e., a space of b � 	 � , with a simple representation of the hierarchy
as a graph where types are nodes and immediate inheritance rela-
tions are edges. The cost is of course the query time, which be-
comes b ����� , since we must traverse all the ancestors of a receiver
in order to find the nearest family member. Sophisticated caching
algorithms (as employed in the runtime system of SMALLTALK [2])
make the typical case more tolerable than what the worst case indi-
cates.

1.3 Contribution
There is a large body of research on the dispatching problem

(see e.g., [2, 4–6, 10, 12, 15–18]). The focus in these was on “prac-

127

tical” algorithms, which were evaluated empirically, rather than by
provable upper bound on memory usage. The main theoretical
research on the topic [7, 11] produced algorithms (for the single-
inheritance setting) which using minimal space (b � 	 � cells) sup-
ported dispatching in doubly logarithmic, b ��<���<�� ��� , time. How-
ever, the hidden constants are large, and the implementation is com-
plicated.

In this paper, we describe a different tradeoff: constant-time dis-
patching in steps, while using at most 	��� � cells. Stated differ-
ently, our results are that steps in dispatching (provably) achieve
a compression rate of �� �� � . For example, with d	 [the com-
pression is by a factor of at least half of the square root of � , the
optimal compression rate. Also, the compression factor is close to
optimal, ���� �
	 , when the dispatching time is logarithmic, <�� � .

An important advantage of these results in comparison to pre-
vious theoretical algorithms is that they are simple and straight-
forward to implement, and bear no hidden constants. In fact, our
algorithms are based on a successful practical technique, namely
compact dispatch tables (CT), which was invented by Vitek and
Horspool [16]. Viewed differently, the results presented here give
the first proof of a non-trivial upper bound on practical algorithms.

Even though the algorithms carry on to multiple-inheritance with
the same time bounds of dispatching, the memory consumption in-
creases by a factor of at most � [! � ������� � , where ! can be thought
of as a metric of the complexity of the topology of the inheritance
hierarchy. (In a benchmark of 19 multiple-inheritance hierarchies
with 34,810 types, we found the median value of an upper bound
for ! is 5, the average is 6.4, and the maximum is 18.) Our pre-
vious work [18] on dispatching gives an implementation of a dis-
patching data structure whose space was only b � ! 	 � , but the dis-
patching time was logarithmic. The results presented here com-
plete the tradeoff spectrum, giving constant time dispatching with
any number of steps. We give empirical evidence that the algo-
rithms perform well in practice, in many cases even better than the
theoretically obtained upper bounds.

We also describe an incremental version of the algorithms in a
single-inheritance setting, and prove that updates to the dispatching
data structures can be made in optimal time. The cost is in a small
constant factor increase (e.g., 2) to the memory footprint.

A variant of the this algorithm for the multiple-inheritance set-
ting is not described for lack of space. Readers may also take
interest in some proof techniques, including the representation of
dispatching as search in a collection of partitionings, the elegant
Lemma 4.1, and the amortization analysis of the incremental algo-
rithm.
Outline The remainder of this article is organized as follows. Sec-
tion 2 presents the generalized CT schemes for single-inheritance
hierarchies. Section 3 shows how these schemes can be made incre-
mental. A (non-incremental) version of these schemes for multiple-
inheritance hierarchies is described in Section 4. Section 5 presents
the experimental results: timing and compression values on a data-
set of 35 hierarchies collected from both single and multiple dis-
patching languages. Open problems and directions for future re-
search are the subject of Section 6.

2. Generalization of Compact Dispatch Tables
for Single-Inheritance Hierarchies

For simplicity, assume w.l.o.g. that the hierarchy is a tree (rather
than a forest) rooted at a special node � �9� . There cannot be
a message ambiguous in a single-inheritance setting. To avoid the
other error situation, namely message not understood, we assume
that �X�Q% for all %'��D . With this assumption, every dispatching

query returns a single family member. The cost is in (at most) dou-
bling the number of implementations 	 . (At the end of this section
we will see that the memory toll is in fact much smaller.)

Vitek and Horspool’s CT algorithm [16] partitions the family
collection D into disjoint slices D 	 D � � #A#�# � D���# These
slices break the dispatching matrix into sub-matrices, also called
chunks. The authors’ experience was that chunks with 14 columns
each give best results, and this number was hard-coded into their
algorithm.

Figure 2.1 shows the three chunks of the dispatching matrix of
Figure 1.1b for following partitioning:

D � 	9� % a �?% b ! �D � 	9� % c �3% d ! �D � 	9� % e �?% f !�#
(2.1)

As Vitek and Horspool observed, and as can be seen in the figure,
there are many identical rows in each chunk. Significant compres-
sion can be achieved by merging these rows together, and introduc-
ing, in each chunk, an auxiliary array of pointers to map each type
to a row specimen.

a b c d e f
A
B
C
D
E
F
G

A

A

C

A

B

F

D

G

B

EE

A

D

A A A A

DA

A

A

A

A

A

A

B

A

D

D

A

A A A

A

B

A

A

A D

D D

A

Figure 2.1: Three chunks of the dispatching matrix of Figure 1.1b

Why should there be many duplicate rows in each chunk? There
are two contributing factors: (i) since the slices are small, there
are not too many columns in a chunk, and (ii) that the number of
distinct values which can occur in any given column is small, since,
as empirical data shows, the number of different implementations
of a selector is a small constant. Hence, there could not be too many
distinct rows.

However, these considerations apply to any random distribution
of values in the dispatching matrix. The crucial observation we
make is that a much stronger bound on the number of distinct rows
can be set relying on the fact that the values in the dispatching ma-
trix are not arbitrary; they are generated from an underlying struc-
tured hierarchy.

Consider for example a chunk with two columns, with � � and � �
distinct implementations in these columns. Simple counting con-
siderations show that the number of distinct rows is at most � � � � .
Relying on the fact that the hierarchy is a tree we can show that the
number of distinct rows is at most � � c � � .

To demonstrate this observation, consider Figure 2.2a which fo-
cuses on the first chunk, corresponding to slice D � 	9�a% a �3% b ! .

As can be seen in the figure, the rows of types A, D, and F are
identical. Figure 2.2b shows the compressed chunk and the auxil-
iary array. We see that this auxiliary array maps types A, D, and F
to the same row.

We call attention to the (perhaps surprising) fact that it is possible
to select from the elements of each row in Figure 2.2b a distinguish-
ing representative. These representatives are members of what we
call the master-family

% �)% a
� % b 	9� A � B � C � G !�#

The representatives of the four rows in the first chunk are A, B, C
and G, in this order. The figure highlights these in gray. Also note

128

A
B
C
D
E
F
G

a b
A
B
C
D
E
F
G

a b
A
B
C
G

(a) (b) (c)

A
B
C
D
E
F
G

a b
A

C

A

B

A

B

G

A

A

C

A

B

G

A

A

A

A

A

A

A

B

A

A

C

B

G

A

A

A

A

A

C

B

G

A

A

A

Figure 2.2: (a) The first chunk of Figure 1.1c, (b) the chunk compressed
using an auxiliary array of pointers, and (c) the chunk compressed using an
array of labels

that each member of the master-family serves as a representative of
some row.

Figure 2.2c gives an alternative representation of the chunk, where
each row is labeled by its representative. The auxiliary array now
contains these labels instead of pointers. For example, the second
row is labeled B �Q% b; the second and the fifth entry of the auxiliary
array store B rather than the row specimen address.

Our improvement is based on the observation that the distin-
guishing representatives phenomenon is not a coincidence and on
the observation that CT applies a divide-and-conquer approach to
the dispatching problem: The search first determines the relevant
master-family, and then continues to select the appropriate result
among its members.

Let ��� denote the compressed � th chunk of the dispatching ma-
trix, and let � be the master dispatching matrix, whose columns
are the auxiliary arrays of the chunks. Figure 2.3 shows matri-
ces � � ��� � ��� � and � , which constitute the complete CT represen-
tation for the hierarchy of Figure 1.1. Note that the first column
of � is the auxiliary array depicted in Figure 2.2c.

a b c d e fA
B
C
D
E
F
G

A
B
D
F

A
D
E

A
B
C
G

A1

A1 A2 A3

A2 A3

B

A

A

C

B

F

D

G

B

EE

A

D

A A A A

D

A

A

A A

D

A

C

B

E

A

D

A

A

B

A

A

D

B

A

D

D

B

G

A

D

F

Figure 2.3: CT representation for the hierarchy of Figure 1.1

For each slice D � let the master-family % �� be the union of fam-
ilies in that slice, i.e., % �� �� LNMPO
	 % . Then, answering the
query dispatch �(% �?�� at runtime requires three steps:

1. Determine the slice of % . That is, the family collection D�� ,
such that % � D � . If the partitioning into slices and the se-
lector % are known at compile-time, as it is usually the case
in dispatching of static-loading languages, then this stage in-
curs no penalty at runtime.

2. Fetch the first dispatching result � 	 dispatch �(% �� ���� . This
value is found at the row which corresponds to type and the
column which corresponds to the master-family % �� , i.e., � 	�� ����� .

3. Fetch the final dispatching result � � 	 dispatch �(% ���� . This
type is found in the row of � and the column of % in the
compressed chunk � � , i.e., �� 	�� � � �3%�� .

The algorithm merges together all the different messages in D�� . At
step 2, we find �
� , which is the smallest candidate in the merged
master-family. Matrix � (of size � Y) is the dispatching matrix
of the types � and the master-family collection � % �� ��#�#/# �"% �� ! .

The search then continues with � , to find �� � � , the smallest
candidate in % , the original family. Each matrix ��� (of size � % �� �;Y
� D � �) is the dispatching matrix of the types in % �� and the family
collection D�� .

To understand the space saving, consider just two families % �
and % � . The naive implementation of dispatch is using two arrays,
each of size �Q	 � � � , which map each type to two types �� � �Q% �
and � ��� % � , such that ���� 	 dispatch �5 �3%�� � , ��	 W �6[. A more
compact representation can be obtained by using a single array of
size � , to dispatch first on the merged master-family % �)% � � % � .
Let � � % � be the result of this dispatch. The crucial point is that
the smallest candidate for � , in either % � or % � , is the same as for .
Since there are � % � ��� � % � � c � % � � different values of � , a continued
search from � (for either % � or % �) can be implemented using two
arrays, each of size � % � � . The first such array maps % � to % � ; the
second to % � . Total memory used is � c [� % � � instead of [� cells,
while the cost is an additional dereferencing operation.

More generally, given a dispatching problem for a family collec-
tion D , the CT reduction partitions D into disjoint slices

D 	_D � � #�#A# � D���� (2.2)

and merges together the families in each slice by defining a master-
family

% �� ��LNMPO
	 % � (2.3)

for all �N	XW ��#A#�# � . Let ��� be the matrix whose dimensions are

� % �� �;Y � D � � � (2.4)

corresponding to the � th slice. Then, the query dispatch �(% ���� is
realized by the fetch

� � dispatch �(% �� ���� �?%�� � (2.5)

where %'� D�� .
Since both steps 2 and 3 in the dispatching are in essence a dis-

patching operation, better compaction of the dispatching data struc-
ture might be achieved by applying the CT technique recursively to
either the matrix � , or all the matrices � � . It is not difficult to
see that each of the recursive applications will yield the same dis-
patching data structure, in which the set of selectors is organized in
a three-level hierarchy of partitions: families, master-families, and
master-master-families (so to speak). We chose to describe this 3-
level system by applying the CT technique to the matrix � . The
(potential) saving in space comes at a cost of another dereferenc-
ing step during dispatch. Clearly, we could recursively apply the
reduction any number of times.

We need the following notation in order to optimize these recur-
sive applications. Let ��.�� �����������
	 � denote the memory required
for solving the dispatching problem of � types, � families and 	
method implementations, using dereferencing operations during
dispatch. A simple dispatching matrix representation gives

��.�� � ������� �
	 �8	 ��� # (2.6)

Each application of the CT reduction adds another dereferencing,
while reducing a dispatching problem with parameters H��������
	�I to
a new dispatching problem with parameters H�� � ���	 � I , where

	 � 	 �J �! �
� % �� �$	 �J �" �

###### �LNMPO$	 %
#

129

Note that 	 � � 	 . To see this recall that

	 	 JLNMPO � % �P	
�J �! �
JL@M�O�	 � % � �

and apply the fact that the cardinality of the union of sets is at most
the sum of cardinalities of these sets

	 � 	 �J �! �
###### �LNM�O�	 %

�
�J �! �
JL@M�O�	 � % �$	 	a# (2.7)

The reduction generates the matrices � � ��#/#�# ��� � . To estimate
their size suppose that all slices are equal in size, i.e., they all have �
families. (For simplicity we ignore the case that � is not divisible
by � , in which slices are almost equal.) Then, the total memory
generated by the reduction is

�J �" �
� % �� �;Y � D � �P	 �J �! �

� % �� �CY���	��
�J �" �
� % �� �P	�� 	 � ��� 	�#

To conclude, the costs of the CT reduction are another deref-
erencing and an additional space of � 	 . In return, a dispatching
problem with parameters H�������� 	AI is reduced to a new dispatching
problem with parameters H���� �� 	 � I , where 	 ����� and 	 � � 	 .
Formally,

��.�� ��� � ��� �
���
	 � � 	�� c ��.�� � �����������"�
	 � � (2.8)

where � is arbitrary.
Let CT � be the dispatching data structure and algorithm obtained

by applying the CT reduction
	 W times to the original dispatching
problem. The recursion is ended by applying simple dispatching
matrix at the last step. Thus, CT � is simply the dispatching matrix,
while CT � is similar to Vitek and Horspool’s algorithm (with � 	W �). By making �	9W substitutions of (2.8) into itself, and then
using (2.6), we obtain

��.�� � ������� � 	 � � 	�� � c���ac 	�� � �"� c ���
� � � � ���� � ���

� (2.9)

where � � is the slice size used during the � th application of the
CT reduction. Symmetry considerations indicate that the bound
in (2.9) is minimized when all � � are equal. We have,

��.�� � ���������
	 � � �� �	 W���	�� c ���
� � ��� � (2.10)

which is minimized when ��	�������� 	 � ��� � .
Table 1 summarizes the space and time requirements of algo-

rithms CT � , where ������ � ����	 is the optimal compression factor.

Scheme Slice size Time Space Compression
factor

CT � N/A � ��� �
CT � �� � � ��� �� � �� �� �CT � �� � � ��� �� � �� �� ������ ����� ����� ����� �����
CT � �� � � ��� �� � �� �� ������ ����� ����� ����� �����

CT � � ��� 	 � �! #"%$'& ()�! #"*$+&-, � � �$ � � � � 	
Table 1: Generalized CT results for single-inheritance hierarchies

The last row in the table is obtained by applying the CT reduc-
tion a maximal number of times. In each application the slice size
is � (typically, �S	 [). The collection D is then organized in a
hierarchy of <�2 � $ � levels, which is also the number of derefer-
encing steps during dispatch. The memory used in each level is 	��
(see (2.8)).

The generalizations (Table 1) of CT � over Vitek and Horspool’s
algorithm is in the following directions: (i) a sequence of algo-
rithms which offer a tradeoff between the size of the representa-
tion and the dispatching time, and (ii) precise performance anal-
ysis, which dictates an optimal slice size, instead of the arbitrary
universal recommendation, ��	XW � .

In reflecting on the generalized CT algorithm we see that they
are readily adapted to the case where message not understood are
allowed as is the case in dynamically typed languages. Whenever
the search in a master-family % � returns � , we can be certain that
the search in every constituent of % � will also return � . Therefore,
it is possible to check after each dereferencing operation whether
the fetched type is � , and emit the appropriate error message. A
more appealing alternative is to continue the search with � , using
an array which maps � into itself for each constituent of % � . Now,
since this array does not depend on the identity of % � , we can store
only one such copy for each application of the CT reduction. The
memory toll that CT � bears for these arrays is �� .	 W��/� cells.

Note also that Vitek and Horspool’s idea of using selector color-
ing [4,12] in each chunk is still applicable with a slight variation to
our generalization. If certain columns in a chunk contain many �
elements, it might be possible to collapse these columns together.

3. Incremental variants for Single-Inheritance
hierarchies

This section describes an incremental variant of the CT scheme
in the single-inheritance setting, achieving two important proper-
ties: (i) the space it uses is at most twice that of the static algo-
rithm, and (ii) its total runtime is linear in the final encoding size.
(We cannot expect an asymptotically better runtime since the algo-
rithm must at least output the final encoding.)

Section 3.1 describes ICT � , the incremental variant of CT � . Sec-
tion 3.2 gives the generalization for CT � .

The main idea is to rebuild the entire encoding whenever the
ratio between the current slice size and the optimal one reaches a
high- or low-water mark (for example 2 and 1/2). Therefore, some
insertions will take longer to process than others. We therefore
obtain bounds on the amortized time for an insertion.3 The amor-
tized time of an insertion is asymptotically optimal since the total
runtime is linear in the final encoding size. Using techniques of
“background copying” [3], it is possible to amend the algorithms
so that the worst case insertion time is optimal as well.

Note that unlike the static version of the problem, we cannot
assume that the families always include the root � . The reason
is that this assumption would require � to include implementation
of all families, and the initial value of the number of families will
jump to � .

3.1 ICT � in a single-inheritance setting
The CT � scheme applies a single CT reduction and uses a dis-

patching matrix for the resulting master-families. This process di-
vides the dispatching problem into independent sub-problems: one
dispatching matrix, and a set of matrices ��� , � 	 W �A#�#�# � , which
(in a single-inheritance setting) are in fact dispatching matrices as
well.

We first note that it is relatively easy to maintain a plain, single-
level, dispatching matrix subject to type insertions. The cost is in an

� We remind the reader that the amortized time of an operation
is 0 ����� , if a sequence of � such operations requires at most �10 �����
time. The worst case time of any single operation can however be
much greater than 0 ����� . For more information on amortized com-
plexity see [13].

130

additional comparison to guard against array overflows. Consider
a newly added type . The row of in the dispatching matrix is
identical to the row of its parent, except for entries corresponding
to families in which is a member. Note that the insertion time of a
type is linear in its row size, and the total runtime is therefore linear
in the final encoding size.

There is a slight difficulty when introduces new families. (A
new type introduces a family % , �d% , iff no other type was a
member of % .) Observe that the dispatching result for such a newly
introduced family and every other type is always �;:C<>< . Therefore,
we extend the row of and place the entries for these new fami-
lies at the end. However, instead of extending all the other rows
with �;:-<�< entries, we perform a range-check before accessing any
given row. In the case of array-overflow we return �B:C<�< , otherwise
we proceed as usual.

The space requirement of CT � in a single-inheritance setting is
(see Table 1)

��./� � ���@	 	�� c �������"� (3.1)

which is minimized when the slice size is

� OPT 	 �
����� 	�# (3.2)

Algorithm ICT � will maintain the following invariant

� OPT[��� ��[�� OPT � (3.3)

and will rebuild the encoding whenever this condition is violated.
Algorithm 1 shows the procedure to apply whenever a new type is
added to the hierarchy.

1: Let � be the current slice size.
2: Let H������ �
	�I be the current problem parameters.
3: � OPT � �

��� ��	 // The optimal slice size.
4: If not � $ OPT� � � ��[%� OPT � then
5: � � � OPT

6: Rebuild the entire CT � encoding
7: end If
8: Insert to the CT � encoding

Algorithm 1: Insertion of a new type in ICT �

Substituting (3.2) in (3.1) we find the optimal encoding size

��.�� � � OPT �8	S[� � � 	�#
Let us write this as a function of the problem parameters,� ����������	 � _��.�� � � OPT �8	S[� ��� 	�#
and study the properties of this function.

FACT 3.1. Function
�

is monotonic in all three arguments �������
	 .

FACT 3.2. There are constants 0 � ��0 � ��0 � , such that�
J �! �� �
	 �[� �����
	�� ��0 �

� ���������
	 � ��
J �! �� � 	 ��� � [� �
	 � ��0 � � ���������
	 � ��
J �! �� �� � �
��� 	[��� ��0 � � ���������
	 �6#

(3.4)

PROOF. Note that�
J �! �� � 	 �[� ��� �
	 � 	 �

J �" ���� �[� � 	
	 � ��� 	

�
J �! �� � W[�

� [[� [� ��� 	 ��b � � ��������� 	 ���6#
The proof for parameters � and 	 is identical.

LEMMA 3.3. The space requirement of ICT � is at most

[� ���������
	 �6#
PROOF. From the algorithm invariant (3.3) it follows that

��.�� � ���8	 	�� c �������
� 	 � [%� OPT ��c ����� 	 � OPT[�
	S[� 	�� OPT c ������� OPT �	S[N��.�� � � OPT �8	S[� ����� ����	 �6#

Our next objective is to prove that the total runtime of ICT � is
linear in

� ������� �
	 � . To do so, we will breakdown the sequence of
insertions carried out by the algorithm into phases, according to the
points in time where rebuilding took place. No rebuilding occurs
within a phase, and all that is required is to maintain several plain
dispatching matrices. Hence, the total runtime of the insertions in
a phase is linear in the encoding size at the end of this phase.

The main observation is that rebuilding happens only when at
least one of the problem parameters is doubled. We distinguish
between three kinds of rebuilds, depending on the parameter which
was doubled. We then show that the total runtime of rebuilds of the
same kind is linear in

� ���������
	 � .
Formally, phase � begins immediately after phase � 	QW , and ends

after the encoding was built for the � th time (the last phase ends
when the program terminates). Let H�� ���
� �
��	 � I , �^	GW �A#�#/# ��� , be
the problem parameters at the end of phase � . Observe that the
problem parameters can only increase, i.e., �
� � ��� � � , � � � �
�� � , and 	 � � � � 	 � , Phase � finishes with an encoding size of at
most [� ��� ����� �
�
	�� � , therefore its runtime is linear in

� ��� ����� �
�
	 � � .
Thus, the total runtime is linear in�

J �" �
� ��� ����� �
�
	�� �6# (3.5)

We need to show that this sum is linear in
� ��� � ��� � � 	 � � .

LEMMA 3.4. Invariant (3.3) is violated only when at least one
of the problem parameters is doubled, i.e., one of the following
holds

� � � ��� [� ���
� � � � � [� � �
	�� � ��� [�	��3# (3.6)

PROOF. Let ��� denote the slice size at the beginning of phase � ,
i.e.,

� � � ��� ���
	 � # (3.7)

At the end of phase � one of the following conditions must hold

� � � � � [%� � �
� � � � � W[� ��#

(3.8)

131

From (3.7) and (3.8), we have

� � � � � � � �	 � � � � � � � � �
	 � �

� � � � � � � �	 � � � � � � � �� 	 � #
(3.9)

Since the problem parameters can only increase,

� � � � � � � ��� � � � � ���
	 � � � � � 	 � � (3.10)

which implies that at least one of the parameters was doubled.

LEMMA 3.5. The total runtime of ICT � is linear in� ��� � �
� � �
	 � �6#
PROOF. Let � ��� � ��� � ��� � � �/#�#�# � ����� ����� ���	� �3! be the prob-

lem parameters of phases where � was doubled, i.e., � � � ��� [
� � .
Therefore,

� � � [
� � �"� � #�#�# � [� �"� � � # (3.11)

Using Fact 3.2, the total runtime of these phases is linear in
�J �! �

� ��� ����� ����� ��� � �J �! �
� ��� ����� � ��� � �

�
�J �! �

� � �[� � � ����� ���� �
� b � � ����� ����� ��������6#

(3.12)

The same consideration applies to phases in which the number of
methods or the number of families was doubled. So, the runtime of
the entire algorithm is the total runtime of the three kinds of phases,
which is linear in

� ��� � ��� � ��	 � � .
3.2 ICT � in a single-inheritance setting

The generalization to �� [is mostly technical, as outlined
next. Function ��.�� � ��� , the space requirement of CT � as defined
in (2.10) is minimized when the slice size is

� OPT 	 �
�
����� 	�#

Let function
� � denote the optimal encoding size� ����������� 	 � _��.�� � � OPT �8	 	 �� �?#

Algorithm ICT � will preserve the following invariant

� OPT[��� � � �"� � � � ��[%� OPT # (3.13)

LEMMA 3.6. The space requirement of ICT � is at most

[� � ������� �
	 �6#
PROOF. Similar to that of Lemma 3.3

FACT 3.7. There are constants 0 � ��0 � ��0 � , such that�
J �" �� � � 	 �[� �����
	�� ��0 �

� � ������� �
	 � ��
J �" �� � � 	 ��� � [� �
	 � ��0 � � � ������� �
	 � ��
J �" �� � � � �
��� 	[��� ��0 � � � ������� �
	 �6#

(3.14)

LEMMA 3.8. Rebuilding only takes place when at least one of
the problem parameters is doubled.

PROOF. Similar to that of Lemma 3.4

LEMMA 3.9. The total runtime of ICT � is linear in� � ���������
	 �6#
PROOF. Similar to Lemma 3.5.

4. Generalization of Compact Dispatch Tables
for Multiple-Inheritance Hierarchies

This section explains how to generalize the CT reduction as de-
scribed in Section 2 to the multiple-inheritance setting. In a single-
inheritance hierarchy, there could never be more than one most spe-
cific family member in response to a dispatch query. The fact that
this is no longer true in multiple-inheritance hierarchies makes it
difficult to apply the CT reduction to such hierarchies. Even if the
original families are appropriately augmented to remove all such
ambiguities, ambiguities may still occur in the master-families as
they are generated by the reduction.

We will therefore use a notion of a generalized dispatching query,
denoted g-dispatch �(% ���� , which returns the entire set of smallest
candidates, rather than �B:C<�< in case that this set is not a singleton.
Formally,

g-dispatch �(% ����)����� � cand �(% ������6# (4.1)

Generalized dispatching is a data-structure transaction rather than
an actual runtime operation which must result in a single method to
execute.

Consider for example the hierarchy of Figure 4.1.

FD E

B C

A
a
b

a b

Figure 4.1: A small example of a multiple-inheritance hierarchy with two
families

The figure shows two families of methods, % a and % b,

% a 	�� A � B ! �% b 	�� A � C !$# (4.2)

The dispatching matrix of these two families is depicted in Fig-
ure 4.2a. Note that the results of all dispatching queries on types D
and E (for example) are the same. The corresponding rows in the
table are identical and can be compressed. Figure 4.2b shows a rep-
resentation of the dispatching matrix obtained by merging together
all identical rows and an auxiliary array of pointers to all different
rows specimens.

This compressed representation can be understood in terms of
the master-family

% �)% a
� % b 	9� A � B � C !$#

The auxiliary array represents all the possible results of a general-
ized dispatch on this master-family. For example,

g-dispatch �(% � � D �8	 g-dispatch �(% � � E �8	�� B � C !�#

132

A
B
C
D
E
F

(a) (b)

a b
A
B
C
D
E
F

a b a bA
B
C
D
E
F

(c)

{B,C}

{A}

{B}

{C}

A

A C

C

B

A

B

B

A

A

C

C

A

A C

B

A

B

A

C

A

A C

B

A

B

A

C

{B,C}

{A}

{B}

{C}

{B,C}

{C}

Figure 4.2: (a) The dispatching matrix of Figure 4.1, (b) the matrix com-
pressed using an auxiliary array of pointers, and (c) the matrix compressed
using an array of set-labels

Therefore, the D and E entries in the auxiliary array point to the
same row specimen whose label is the set � B � C ! .

In total there are four different results of generalized dispatch-
ing with respect to % � . Family % � therefore partitions the types in
the hierarchy into four sets, as shown in Figure 4.2c. The figure
shows the same compressed representation of the dispatching ma-
trix, where the results of generalized dispatch are used to label row
specimens instead of pointers in the auxiliary array.

In order to derive bounds on the quality of the CT compression
in the multiple-inheritance setting we need to estimate the number
of distinct rows in chunks. The difficulty is that the result of a
generalized dispatch is a set rather than a singleton, and hence this
number might be exponential in the family size. To show that this
is not the case, we first define the notion of a partition imposed by
a family, and then show the size of this partition is at most [! times
the size of the family, where W � ! � � is a (usually small) metric
of the complexity of the hierarchy.

4.1 Family Partitionings
Given a partially ordered set of types � and a family of imple-

mentations % &�� , the partitioning of � by % , also called the
family partitioning due to % , is� % �� � � �/#�#�# �3���-! �
such that all types in partition � � have the same generalized dis-
patch result. In other words, types � ��� � � are in the same parti-
tion � � � � % if and only if

g-dispatch �(% ��� �8	 g-dispatch �(% ��� �6# (4.3)

Figure 4.3 shows the family partitioning of the families % a, % b

of (4.2) and their master-family % � S% a
� % b.

� � �� � �� �� �� �	 	

� �� �� � � �� �

� � �� � �� � �� � �

FD E

B C

A

(a)

FD E

B C

A

(b)

FD E

B C

A

(c)

Figure 4.3: The family partitionings of the families � a, � b of (4.2) and their
master-family � ��� � a � � b

Types D and E, for example, are in the same partition in
� % �

since g-dispatch �(% � � D � 	 g-dispatch �(% � � E � 	 � B � C ! . The
partitionings are� % a 9�P� A � C � F ! �/� B � D � E !�! �� % b 9�P� A � B ! �6� C � D � E � F !�! �� % � 9�P� A ! �/� B ! �/� C � F ! �/� D � E !P!�# (4.4)

Figure 4.4 overlays
� % a and

� % b. The dotted lines are the par-
titions of

� % a, whereas the full lines are the partitions of
� % b.

��� �� �� � �� � �� �� ��� � �� � �� � �� �� ������
Figure 4.4: The overlay of ��� a and � � b of Figure 4.3

In comparing Figure 4.3c with Figure 4.4, we see that the parti-
tioning

� % � can be obtained by a simple overlay of the two parti-
tionings

� % a and
� % b. We will next prove that this was no coinci-

dence.
Given two partitionings ! , ! � , their overlay !-�! � is the coarsest

partitioning consistent with both ! and ! � . Constructively, the over-
lay is obtained by intersecting all partitions of ! with all partitions
of ! � : !-�! � 	9�a� ��* � �� �
� �8�"! �3� �� �#! � !�# (4.5)

For example, the overlay of
� % a and

� % b of (4.4) is� % a � % b 	9�P� A � C � F !�*�� A � B ! �6� A � C � F !�* � C � D � E � F ! �� B � D � E !V*�� A � B ! �6� B � D � E !�* � C � D � E � F !�!	9�P� A ! �6� C � F ! �/� B ! �6� D � E !P!$#
(4.6)

LEMMA 4.1.
� % � � % � 	 � �(% � � % � � for all % � , % � .

PROOF. It is a well known fact that for every partitioning ! there
is a binary equivalence relation whose set of equivalence classes
are the same as the partitioning ! . Instead of proving that the par-
titioning

� �(% � � % � � and
� % � � % � are equal, we will prove that

their equivalence relations are the same.
On the one hand, types � ��� are in the equivalence relation of� �(% � � % � �

iff they have the same generalized dispatching results with respect
to % � � % � (see (4.3)), i.e.,

g-dispatch �(% � � % � ��� �
	 g-dispatch �(% � � % � ��� �6# (4.7)

On the other hand, the overlay partitioning,
� % � � % � , is defined

by intersecting all partitions of
� % � with those of

� % � (see (4.5)).
Therefore, types � ��� are in the equivalence relation of

� % � � % �
iff the following two conditions hold

g-dispatch �(% � ��� �8	 g-dispatch �(% � ��� � �
g-dispatch �(% � ��� �8	 g-dispatch �(% � ��� �6# (4.8)

We must show that (4.7) holds iff (4.8) holds. Formally, using the
definition of generalized dispatch (4.1), we must show that

���>� � cand �(% � � % � ��� ���8	_������� cand �(% � � % � �$� ���%
������� cand �(% � ��� ���8	_������� cand �(% � ��� ���'&������� cand �(% � ��� ���8	_������� cand �(% � ��� ���6# (4.9)

133

Since two sets of candidates (for the same family) have the same
smallest elements iff they are equal, our objective is to prove (see
the definition of candidates in (1.2))

�(% � � % � � *�+a�-,�./0�132�430 � � �@	��(% � � % � ��*�+��-,/.�0�132�430�� � �%
% � *�+a�-,�./0�132�430 � � �@)% � *�+a�-,�./0�132�430 � � �'&% � *�+a�-,�./0�132�430 � � �@)% � *�+a�-,�./0�132�430 � � �6# (4.10)

Given two sets � � � , their symmetric difference is defined as

��� � ��� � � ��� ��� * � �6#
Observe that � *�� 	 � * � % � *������ � �8	��;# (4.11)

By combining (4.10) and (4.11) we find that we need to prove that

�(% � � % � � *��(+��C,�.�0�132�430�� � �	�X+��C,�.�0�132�430 � � ���8	
�%
% � *��(+��C,�.�0�132�430�� � �	�X+��C,�.�0�132�430 � � ���8	
� &% � *��(+��C,�.�0�132�430�� � �	�X+��C,�.�0�132�430 � � ���8	
�B# (4.12)

The above trivially holds since for all sets � � � � � ,

��� � � ��* � 	
�%
� * � 	
� &� * � 	
�B#

4.2 Memory requirements of the reduction
As in the single-inheritance version, the CT reduction partitions D

into disjoint slices D � �A#�#�# ��D�� , and generates for the � th slice the
master-family % �� by merging the families in this slice. To answer
the generalized dispatching query g-dispatch �(% ���� , where %E�D � , we first (recursively) answer the query g-dispatch �(% �� ���� , in
the collection of master-families, �a% �� �A#�#�# �?% �� ! . This recursive call
returns one of the partitions of

� % �� . The next step is to find the
unique containing partition of

� % .
To understand this better, recall that %'&�% �� . To apply Lemma 4.1

note that there exists a set � such that % ��)% � � , and hence� % �� 	 � �(% � � �8	 � % � ��#
Therefore, every partition of

� % �� is contained in a partition of
� % .

A matrix � � with � � % �� � rows and � D � � columns is used to map
each of the partitions of

� % �� to a partition of
� % , for all % ��D�� .

Matrices � � �/#A#�# ��� � are nothing other than the dispatching data
structure of the CT reduction. (Clearly, there is an additional data
structure which the recursive call uses.)

To bound the size of these matrices, we need to estimate � � % � .
In single-inheritance, � � % � 	 � % � . An easy, but not so useful
bound in multiple-inheritance, is � � % � �_[�� L � .

A better bound is given by defining ! , the complexity of a hier-
archy, and then showing that

� � % ����[! � % � # (4.13)

Using slices with � families in each, the total memory of matri-
ces � � ��#�#/# ��� � is

�J �" �
� � % �� �BY � D����$	 �J �! �

� � % �� �CY�� ���
�J �" �
[! � % �� � �_[�� ! 	a#

The recursive equations then become

��./� � ��������� 	 �8	 �������.�� ��� � ��������� 	 � ��[! 	 �� c ��./� �������������"�
	 �6# (4.14)

By using [! 	 instead of 	 , the analysis of the previous section holds.

COROLLARY 4.2. Let ����������� [! 	 � . In a hierarchy whose
complexity is ! , CT � performs dispatching in dereferencing op-
erations, and reaches a compression factor of at least �� ���"��� �
(when using a slice size of ��� �).

In other words, in a hierarchy whose complexity is ! , the space
requirements of CT � in the multiple-inheritance setting is worse
than the single-inheritance setting by a factor of at most � [! � ���"��� � .

4.3 Hierarchy Complexity

DEFINITION 4.3. The complexity of a hierarchy is the minimal
number ! such that there exists partitioning of � into sets � � ��#�#�# �?��� ,
and an ordering ! � of � � , � 	XW �A#�#�# ��! , such that for every type ��� , the set �B.�0?,�.����-+���130 �5���*�� � is an interval in ! � .

Clearly, the complexity of a hierarchy is 1 if there exists an order-
ing ! of � in which descendants of any type define an interval. All
single-inheritance hierarchies have complexity 1 since in a simple
preorder the descendants of any type are consecutive.

Figure 4.5 is a multiple-inheritance hierarchy of complexity 1.
Within each type we write its position in ! .

9

2 5 7

6 843

1
A B

EDC

F G H I

Figure 4.5: An example of a multiple-inheritance hierarchy of complexity 1

Figure 4.6 shows the family partitioning of the family % 	� A � B � E ! in the hierarchy of Figure 4.5. Observe that � � % �$	S\ .
� �� � �� � �� �� � ��

� � �� � �
A B

EDC

F G H I

9

2 5 7

6 843

1

Figure 4.6: The family partitioning of the family ����� A � B � E � in the
hierarchy of Figure 4.5

Since the complexity of this hierarchy is 1, the descendants of
each type define an interval. Therefore the family � defines the
three intervals depicted in Figure 4.7. Those intervals partition the
types into 5 segments. (We will show that there are at most � � �!�
segments.) Types in the same segment have the same set of candi-
dates and therefore belong to the same partition. So we conclude

134

that the number of partitions is at most the number of segments,
which in turn is at most ��� �!� . In our example,� � �!��� ����� ����� �!� �

A C F G D H E I B

A

B
E

Figure 4.7: The intervals of the family � ��� A � B � E � in the hierarchy of
Figure 4.5

LEMMA 4.4. � � �!� � �	� � �!� for each family � .

PROOF. We need the following fact, whose proof is elementary.

A set of
 intervals partition any consecutive set into at most ��
��
segments. Out of these segments at most ��
�� � are con-

tained in one interval or more. (See illustration in Figure 4.7.)

Let ��� � �!� . Recall (Definition 4.3) the partitioning of � into
sets ��������������� � with their respective ordering. Let � be fixed. We
write the list of members of the set ��� , enumerated in its respective
order ! � .

Consider a type ��� ��� . The result of g-dispatch ! �"�#�%$ is
uniquely determined by the subset of all types �#&'� � , such that
the � is among the descendant of � & . From Definition 4.3, we have
that the descendants are consecutive in the list of � � . Family � de-
fines therefore � intervals (which may be empty) in this list. These
intervals partition the list into at most �(�*),+ segments such that the
result of g-dispatch ! �"�#�-$ is uniquely determined by the segment
of � . These segments give the restriction of

� � to �.� .
We have thus obtained � � �!� � �/! ���0)1+�$. To obtain a tighter

bound we need a more careful counting. Let us remove from ���
all types which are not descendants of any of the members of � .
The remaining types are divided by � into �(�324+ segments. Gen-
eralized dispatching on the removed types returns the empty set,
irrespective of � . The total number of equivalence classes in

� � is
therefore �/! �(�325+�$6)�+ � �	�7� .

We are unaware of any non-exponential method for finding � .
Instead we use a greedy heuristic which gives an upper-bound on � .
On a benchmark of 19 large multiple-inheritance hierarchies, the
median value on that bound was 5, the average was 6.4, and the
maximum was 18.

REMARK 4.1. The actual partitioning �0�����������-� � is not re-
quired in order to apply the CT reduction; only the integer 8 is
needed for determining the slice size. We found that in practice the
single-inheritance analysis closely models even hierarchies which
use multiple-inheritance heavily. (Therefore there is no need even
to find 8 .)

5. Experimental Results
In this section we compare the theoretical prediction on the al-

gorithms with their empirical performance. Our benchmark com-
prises 35 hierarchies totaling 63,972 types, 70,680 messages and
418,839 methods. Out of these, there were 16 single-inheritance
hierarchies with 29,162 types, 12 multiple-inheritance hierarchies
with 27,728 types, and 7 multiple-dispatch hierarchies with 7,082
types.

This data-set includes all hierarchies previously used in the lit-
erature in benchmarks of dispatching algorithms. However, prior

to running the experiments, all degenerate families, i.e., families of
size one, were pruned from the input. The reason for doing so is
that sending a message whose family is degenerate requires no dis-
patching, and is the same as static procedure call. (In dynamically
typed languages there is an earlier step, which is equivalent to a
subtyping test, in which it is made sure that the message is valid for
the receiver type.)

We stress that by eliminating degenerate families, compression
becomes more difficult for the CT schemes. The reason is that this
pruning reduces both 9 and : by the same number. Therefore, the
optimal compression factor ;=<>!@?A9B$%C�: , which we aimed at reach-
ing, becomes smaller. On the other hand, the compression factor ofD�EGFHF -elimination schemes !@?A9I$%C	J may or may not decrease.

Table 2 gives the essential properties of the pruned hierarchies.
The first two row blocks in the table correspond to single-inheritance
(SI) and multiple-inheritance (MI) hierarchies. The last block is for
hierarchies drawn from multi-dispatch languages. (We regard each
multi-dispatch query as several independent single-dispatch queries
on each of the arguments, as done in the first step of the major al-
gorithms for multi-dispatching [18].)

Hierarchy K L
� ��M ��ON%P Q�ON%R S�ON%R T

Single-Inheritance

Visualworks1 774 1,170 0.91 79.14 4.62 1
Visualworks2 1,956 3,196 6.25 289.67 13.58 1
Digitalk2 535 962 0.51 72.27 3.33 1
Digitalk3 1,357 2,402 3.26 362.11 9.44 1
IBM Smalltalk 2 2,320 4,335 10.06 204.97 16.29 1
VisualAge 2 3,241 6,529 21.16 594.98 26.21 1
NextStep 311 499 0.16 16.24 2.12 1
ET++ 371 296 0.11 12.20 1.41 1
SI: JDK 1.3.1 6,681 4,392 29.34 128.26 23.82 1
SI: Corba 1,329 222 0.30 6.94 2.59 1
SI: HotJava 644 690 0.44 23.86 2.91 1
SI: IBM SF 6,626 11,664 77.29 287.38 88.28 1
SI: IBM XML 107 131 0.01 1.30 0.59 1
SI: Orbacus 1,053 980 1.03 18.66 3.82 1
SI: Orbacus Test 579 368 0.21 5.67 2.39 1
SI: Orbix 1,278 535 0.68 10.90 2.90 1

M
ultiple-Inheritance

Self 1,802 2,459 4.43 234.04 21.75 4
Unidraw 614 360 0.22 8.11 2.33 2
LOV 436 663 0.29 14.09 2.84 12
Geode 1,318 1,413 1.86 122.27 9.52 19
MI: JDK 1.3.1 7,401 5,724 42.36 140.91 28.68 11
MI: Corba 1,699 396 0.67 13.58 3.20 7
MI: HotJava 736 829 0.61 24.90 3.40 8
MI: IBM SF 8,793 14,575 128.16 390.35 116.15 13
MI: IBM XML 145 271 0.04 2.33 0.95 3
MI: Orbacus 1,379 1,261 1.74 24.82 5.00 5
MI: Orbacus Test 689 379 0.26 7.49 2.75 5
MI: Orbix 2,716 786 2.13 22.44 3.70 4

M
ultiple-D

ispatching

Cecil 932 1,009 0.94 72.89 4.21 7
Dylan 925 428 0.40 70.38 1.78 3
Cecil- 473 592 0.28 16.06 2.36 5
Cecil2 472 131 0.06 17.17 0.56 6
Harlequin 666 229 0.15 23.11 1.02 8
Vor3 1,660 328 0.54 15.44 1.86 7
Vortex3 1,954 476 0.93 305.50 2.50 7

Table 2: Essential parameters of the pruned hierarchies in our data-set

The first two data columns in the table give the values of ?
and 9 for each of the hierarchies in the data-set. We see that
the hierarchies span a range of sizes: the number of types is be-
tween 107 and 8,793 while the number of messages is between 131
and 14,575. A more detailed description of the data-set, includ-
ing the source of the hierarchies and their respective programming
languages is available elsewhere [18].

The column entitled ��M�ON P gives the memory requirement of the
dispatching matrix, measured in millions of cells. We see that

135

this matrix can be huge. Suppose that each cell uses four bytes
(an assumption we make henceforth), then this matrix consumes
about 160MB of memory in the MI: JDK 1.3.1 hierarchy and
about 500MB in the MI: IBM SF hierarchy.

The next column in the table, entitled Q�ON%R , gives the number of
non-null entries in the dispatching matrix, measured in thousands.
The column indicates that this matrix is sparse: In most cases, 90%
or more of its cells are empty. We shall use this column as a
baseline for comparison of the CT algorithms, since it shows the
memory requirement of an optimal D�EGFHF -elimination scheme such
as VFT on single-inheritance hierarchies. Note that in hierarchies
such as MI: JDK 1.3.1 and MI: IBM SF the potential compression
is by a factor of 300 or more. But still, the VFTs may consume a
lot of space: 1–2MB on some single-inheritance hierarchies.

The column entitled S�ON R gives the number of method implemen-
tations, which ranges between 562 and 116,152. This column also
sets a lower bound on the memory used by an optimal duplicates-
elimination compression scheme. Comparing this column to the
previous one, we learn that duplicates-elimination is potentially
much better than null-elimination. However, it is much more diffi-
cult to come close to optimal duplicates-elimination than to optimal
null-elimination. We shall use this column as another comparison
standard for the performance of the CT algorithms.

The final column entitled � shows an upper bound on � which
was found by our greedy heuristic. (Recall that we do not have an
efficient algorithm for computing � .) In single-inheritance hierar-
chies, � � � � + . The median of � in the remaining hierarchies
is 7. The hierarchy whose topology seems to be the most complex
is Geode, followed by MI: IBM SF , LOV and then JDK 1.3.1.

The implementation of the various CT schemes was run on 900Mhz
Pentium III computer, equipped with 256MB internal memory and
controlled by a Windows 2000 operating system. On this ma-
chine, the runtimes for generating the encoding (without actually
copying the values into matrices) of the first four schemes (CT �
through CT �) were 0.7 Sec, 1.4 Sec, 2.1 Sec and 2.9 Sec. Since
our data-set included in total 418,839 methods we find that the
time per implementation is measured in microseconds. For ex-
ample, we found that the creation time per implementation ranged
between 0.3 and 1.7 � Sec in CT � in single-inheritance hierarchies
(the median being 0.6 � Sec). These times increase in multiple-
inheritance hierarchies: the range being 1.1 to 6.7 � Sec; the median
being 2.4 � Sec.

Figure 5.1 shows the memory used by the first four CT schemes
relative to the J baseline in the 35 hierarchies in the data-set. Mem-
ory usage of the CT schemes were obtained using the empirically
found best slice size (which may be different than the prescription
of column 2 of Table 1).

The figure shows that compared to the optimal D�EGFHF -elimination,
CT � is better in 6 hierarchies, CT � in 13 hierarchies, CT � in 15
hierarchies, and CT � in 16 hierarchies. In a few cases, the im-
provement is by an order of magnitude from the baseline. We also
see that CT � is at most one order of magnitude worse than this ide-
alized baseline.

We can also learn from Figure 5.1 that the incremental improve-
ment by the series of CT schemes is diminishing. In fact, exam-
ining the actual memory requirements, we find that the median
incremental improvements are: CT � over CT � : 44%, CT � over
CT � : 18%, and CT � over CT � : 8%. This finding is consistent with
the theoretical prediction.

The figure also plots another idealized algorithm, i.e., the opti-
mal duplicates-elimination scheme, which uses : cells. We see that
this ideal is about one order of magnitude better than the various
CT schemes. Finally, we see a certain correlation between : and

the series of CT schemes, as predicted by the theoretical analysis.
When :�� J the CT schemes outperform even an optimal null-
elimination scheme.

1%

10%

100%

1000%

1 17 33

CT2 / w

CT3 / w

CT4 / w

CT5 / w

w

Figure 5.1: Memory used by CT � , CT � , CT � , CT � and optimal duplicates-
elimination (�) relative to optimal null-elimination (– marked as
the 100%); hierarchies are sorted in ascending memory used by CT �

We now turn to comparing the actual performance of the various
CT schemes with the theoretically obtained bounds.

In single-inheritance hierarchies, the upper bound on the mem-
ory requirement are given by the fourth column of Table 1. Fig-
ure 5.2a shows the memory requirement relative to these values.
We see that in all schemes and in all hierarchies, the memory re-
quirement is significantly smaller than the upper bounds. Also,
the extent of improvement of CT
 over the upper bound increases
with � .

Corollary 4.2 provides the upper bounds in multiple-inheritance
hierarchies depending on their complexity � . Figure 5.2b shows
the memory, relative to these upper bounds, of the actual CT per-
formance. Again, we see that the extent of improvement of CT

over the upper bound increases with � . Interestingly, in comparing
Figure 5.2b with Figure 5.2a, we see that the improvement of the
implementation upon the upper bound is much greater in multiple-
inheritance vs. single-inheritance hierarchies.

A possible explanation for this seemingly better performance
in multiple-inheritance hierarchies is exaggerated upper bounds.
Examining Corollary 4.2, we see that the upper bounds increase
with � . Since our heuristics only finds an upper approximation
of � , it could be that the true upper bounds are actually smaller,
and hence the improvement upon the upper bound is not as great.

Figure 5.2c tries to test this hypothesis, by comparing the perfor-
mance on multiple-inheritance hierarchies with the upper bounds

136

obtained by assuming �3� + (as in single-inheritance hierarchies).4

We see that the improvement upon the upper bounds computed
thus is almost the same as in single-inheritance hierarchies (Fig-
ure 5.2a). Such a similarity could not be explained by an overesti-
mation of � .

0%

25%

50%

75%

100%

SI:
Orb

ac
us

 T
es

t

SI:
IB

M
 S

F

SI:
IB

M
 X

M
L

SI:
Cor

ba

SI:
Orb

ac
us

IB
M

 S
m

all
ta

lk
2

Visu
alA

ge
 2

Visu
alw

or
ks

1

SI:
JD

K 1
.3

.1

SI:
Hot

Ja
va

Visu
alw

or
ks

2

Digi
ta

lk2

ET++

SI:
Orb

ix

Digi
ta

lk3

Nex
tS

te
p

CT2

CT3

CT4

CT5

0%

25%

50%

75%

100%

M
I:

Orb
ac

us
 T

es
t

M
I:

IB
M

 S
F

M
I:

IB
M

 X
M

L
Self

Cec
il2

M
I:

Orb
ac

us

M
I:

Cor
ba

M
I:

JD
K 1

.3
.1

M
I:

Hot
Ja

va

Unid
ra

w

M
I:

Orb
ix

Geo
de

Har
leq

uin

LO
V

Vor
3

Vor
te

x3

Dyla
n

Cec
il-

Cec
il

CT2

CT3

CT4

CT5

0%

25%

50%

75%

100%

M
I:

IB
M

 S
F

Geo
de

M
I:

Orb
ac

us
 T

es
t

M
I:

Cor
ba

M
I:

JD
K 1

.3
.1

M
I:

Hot
Ja

va

Self

Har
leq

uin

LO
V

Cec
il2

M
I:

Orb
ac

us

M
I:

IB
M

 X
M

L

M
I:

Orb
ix

Vor
3

Vor
te

x3

Cec
il-

Cec
il

Dyla
n

Unid
ra

w

CT2

CT3

CT4

CT5

(a)

(b)

(c)

Figure 5.2: The memory requirement of CT � , CT � , CT � and CT � rela-
tive to the theoretically obtained upper bounds in single-inheritance hierar-
chies (a), multiple-inheritance hierarchies where the upper bound was com-
puted using T (b), and multiple-inheritance hierarchies, where the upper
bound is computed as in single-inheritance hierarchies (T � �) (c)

The reason that algorithms perform better than the theoretically
obtained is that the analysis of the CT reduction bounded the size

� In fact, we used the bound for single-inheritance in Table 1,
which is smaller by a factor of � ���/� �
 than the bound for multiple-
inheritance in Corollary 4.2.

of a master-family by the sum of sizes of its constituents, i.e.,

�� � &� �� � ������ ����	��
 � ������ ��������
 � �!� �
In fact, especially when the families are large, the probability of
finding shared elements may be significant, and the master family
is likely to be smaller. As a result, :�& , the number of implemen-
tations after the reduction, may be much smaller than the original
value : . For example, with �5� ��� for CT � in Digitalk3, the CT
reduction transforms the problem �@?=�%9 �#:��*���#+�� ��� � ����� �����	�	�����
to �#+�� ��� ���	� ��� � + � � , i.e., the number of implementations decreased
by a factor of more than 2. Our analysis assumed (see (2.7)) how-
ever that : & ��: .

This effect increases also with slice size, which is the reason that
choosing a slice size greater than the theoretical prescription may
improve the performance of the reduction. In IBM SF, for exam-
ple, the theoretical analysis suggested that � OPT � �	� as optimal
slice size for CT � . However, by using instead a slice size �I� � � ,
we were able to further reduce the number of cells from 3.3M to
about 2.4M.

Figure 5.3 compares the actual memory used by the CT � scheme
with the theoretical prediction (2.10) in the Digitalk3 hierarchy.
(The graphs of other hierarchies and higher order schemes are sim-
ilar.) We see that the extent by which the empirical performance is
superior to the theoretically obtained bound increases with the slice
size.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 7 121722273237424752576267727782879297
slice size

m
em

o
ry

 r
eq

u
ir

em
en

ts

lx + (nm)/x
CT2

Figure 5.3: Space requirements vs. slice size in the single-inheritance hier-
archy of Digitalk3 for CT � and its theoretical upper bound (2.10)

6. Conclusions and Open Problems
The incremental algorithm described in Section 3 is in many

ways the pinnacle of this paper. This algorithm assumes the single-
inheritance, dynamically typed, and dynamic loading model, de-
noted SDTDL. A prime example for the model is the SMALLTALK

programming language. Note that the VFT method is unsuitable in
an SDTDL model.

Curiously, even though JAVA is in essence a statically typed lan-
guage, the implementation of the invokeinterface bytecode
instruction is a very close match of this model. To see this recall
that all implementations of a method defined in an interface
must reside in classes, and that these classes take a tree topol-
ogy. The locations of these implementations in this tree are how-
ever totally unrelated, and additional implementations can be intro-
duced as a result of dynamic class loading. Even though there is a

137

possibility of using static information of the interface type, many
implementations of the invokeinterface bytecode instruction
assume an SDTDL model.

Incorporating the algorithm into a runtime system requires care-
ful attention to details, including selecting a heuristic of determin-
ing the optimal slice size, which might perform better than the the-
oretical value, a wise strategy for background copy to avoid stag-
nation, tweaking and fine tuning of the partitioning algorithm, etc.
We leave this empirical evaluation to continuing research.

Also, the incremental algorithm can be generalized to the multiple-
inheritance setting, but there are subtle issues in the theoretical
analysis of the performance of this generalization.

Observe that the static algorithm for multiple-inheritance hierar-
chies, achieves �(� : F�� 9 space when �I� F�� 9 . Type slicing [18]
however uses only ��! � :�$ cells, while achieving ��! F�� F�� ?/$ dis-
patching time. There is therefore a reason to believe that the trade-
off offered by our technique can be improved, especially for higher
values of � .

7. REFERENCES
[1] K. Arnold and J. Gosling. The Java Programming Language.

The Java Series. Addison-Wesley, Reading, Massachusetts,
1996.

[2] P. Deutsch and A. Schiffman. Efficient implementation of the
Smalltalk-80 system. In 11th Symposium on Principles of
Programming Languages, POPL’84, pages 297–302, Salt
Lake City, Utah, Jan. 1984. ACM SIGPLAN — SIGACT,
ACM Press.

[3] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf
der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput.,
23(4):738–761, Aug. 1994.

[4] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer. A fast
method dispatcher for compiled languages with multiple
inheritance. In Proceedings of the 4th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 211–214, New Orleans, Louisiana, Oct.
1-6 1989. OOPSLA’89, ACM SIGPLAN Notices 24(10) Oct.
1989.

[5] K. Driesen. Selector table indexing & sparse arrays. In
Proceedings of the 8th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 259–270, Washington, DC, USA, Sept.
26 - Oct. 1 1993. OOPSLA’93, ACM SIGPLAN Notices
28(10) Oct. 1993.

[6] K. Driesen and U. Hölzle. Minimizing row displacement
dispatch tables. In Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 141–155, Austin, Texas,
USA, Oct. 15-19 1995. OOPSLA’95, ACM SIGPLAN
Notices 30(10) Oct. 1995.

[7] P. Ferragina and S. Muthukrishnan. Efficient dynamic
method-lookup for object oriented languages. In J. Dı́az and
M. Serna, editors, Algorithms—ESA ’96, Fourth Annual
European Symposium, volume 1136 of Lecture Notes in
Computer Science, pages 107–120, Barcelona, Spain,
25–27 Sept. 1996. Springer.

[8] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with ��!#+�$ worst case access time. J. ACM,
31(3):538–544, July 1984.

[9] J. Y. Gil and P. Sweeney. Space- and time-efficient memory
layout for multiple inheritance. In Proceedings of the 14th

Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 256–275,
Denver, Colorado, Nov.1–5 1999. OOPSLA’99, ACM
SIGPLAN Notices 34(10) Nov. 1999.

[10] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In Proceedings of the 5th

European Conference on Object-Oriented Programming,
number 512 in Lecture Notes in Computer Science, Geneva,
Switzerland, July15–19 1991. ECOOP’91, Springer Verlag.

[11] S. Muthukrishnan and M. Müller. Time and space efficient
method-lookup for object-oriented programs. In Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 42–51, New York/Philadelphia,
Jan. 28–30 1996. ACM/SIAM.

[12] A. Royer. Optimizing Method Search with Lookup Caches
and Incremental Coloring. In Proceedings of the 7th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 110–126, Vancouver,
British Columbia, Canada, Oct.18-22 1992. OOPSLA’92,
ACM SIGPLAN Notices 27(10) Oct. 1992.

[13] D. Sleator and R. Tarjan. Self-adjusting binary search trees.
J. ACM, 32(3):652–686, July 1985.

[14] B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley, Reading, Massachusetts, Mar. 1994.

[15] J. Vitek and R. N. Horspool. Taming message passing:
Efficient method lookup for dynamically typed
object-oriented languages. In Proceedings of the 8th

European Conference on Object-Oriented Programming,
number 821 in Lecture Notes in Computer Science, Bologna,
Italy, July 4-8 1994. ECOOP’94, Springer Verlag.

[16] J. Vitek and R. N. Horspool. Compact dispatch tables for
dynamically typed object oriented languages. In
T. Gyimothy, editor, Compiler Construction, 6 ���
International Conference, volume 1060 of Lecture Notes in
Computer Science, pages 309–325, Linköping, Sweden,
24–26 Apr. 1996. Springer.

[17] O. Zendra, C. Colnet, and S. Collin. Efficient dynamic
dispatch without virtual function tables: The SmallEiffel
compiler. In Proceedings of the 12th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 125–141, Atlanta, Georgia, Oct. 5-9
1997. OOPSLA’97, ACM SIGPLAN Notices 32(10) Oct.
1997.

[18] Y. Zibin and J. Y. Gil. Fast algorithm for creating space
efficient dispatching tables with application to
multi-dispatching. In Proceedings of the 17th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 142–160, Seattle,
Washington, Nov. 4–8 2002. OOPSLA’02, ACM SIGPLAN
Notices 37(10) Nov. 2002.

138

