
Fast Algorithm for Creating Space Efficient Dispatching
Tables with Application to Multi-Dispatching

YOAV ZIBIN
�

JOSEPH (YOSSI) GIL

Department of Computer Science
Technion—Israel Institute of Technology

Technion City, Haifa 32000, Israel

zyoav
�
yogi @ cs.technion.ac.il

Abstract
The dispatching problem can be solved very efficiently in the single-
inheritance (SI) setting. In this paper we show how to extend one
such solution to the multiple-inheritance (MI) setting. This gen-
eralization comes with an increase to the space requirement by a
small factor of � . This factor can be thought of as a metric of the
complexity of the topology of the inheritance hierarchy.

On a data set of 35 hierarchies totaling some 64 thousand types, our
dispatching data structure, based on a novel type slicing technique,
exhibits very significant improvements over previous dispatching
techniques, not only in terms of the time for creating the underlying
data structure, but also in terms of total space used.

The cost is in the dispatching time, which is no longer constant, but
doubly logarithmic in the number of types. Conversely, by using a
simple binary search, dispatching time is logarithmic in the num-
ber of different implementations. In practice dispatching uses one
indirect branch and, on average, only 2.5 binary branches.

Our results also have applications to the space-efficient implemen-
tation of the more general problem of dispatching multi-methods.

A by-product of our type slicing technique is an incremental al-
gorithm for constant-time subtyping tests with favorable memory
requirements. (The incremental version of the subtyping problem
is to maintain the subtyping data structure in presence of additions
of types to the inheritance hierarchy.)

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.3.3 [Programming Languages]: Language Constructs and Fea-

�
Contact author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4–8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

tures; G.4 [Mathematical Software]: Algorithm design and anal-
ysis

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords
Dispatch,Hierarchy,Incremental,Message,Subtyping,Type slicing

1. Introduction
Message dispatching stands at the heart of object-oriented (OO)
programs, being the only way objects communicate with each other.
Indeed, it was demonstrated [24] that OO programs spend a consid-
erable amount of time in implementing dynamic dispatching. There
is a large body of research dedicated to the problem of “efficient”
implementation of message dispatching [14, 16, 20–26, 35, 43, 45,
51,52,59,65–67,69]. The principal optimization objective adopted
by most of this prior research was a compact representation of the
dispatching data structure, while maintaining a small, preferably
constant, dispatch time. A heavy toll incurred in many cases was
the time required for creating the dispatching data structure.

This research revisits the problem, trying to optimize another im-
portant complexity metric, creation time, i.e., the time required for
generating the dispatching data structure. Our motivation is the
staggering importance of dynamic compilation and re-compilation
systems, as found in JAVA. Previous work tended to be conceptually
locked in the static compilation model, with few reports on creation
time values; when reported, these times were measured in seconds
for modest size hierarchies.

Our novel type slicing technique gives rise to a very fast algorithm
for creating space efficient dispatching data structure. The cre-
ation time is improved by one, two and sometimes three orders of
magnitude compared to the famous row displacement (RD) algo-
rithm [23]. In a collection of 35 hierarchies, totaling over 60,000
types, the slowest runtime of our algorithm was less than a third of
a second on a modern processor; this time was on a hierarchy of
circa nine thousand types and fourteen thousand messages. In the
vast majority of the hierarchies, the creation time was less than a
hundredth of a second.

These timing results make it feasible to regenerate the entire dis-

142

patching data structure each time a new class is loaded. A more
demanding requirement from an algorithm for creating a dispatch-
ing data structure is that it is truly incremental. By this we mean that
the asymptotic time complexity of creating the data structure in a
piecemeal feed of the type hierarchy, is the same as in the case that
the entire hierarchy is supplied up front. In a theoretical adjunct
paper [70], we show that there exists a truly incremental version
of our algorithm. Currently we work on determining the incurred
overheads in a practical implementation of this theoretical result.

The algorithm presented here does not only improve the creation
time. Its space requirement improves those of RD (arguably the
best previously published algorithm in this category), in 32 out of
the 35 hierarchies of our data set; the median reduction in space is
by a factor of 2.6.

The improvement of creation time and of space requirement comes
with a penalty of a small increase to dispatching time. Specifi-
cally, dispatching requires a binary search in which the number
of branches is logarithmic in the number of implementations of
the dispatched message, or alternatively, doubly-logarithmic in the
number of types. Each dispatch requires about 2.5 branches on
average as well as one dereferencing operation. These numbers
may be compared with the two dereferencing steps required by the
Virtual Function Tables (VFT) [33] standard implementation strat-
egy of C++ [61] in the single inheritance (SI) setting. Note that
in contrast with our results and most other dispatching algorithms,
the VFT technique is valid only in statically typed languages [67].
Some dispatching schemes, such as RD and selector coloring (SC),
require additional space and one more comparison at runtime in or-
der to work in dynamically typed languages.

Interestingly, there is a strong practical evidence that binary searches,
which are used in our implementation, may be faster than the sim-
ple VFT implementation. The trick is to inline the binary search by
generating what was called “static branch code” by the implemen-
tors of the SmallEiffel compiler [69], instead of the more general
binary search routine. It was shown that with this optimization a bi-
nary search between fewer than 50 results was faster than the VFT
implementation in most architectures.

One of the explanations of this phenomenon is that indirect branches
do not schedule well on modern processors [22,24–26]. Other, less
direct, advantages of inlined binary search is that it can take better
advantage of type inference and that it is more susceptible to inlin-
ing of method code and any ensuing optimization. The cost of inlin-
ing is (of course) in an increase to the code size. Note that several
other previous publications suggested using a combination of bi-
nary searches, array look-ups, and even linear searches [2,10,43,52]
for dispatching.

Informally, we can say that our algorithm generalizes the linear
space interval containment algorithm [35,51] which is restricted to
the SI setting. Our main theoretical result is that the generalization
to the multiple inheritance (MI) case comes with a � (the number
of slices) factor increase of space. This factor depends only on the
topology of the MI hierarchy, and can be thought of as a metric
of its complexity. In practice this factor is small, but in arbitrary
hierarchies it might be in the order of the number of types.

In all SI hierarchies, ��� �
. We provide a heuristic for finding an

upper bound of � , and an actual implementation of the generaliza-
tion. In our data set of 19 MI hierarchies the median value of �
is 6.5, the average is 7.3, and the maximum is 19. We stress that the
space increase is by a factor of at most � ; in practice, we find much
better results.

Our dispatching technique has also applications to space-efficient
implementation of multi-dispatching.

Finally, our type slicing technique also provides an incremental al-
gorithm for constant-time subtyping tests with favorable memory
requirements. We provide theoretical analysis of our algorithm, as
well as practical evidence that our algorithm is fast even when com-
pared to previous non-incremental algorithms.

1.1 Preliminary Definitions
The distinction between type, class, interface, signature, etc., as
it may occur in various languages does not concern us here. We
shall refer to all these collectively as types. Formally, a hierarchy
is a partially ordered set (� , �) where � is a set of types and �
is a reflexive, transitive and anti-symmetric subtype relation. If �
and � are types, and ����� holds, we say that � is a subtype (or
a descendant) of � and that � is a supertype (or an ancestor) of � .
Direct subtypes (supertypes) are called children (parents).

Similarly, we abstract away from the nomenclature of different lan-
guages, and use the term message for the unique identifier of a fam-
ily of methods (also called member functions, operations, features,
implementations, etc.). A message, which is sometimes called a se-
lector (in e.g., SMALLTALK [40] or OBJECTIVE-C [15]) or a signa-
ture (in e.g., JAVA [5] or C++ [61]), may include, depending on the
programming language, components such as name, arity, and even
the type of parameters. We will use the terms message and selector
interchangeably. Note that a consequence of feature renaming in
EIFFEL [49], is that the message does not always include the name
of a routine. The intuition however is the same in all OO languages:
when an object receives a message encoded as a selector, dispatch-
ing on the type of the receiver must take place at runtime to find
and invoke the implementation which is most appropriate for the
receiver’s type.

We use the following notation. A method implementation in type �
for a message 	 is denoted 	�
��� . A method family ��� ,

� ����� 	�
����������������	�
����� !#"$�
is the set of all methods of a certain message. Given two meth-
ods 	�
������	�
��%'&(� � , we say that 	�
��) is more specific than 	�
��%
if �*�+� . Given a method 	�
��� , we say that 	�
��% is applicable
to type � if �*�+� . Finally, given a message 	 and a type � , a
dispatching query dispatch
,	-�#�� , results in the most specific ap-
plicable method 	�
��%.&/�0� .

In a slight abuse of notation, we can safely omit the 	 symbol in
writing the set � � as

�0� ��� � � �%�������1� � !"324�5�
No confusion will arise since a dispatch query dispatch
,	-�1�� will
return the lowest type �6&7�0� such that �985� .

In dynamically typed languages there are two more possible out-
comes: an error message to say that the message is not under-

143

stood (MNU), and an error message to say that the message is am-
biguous, i.e., there are two or more most specific methods for the
type of the receiving object. On the other hand, the type checker
of statically typed languages makes sure at compile time that dis-
patching never results in an error message.

Figure 1.1 depicts a hierarchy which serves as the running exam-
ple of this paper. Type names are written with uppercase letters;
messages with lower case letters.

h,b
e

f
k

JG H K

FD E

A B C
a,l b,l c

k

d,a
c,k

e,c
l

g,d
a,l

i,f
e

j

Figure 1.1: A small example of a hierarchy and the methods
implemented in each type

We see in the figure that for message c:

� c ��� c
 C �� c
 D �� c
 E #"

dispatch
 c � K � c
 E

dispatch
 c � B � message not understood (MNU)

dispatch
 c � H � message ambiguous

(1.1)

It would therefore be a compilation error in statically typed lan-
guage to send c to objects whose static type is B or H. Moreover,
it is a compilation error even to send this message to any ances-
tor of H, e.g., type C. The reason is that the type analyzer cannot
infer [38] that the dynamic type is not H.

We shall assume a pre-processing stage in which all ambiguities
are resolved by an appropriate augmentation of method families.
In the example, we add c
 H to � c since dispatch
 c � H resulted
in message ambiguous. As in previous work [42, 57] in which this
assumption was made, our working hypothesis is that the ensuing
increase of problem size is insignificant in practice.

Figure 1.1 is an example of a multiple-inheritance (MI) hierarchy,
since, e.g., type D has two parents: A and C. Single-inheritance (SI),
in which each type has at most one parent, is mandated by lan-
guages such as SMALLTALK and OBJECTIVE-C. The fact that SI
hierarchies take a simple forest topology, makes SI an important
special case, for which very efficient algorithms exist. The general
case of multiple-inheritance is more difficult, and will be our main
concern here.

DEFINITION 1.1. Given a hierarchy (� , �), a set of messages � ,
and a method family � � 2 � for each message 	�&�� , the dis-
patching problem is to encode the hierarchy in a data structure sup-

porting dispatching queries of the form dispatch
,	-���1 , where 	�&� ��� &7� .

From a practical point of view we assume that each object includes
an accessible type-id, and tacitly ignore the object space overheads
and the time of retrieving such type-id. Also, the message is given at
runtime as an integer selector. We usually assume that this selector
is known at compile time, and accordingly allow any pre-processing
which is dependent solely on this selector. Given the object type-id
and this selector, the dispatch query means that the runtime system
must compute the address of the most specific applicable method
and jump to it.

A solution to the dispatching problem is measured by the follow-
ing three metrics: (i) the space that the data structure occupies in
memory, (ii) the time required for processing a query, and (iii) the
time for generating the data structure from the input hierarchy. We
would like to express these metrics as a function of the following
parameters of the problem:

� The number of types in the hierarchy
� � � � � � (1.2)

� The number of different messages that can be sent during
runtime

� � � � � � (1.3)

� The total number of different method implementations
� �	�

��
�
� �0� � � (1.4)

� The number of valid message-type combinations, i.e., com-
binations which do not result in message not understood

� � � ��� 	-����� �
dispatch
,	-���#��� MNU " � � (1.5)

1.2 Simple algorithms
The most obvious solution to the dispatching problem is in a �����
dispatching matrix, storing the outcomes of all possible dispatch-
ing queries. We stress that the order of rows and columns in the
dispatching matrix is arbitrary, and the performance of some al-
gorithms for compressing the matrix may depend heavily on the
chosen ordering.

The dispatching matrix of our running example is presented in Fig-
ure 1.2(a), where the ������� type-message pairs which result in
message not understood are represented as empty entries. The fig-
ure depicts in grey all

�
entries which represent a method imple-

mented in a certain type. For example, the top right grey entry is to
say that type A has an implementation of message l. The cell corre-
sponding to � H � c � is rendered in a lighter shade of gray since c
 H
was added to � c to resolve an ambiguity.

In the matrix representation queries are answered by a quick index-
ing operation. However, the space consumption is inhibitivly large,
e.g., 512MB for the dispatching matrix in the largest hierarchy in
our benchmarks (8,793 types and 14,575 messages).

There are two opportunities for compressing the dispatching ma-
trix:

144

(a)

21
22
21

22
22
23
23

23

a b c d e f g h i
A
B
C
D
E
F
G
H
K
J

1

2
1

9
1

j l

2

24

3

25

26

17 27
18

19
20

4
6
7

8
6

4
10

15

k

24

26
26

13
16

15
12

6
10

14

11

8

4

7

5

b
B
E
H
K

4

4

4

5

(b)

Figure 1.2: (a) The dispatching matrix, and (b) the sorted dic-
tionary for message b

Null elimination There is much empirical evidence to show that
dispatching matrices are very sparse. Null elimination, which
was the objective of almost all previous work, is the attempt
to store only the non-empty elements in the matrix.

The ratio
 ��� �� � is an upper bound on the compression rate
which null elimination might achieve. The matrix of Fig-
ure 1.2(a) has

����� � ��� � ��� entries, out of which, 46 are
non-null. Null elimination in this case gives a compression
factor of no more than

����� ��	�
� � �
 . In our benchmarks we
found that on average, null elimination might achieve com-
pression by a factor of circa 150.

Null elimination can be achieved by storing each column as a
sorted dictionary, i.e., a sorted array of � key,value � -pairs. In
the running example, the sorted dictionary for message b is
depicted in Figure 1.2(b). In this implementation, the query
time is logarithmic in the number of non-null entries in each
column. Space is linear in this number.

Dynamic perfect hashing (DPH) [19] is theoretically better
than sorted dictionaries. In this algorithm each column (or
the entire matrix for that matter) is stored as a hash table.
Indices (or their concatenation) serve as keys. The space re-
quirement is linear in � . More importantly, query time is
constant! Unfortunately, DPH is of mere theoretical interest
since it carries large hidden constants, which might offset any
saving of space due to null elimination.

The more sophisticated previously published practical algo-
rithms, try, and in most cases achieve complete, or almost
complete null elimination with no hidden constants and con-
stant search time.

Duplicates elimination Even though optimal null elimination may
give very good results, it still leaves something to be desired.
In one hierarchy of our data set, featuring 3,241 types, an
optimal null elimination scheme still requires 2.4MB. Dupli-
cates elimination improves on null elimination by attempting
to store only the distinct

�
entries of the dispatching matrix.

Therefore, the compression factor of duplicates elimination is
at most
 ��� �� � , which was around 725 in our benchmarks.

The ratio � � � gives the factor by which duplicates elimina-
tion can improve on null elimination. This ratio was as high
as 122.4 in one of our benchmarks. In the matrix of Fig-
ure 1.2(a) there are 27 distinct entries, i.e.,

� � ���
, so du-

plicates elimination has the potential of compressing the dis-
patching matrix by a factor of

����� � ��� ��	�� 	�	 .

It is not difficult to come close to full duplicates elimina-
tion, with a simple representation of the hierarchy as a graph
where types are nodes and immediate inheritance relations
are edges. The cost is of course the search time, which be-
comes ��
 � , since each dispatch must traverse all the an-
cestors of a receiver in order to find the most specific ap-
plicable method implementation. Sophisticated caching al-
gorithms make the typical case more tolerable than what the
worst case indicates. This is the implementation in languages
such as SMALLTALK.

Our challenge here is to come as close as possible to optimal du-
plicates elimination, i.e., space linear in the number of implemen-
tations

�
, while still maintaining small, preferably constant, query

time.

Outline The remainder of this article is organized as follows. A
survey of prior dispatching techniques including a detailed descrip-
tion of interval containment is the subject of Section 2. Our new
slicing technique is described in Section 3. The data set of the 35
hierarchies used in our benchmarking, collected from both single
and multiple dispatching languages, is presented in Section 4. Sec-
tion 5 presents the experimental results, comparing the performance
of our algorithm with those of previous algorithms. The application
of our results to the problem of multiple dispatching is presented in
Section 6. An incremental algorithm for constant-time subtyping
tests is the concern of Section 7. Finally, Section 8 mentions open
problems and directions for future research. Appendix A describes
our heuristic for performing type slicing.

2. Previous Work
This section gives an overview of some of the dispatching tech-
niques proposed in the literature. The performance of these tech-
niques might be improved by using various forms of caching at
runtime (see e.g., [14, 16, 43]).

VFT: Virtual Function Tables [33] As mentioned above, the VFT
technique is valid only in statically typed languages [67]. In an
SI setting, VFT achieves optimal null elimination and constant dis-
patch time. A distinguishing property of the technique is that it does
not require whole program information. The VFT of any type can
be constructed using only information regarding its ancestors.

The MI version of the VFT is much more complicated than the SI
version, with complicated space and time overheads. Each type
stores multiple VFTs, and if a method is inherited along more than
one path, then it will be stored in these more than once. Further,
in presence of shared (virtual) inheritance, searching for an imple-
mentation is carried out by either following a chain of pointers to
ancestors, or by additional increase to object size using inessential
virtual base pointers [39]. It was shown [29] that these space over-
heads can be very significant. Even with this overhead, dispatching
time increases due to what is known in the C++ jargon as this-
adjustment.1

RD: Row Displacement [21, 23] Another null elimination tech-
� In general, dispatching in C++ is tightly coupled with its peculiar
object-layout, and is therefore not directly applicable to languages
with different layout scheme. Simple object-layout have the advan-
tage of fast synchronization, hash-codes, and easier garbage collec-
tion.

145

nique is due to Driesen [21] who suggested to displace the rows
in the dispatching matrix by different offsets so that they could be
merged together in a master array. Later [23] it was found that se-
lector based RD, i.e., a displacement of columns rather than rows,
gives much better compression values. In fact this technique comes
very close (median value 94.7%) to optimal null elimination.

In dynamically typed languages vanilla RD does not work, since������� entries which correspond to message not understood will usu-
ally become occupied. It is possible to amend RD with an increase
to space requirement and adding one more comparison at runtime.2

We stress that duplicates elimination (which we use) does not suffer
from this limitation.

CT: Compact dispatch Tables [65–67] The very good compres-
sion results of RD were improved significantly by Vitek and Hor-
spool on some hierarchies. Their CT technique aims at duplicates
elimination. The idea is to partition the set of messages � into
disjoint slices � �%�������%����� . Slicing breaks the dispatching ma-
trix into � sub-matrices, also called chunks. Identical rows within
each chunk are then merged. Each type � has an array 	�
 of size � .
Entry 	
� ��� points to the row of � in chunk � . Dispatching in CT
requires an extra load compared to the dispatching matrix, but the
merging of rows may reduce the space requirement.

Our MI algorithms adopt the slicing idea. However, we slice the set
of types rather than the set of messages.

SC: Selector Coloring [20, 59] SC aims at null elimination by
slicing the set of messages. Each slice must satisfy the following
property: no two messages in the slice can be recognized by the
same type. In other words, in each chunk, a row can have at
most one non- ������� entry. This property makes it possible to merge
together all the columns in a chunk, resulting in a space requirement
of � � � .

The performance of SC is improved as the number of slices de-
creases. Since it is computationally hard to find an optimal slicing,
the slices must be found using a heuristic. As in RD, ������� entries
are treated as empty in SC and therefore additional storage and an
extra comparison are required in dynamically typed languages. CT
also uses SC in each of the chunks.

Jalapeño [2] JAVA’s invokeinterface bytecode instruction,
i.e., messages sent to receivers whose static type is an interface,
cannot be implemented using the VFT technique. Jalapeño, an IBM
implementation of JAVA virtual machine, uses a fast incremental
variant of SC in realizing these instructions. Messages are hashed
into � slices, where � is an a-priori fixed number. Each type has an
interface method table of length � . When the slicing property of SC
does not hold, i.e., some type recognizes more than one message in
the same slice, then a conflict resolution thunk must be generated by
the compiler. Since there is no bound on the number of conflicting
messages in each hash table entry, dispatch time is not necessarily
constant. It is easy to see that the total memory requirement is � �
for the tables, plus ��
 � memory for conflict resolution.

Interval Containment for SI hierarchies [35, 51] Interval con-
tainment achieves optimal duplicates elimination at the cost of non-

�
The trick is to add a prologue to each method which checks that

the method indeed corresponds to the sent message.

constant dispatch time. Our dispatching technique is a generaliza-
tion of interval containment for MI hierarchies. Let us describe this
technique in greater detail.

Interval containment assigns ��� ’s to types in a preorder traversal of
the tree hierarchy. An important property of the preorder traver-
sal is that descendants of a type � define an interval. Therefore,
each method family ��� , defines a set of intervals, one for each
method 	�
 �#.& �0� .

Figure 2.1(a) shows a tree hierarchy with three implementations of
a message 	 : 	-� in A, 	 � in B, and 	�� in F. Then, as can be seen
in Figure 2.1(b), the methods 	 � , 	 � , and 	 � define three inter-
vals in the preorder traversal: � � � � � , � � � � � , and � � � ��� , respectively.
The intersections of those intervals partition the types into four seg-
ments: � � � � � , � � � ��� , � 	�� 	 � , and � � � � � , which correspond to the meth-
ods: 	-� , 	�� , 	-� , and 	 � , respectively. The dispatch of message 	
on any given type depends only on the segment this type belongs to.
If, for example, the receiver is of type G whose ��� is
 , then we find
that it belongs to segment � � � � � , and therefore execute method 	 � .

CF G

BE D

A � 1
A E F GD B C

� 1

1 2 3 4 5 6 7

(a)

(b)

(c)
1 3 4 5

���

� 3

� 2

� 1

� 3 � 2

� 1 � 3 � 1 � 2 � 2 � 2

�� �"!��

Figure 2.1: (a) A method family ��� � � 	 � ��	 � ��	 � " in a tree
hierarchy, (b) the intervals and segments � � defines, and (c) the
representation of ��� as a sorted dictionary

If
� �0� � �$# � then there are # � intervals which partition � into at

most
� # �&% �

segments, where all types in a segment execute the
same method in response to message 	 . Family � � is represented
as a sorted dictionary, mapping segments’ starting point to meth-
ods. In our example, Figure 2.1(c) shows a sorted dictionary that
represents the segment partitioning. This dictionary serves as the
dispatching table for 	 .

Note that the sorted dictionary representation is linear in # � . The
total memory for representing all method families is therefore ��
 � .
In fact, the number of memory cells required by this representation
is at most

�
��
�

�
 � # �'% � � � � % 	 �
�
 � # � � � � % 	 � �

It remains to describe the representation of the sorted dictionary
and the procedure to determine the segment to which a specific type
belongs. Algorithmically, the problem is characterized as follows:
Given a set of integers (2 � � �%������� � � , build a data structure to
implement the predecessor operation,)�*,+-�
�. , defined as

)�*,+"�
�. �0/21�3)�-4 &5(� 476 . "$� (2.1)

for any integer .�& � � �%���%��� � � . Let 8 � � (�
. In our case, 8 , which

is smaller than twice the number of different implementations, is
typically much smaller than � . We will therefore be more interested

146

by algorithms whose resource demands are dependent on 8 , rather
than on � .

In an array implementation it is possible to implement)�*,+-�
�. us-
ing a binary search in ��
 ����� 8 time, while the space requirement
is ��
 8 . The hidden constants are small.

If the number of integers is not so small, then a theoretically su-
perior algorithm is the Q-fast trie [68], which achieves ��
�� ����� �
time while still maintaining the space linear in 8 . Stratified trees,
also called van Emde Boas data structure [63, 64], offer a different
tradeoff, with space linear in � and time ��
 ����� ����� � . In the ran-
domized version of stratified trees the expected space requirement
is reduced to ��
 8 . In practice we expect the simple binary search
algorithm to outperform these asymptotically better competitors.

3. Dispatching using Type Slicing (TS)
Our dispatching technique for MI hierarchies is a generalization
of interval containment for SI hierarchies. The idea behind inter-
val containment is that there is an ordering of the tree hierarchy in
which the descendants of any given type are consecutive. The diffi-
culty in the MI case is that an ordering of � with the above property
might not exist. Figure 3.1 shows the smallest hierarchy for which
such an ordering is impossible. The reason is that such an order-
ing imposes the contradicting constraints that A, B and C must be
adjacent to D.

D

A B C

Figure 3.1: The smallest MI hierarchy for which no ordering
exists where all descendants of any type are consecutive

Instead of imposing a global ordering, we partition the set of types �
into disjoint slices ���%���������#�	� and impose a local ordering condi-
tion on each of the slices. For a slice �	
 and a type � (not necessarily
in �
), let �

 �1 be the set of descendants of � in �
 , i.e.,

��
#
 �# � ��+����+ � � 1 ��� %
 �#�� ��
)�

Figure 3.2 shows a partitioning of the hierarchy of Figure 1.1 into
two slices:

� � � � B � A � D � G � C � F � J "$�

� � � � E � H � K " �
(3.1)

The grayed squares in any column represent a set of descendants of
some type. The sets of descendants of type A, for example, in the
two slices are

� �
 A ��� A � D � G "$�
� �
 A ��� E � H � K " �

(3.2)

The type slicing technique is based on the demand that the sets �

 �#
are consecutive in some ordering of the rows. Visually this means

A B C D E F G H K

A
B

C

D

E

F

G

H
K

J

J

1
2
3
4
5
6
7

1
2
3

Figure 3.2: Type slicing for the MI hierarchy of Figure 1.1

that the grayed entries are consecutive within each chunk. For in-
stance, in Figure 3.2 the sets of (3.2) define the intervals

� �
 A � � � � 	 � �

� �
 A � � � � ��� �
(3.3)

Formally, each slice �	
 must satisfy the following slicing property:

There is an ordering of ��
 in which ��
1
 �# is consecu-
tive for all types � &7� .

In this data structure representation each type � is identified by a
pair � 8�
#� ����
�� , where 8-
 is an id of the slice to which � belongs,
and ���
 is the position of � in the ordering of this slice. Thanks to
the slicing property, the set �

 �1 defines an interval.

A partitioning of � into slices which satisfy the slicing property
always exists, since this property trivially hold for singletons. We
will strive to minimize � , the total number of slices.

Finding the slices We are unaware of any non-exponential method
for finding the minimal number of slices. Instead we use a greedy
heuristic: “try to make the current slice as large as possible without
violating the slicing property”. Specifically, we traverse the types
in a topological order, and try to insert each type into each of the
slices. If all these insertion attempts fail then a new slice is created.

Given a slice �	
 and a type � , PQ-trees [8,71] can be used to check
whether there is any ordering of �
���� �#" which satisfies the slicing
property, in ��
 ��� � ��
 � time. In inserting � types using this strategy,
the total time might be cubic in � , which is highly undesirable.

Instead we use a heuristic which, by not disturbing the existing or-
der of �	
 , achieves a run time that depends only on the number of
ancestors of � . Therefore, the total runtime of the above algorithm
for finding the slices is ��
 �

� � � . The exact details of the heuristic
are presented in Appendix A.

Dispatching using type slicing Given a type � and a method fam-
ily � � ,

� � � � � # � , a dispatching query returns the most specific
method 	�
 ���,3& �0� such that � � ��� . Let �	
 be the slice of � . A
method 	�
 ���, is applicable for � iff �6&���
1
 ��� . We therefore must
consider all intervals of �

 � � , �

 � � ���� , where � � has an im-
plementation of 	 . Since there are at most # � such intervals, we

147

obtain a partition of �
 into
� # � % � segments, where the result of

the dispatch on � depends only on the segment to which � belongs.

Figure 3.3 shows the dispatching representation for the method fam-
ily

� c ��� c
 C �� c
 D �� c
 E �� c
 H #"�� � c � � c � � c � � c � "
in the hierarchy of Figure 1.1. Consider, for example, the first slice.
Only methods c � and c � define non empty intervals, which are � � � � �
and � � � 	 � , respectively. We also consider the implicit interval � � � � �
for the method message not understood. Those three intervals par-
tition the types into three segments: � � � � � , � � � 	 � , and � � � � � . Mes-
sage c is represented in the first slice using an appropriate data
structure storing those three segments, and mapping them to the
methods: message not understood, c � , and c � , respectively.

A
B

C

D

E

F

G

H
K

J
c6

1
2
3
4
5
6
7

1
2
3

c6 c7

c7

c8

c9

c6

c6

c7

c6

c7

c9

c8

c8

0
0

(a) (b)

c6

c7

0

5

3

1

c9

c8

c8

2

1

3

Figure 3.3: (a) The intervals and segments of message c in the
two slices of Figure 3.2, and (b) the message representation in
each slice

In general, a message 	 is encoded in slice �
 by a data structure
of choice which represents a set of segments, mapping each one
to the appropriate method implementation. As in vanilla interval
containment, this data structure can be a simple array, a Q-fast trie,
or a stratified tree. Obviously, each slice has its own unique such
data structure.

Dispatching on type �3&5� and message 	 & � is carried out in
three stages:

1. Finding 8
 , the id of the slice of � ,
2. following this slice to find the respective data structure of 	 ,

and then

3. carrying on as in SI in a search of ���
 in this data structure to
find the appropriate implementation.

Thus, dispatching in MI hierarchies requires only two more steps in
comparison to dispatching in SI hierarchies. The space requirement
in MI hierarchies increases by a factor of at most � . Curiously,
this factor depends only on the topology of the hierarchy and the
quality of the slicing algorithm. It does not depend in any way on
the number of messages.

Reducing the number of slices We now describe one optimiza-
tion that given the set of messages reduces the number of slices � .
In our MI benchmarks, � is reduced by an average of 1.35. (In
the LOV hierarchy, for example, the number of slices is reduced
from 12 to 7.) The key observation is that the dispatching algo-
rithm assumes that each method 	�
 �# defined an interval for each
slice. Therefore, ��

 �1 must be consecutive in �	
 , only for those
types � which defined some method 	�
 �1 .
Formally, we say that a type � is significant if it defined some method
implementation, and redefine the slicing property as follows:

There is an ordering of ��
 in which ��
1
 �# is consecu-
tive for all significant types � &7� .

Optimizations for statically typed languages We also note that
in statically typed languages, the binary search algorithm can be
optimized. Suppose that we dispatch on an object whose static type
is � . Then, at runtime, the binary search can begin at a smaller
interval, restricted only to the interval of descendants of � in each
of the slices.

Moreover, we can even discard segments which correspond to mes-
sage not understood, since such a case does not occur in statically
typed languages.

4. Data Set
Thirty-five hierarchies collected from eight different programming
languages and totaling 63,972 types, were assembled from the fol-
lowing sources:

1. The four hierarchies (Self, Unidraw, LOV, Geode) used in
benchmark of RD in MI-hierarchies [23].

2. The eight SMALLTALK, OBJECTIVE-C and C++ hierarchies
used for benchmarking RD and CT [67] in SI-hierarchies.

3. The ensemble of seven JAVA hierarchies used in the definition
of the “common programming practice” [13], augmented by
version 1.3.1 of the Java Development Kit. Each of these
eight hierarchies, was also used both for benchmarking MI
dispatching algorithms and, after pruning interfaces, for bench-
marking SI dispatching algorithms.

4. The two CECIL [9] and DYLAN [60] hierarchies used in all
benchmarking of multiple dispatching algorithms [27,28,42,
57] contributed by Eric Dujardin.

We used these hierarchies for benchmarking single-dispatch
algorithms, by projecting each multi-method on each of its
arguments. (The details are in Section 6.)

5. A collection of five other multiple dispatching hierarchies
contributed by Wade Holst: Cecil- and Cecil2 are two older
versions of the CECIL run time library. Vortex3 is a CECIL

compiler written in CECIL, while Vor3 is an old version of
this compiler. Harlequin is a commercial implementation of
DYLAN including its GUI library.

In total, the data set for benchmarking dispatching algorithms has 16
SI-hierarchies with 29,162 types, 12 MI-hierarchies with 27,728
types, and seven multiple-dispatch hierarchies with 7,082 types.

148

This benchmark includes 5 hierarchies out of 13 hierarchies used
in previous experimental work on subtyping. (We were unable to
obtain information on the definition of messages and methods in
the other eight hierarchies.) As observed previously [29] many of
the topological properties of these hierarchies are similar to those
of balanced binary trees. The average number of ancestors in these
hierarchies is less than 9 for all hierarchies, with the exception of
Geode, in which it is 14.0 and Self, in which it is 30.9.

All degenerate method families, i.e., families of exactly one method,
were eliminated from the data set prior to running the experiments,
since no runtime dispatching is required for such families.

We stress that by eliminating degenerate families we only made
the input more difficult for our new dispatching algorithm and any
other duplicates elimination scheme, including CT. The reason is
that degenerate families, in which there are only two distinct val-
ues in their corresponding columns, have the greatest potential for
duplicates elimination.

Table 1 gives a summary of the pruned hierarchies. The three blocks
in the table correspond to SI-, MI- and multiple-dispatch- hierar-
chies. We see that the hierarchies span a range of sizes, from about
a hundred types up to almost 9,000 types.

The row denoted Total in this and some of the subsequent tables
corresponds to the total or universal hierarchy obtained by a simple
disjoint union of all hierarchies in the ensemble. In most cases,
the “Total” row therefore corresponds to an average of the different
hierarchies, weighted by size. In Table 1, this row indicates that in
total the dispatching benchmark spanned some 64 thousand types
and 70 thousand messages.

The
� � � column shows the average number of method implementa-

tions per type. Examining the entries along this column we see that
in many multiple dispatch hierarchies, there are about one or two
methods per type. A typical value of the other hierarchies is four
or five implementations per type. The San Francisco (SI: IBM SF)
project gives the largest number of methods per type (13.3).

In checking the
� � � column we find that method families tend to

be small, with average values of around four to six methods in a
family in most hierarchies. We note that the average number of
comparisons in a binary search in method families is no greater
than � ����� ������ . The reason is that the geometrical mean is no
greater than the arithmetical mean, and therefore

�
� �
�
 �

����� � � � � � � ����� �
���
�
 �

� � � � 	�
�
6 ����� �

� �
� �
�
 �

� �0� � 	
� ����� �

�
� �

(4.1)

Thus, just by inspecting the
� � � column we learn that the number

of comparisons is about 3.

The next
 ��� �� � column gives the best possible factor by which
null elimination can improve upon the complete dispatching matrix.
As can be seen from the table, this matrix is very sparse. In most

cases, 90% or more of its cells are empty. In hierarchies such as
MI: JDK 1.3.1 and MI: IBM SF we even find that the potential
compression is by a factor as high as 300. (The 1,249.0 bound for
the universal hierarchy is meaningless.)

Hierarchy � ���� ����� ���������� �����

Single
Inheritance

Visualworks1 774 1,170 6.0 4.0 11.4 17.1
Visualworks2 1,956 3,196 6.9 4.2 21.6 21.3
Digitalk2 535 962 6.2 3.5 7.1 21.7
Digitalk3 1,357 2,402 7.0 3.9 9.0 38.3
IBM Smalltalk 2 2,320 4,335 7.0 3.8 49.1 12.6
VisualAge 2 3,241 6,529 8.1 4.0 35.6 22.7
NextStep 311 499 6.8 4.2 9.6 7.7
ET++ 371 296 3.8 4.8 9.0 8.6
SI: JDK 1.3.1 6,681 4,392 3.6 5.4 228.8 5.4
SI: Corba 1,329 222 1.9 11.6 42.5 2.7
SI: HotJava 644 690 4.5 4.2 18.6 8.2
SI: IBM SF 6,626 11,664 13.3 7.6 268.9 3.3
SI: IBM XML 107 131 5.5 4.5 10.8 2.2
SI: Orbacus 1,053 980 3.6 3.9 55.3 4.9
SI: Orbacus Test 579 368 4.1 6.5 37.6 2.4
SI: Orbix 1,278 535 2.3 5.4 62.7 3.8

M
ultiple

Inheritance
Self 1,802 2,459 12.1 8.8 18.9 10.8
Unidraw 614 360 3.8 6.5 27.3 3.5
LOV 436 663 6.5 4.3 20.5 5.0
Geode 1,318 1,413 7.2 6.7 15.2 12.9
MI: JDK 1.3.1 7,401 5,724 3.9 5.0 300.7 4.9
MI: Corba 1,699 396 1.9 8.1 49.6 4.2
MI: HotJava 736 829 4.6 4.1 24.5 7.3
MI: IBM SF 8,793 14,575 13.2 8.0 328.3 3.4
MI: IBM XML 145 271 6.5 3.5 16.9 2.5
MI: Orbacus 1,379 1,261 3.6 4.0 70.1 5.0
MI: Orbacus Test 689 379 4.0 7.3 34.9 2.7
MI: Orbix 2,716 786 1.4 4.7 95.1 6.1

M
ultiple

D
ispatching

Cecil 932 1,009 4.5 4.2 12.9 17.3
Dylan 925 428 1.9 4.2 5.6 39.5
Cecil- 473 592 5.0 4.0 17.4 6.8
Cecil2 472 131 1.2 4.3 3.6 30.6
Harlequin 666 229 1.5 4.4 6.6 22.7
Vor3 1,660 328 1.1 5.7 35.3 8.3
Vortex3 1,954 476 1.3 5.2 3.0 122.4

Total 63,972 70,680 6.5 5.9 1,242.0 8.7
Median 1,053.0 690.0 4.5 4.4 21.6 7.3
Minimum 107 131 1.1 3.5 3.0 2.2
Maximum 8,793 14,575 13.3 11.6 328.3 122.4

Table 1: Statistical and topological properties of the 35 hierar-
chies used in benchmarking dispatching algorithms

How much can duplicates elimination improve on an optimal null
elimination? The answer is in the � � � column. We observe a poten-
tial for additional compression by factors of about 10. Duplicates
elimination performs very well precisely on the multiple-dispatch
hierarchies, where mere null elimination is not as effective as it is
in other hierarchies.

5. Experimental Results
In order to evaluate the quality of the order-preserving heuristic
used in our TS technique, we compared it with a much more pow-
erful, but time consuming, heuristic which uses PQ-trees. The su-
perscript PQ shall denote the variant which use the PQ heuristic.

Space requirement We follow the popular convention of ignor-
ing code space requirement, i.e., assuming that there is a single
generic dispatching routine which receives a message-selector and
a type-id. Although our results indicate that inlining of the binary
search might be worthy, further research is required to estimate the

149

incurred code space penalty. The following definition is pertinent
to the comparison of algorithms.

DEFINITION 5.1. Let � be the number of 4-bytes words the
algorithm uses to encode the dispatching tables of a certain hi-
erarchy, then the algorithm’s redundancy factor on this hierarchy
is � � � .

In other words, the redundancy factor of a dispatching algorithm in
a certain hierarchy is the ratio between the total space requirement
of that algorithm and the lower bound ideal implementation which
uses 	 bytes for storing the address of each method.

Table 2 gives the redundancy factor of different algorithms on the 35
hierarchies in our dispatching benchmark. In reading the table, re-
member that better algorithms have lower redundancy factors.

Hierarchy CT VFT SCa RD TSPQ TS Memb

Single
Inheritance

Visualworks1 18.3 17.1 24.3 17.3 2.8 2.5 45
Visualworks2 37.5 21.3 39.8 21.7 2.6 2.5 134
Digitalk2 15.8 21.7 59.8 22.0 3.0 2.7 35
Digitalk3 29.8 38.3 92.5 38.8 3.0 2.7 98
IBM Smalltalk 2 48.9 12.6 37.5 15.4 3.0 2.6 165
VisualAge 2 63.0 22.7 62.3 29.2 3.0 2.6 267
NextStep 10.7 7.7 21.8 7.9 2.9 2.6 22
ET++ 9.9 8.6 26.0 8.9 2.6 2.4 13
SI: JDK 1.3.1 91.9 5.4 67.9 6.2 2.6 2.4 219
SI: Corba 10.1 2.7 25.2 3.7 2.8 2.7 27
SI: HotJava 15.5 8.2 33.7 8.5 2.8 2.5 28
SI: IBM SF 66.0 3.3 26.0 3.5 2.4 2.2 744
SI: IBM XML 4.2 2.2 8.4 2.5 2.5 2.1 5
SI: Orbacus 22.6 4.9 35.0 5.1 2.8 2.4 36
SI: Orbacus Test 8.4 2.4 43.9 2.9 2.5 2.3 21
SI: Orbix 21.3 3.8 35.7 4.6 2.8 2.5 29

M
ultiple

Inheritance

Self 17.6 10.8 27.3 11.1 3.0 2.8 240
Unidraw 10.7 3.5 15.3 4.0 2.7 2.5 23
LOV 12.1 12.8 11.8 5.2 4.4 4.5 50
Geode 19.2 44.9 40.4 16.2 5.5 6.1 228
MI: JDK 1.3.1 109.2 5.8 62.4 5.5 4.1 4.1 463
MI: Corba 18.5 6.5 35.6 4.9 3.4 3.3 42
MI: HotJava 17.3 8.5 39.0 7.6 4.2 4.6 60
MI: IBM SF 82.3 5.9 26.2 3.5 3.8 3.7 1,663
MI: IBM XML 5.7 3.5 8.7 2.6 3.5 3.3 12
MI: Orbacus 28.0 6.9 37.5 5.3 4.0 3.8 75
MI: Orbacus Test 8.8 3.5 45.3 3.0 3.2 3.2 35
MI: Orbix 45.1 7.0 64.5 6.7 3.6 3.4 49

M
ultiple

D
ispatching

Cecil 19.5 34.0 34.6 17.8 4.2 4.1 68
Dylan 20.5 46.3 71.6 40.2 3.5 3.5 24
Cecil- 12.7 12.7 27.7 7.2 4.5 4.8 45
Cecil2 11.6 100.3 69.7 31.2 3.3 3.9 9
Harlequin 14.2 47.9 83.3 23.5 4.3 4.4 18
Vor3 24.1 19.4 50.8 9.3 3.4 3.5 26
Vortex3 29.2 375.7 159.7 124.0 3.5 4.1 40

Total 55.7 22.8 48.5 13.3 3.3 3.2 433
Median 18.5 8.5 37.5 7.6 3.0 2.8 42
Minimum 4.2 2.2 8.4 2.5 2.4 2.1 5
Maximum 109.2 375.7 159.7 124.0 5.5 6.1 1,663

�
A lower bound on SC redundancy factor�
The space requirements of TS in kilo-bytes

Table 2: The redundancy factor of different dispatching algo-
rithms and the total memory requirements of TS in kilo-bytes

Algorithms CT, TS, and TSPQ attempt to achieve duplicates elimi-
nation. The other algorithms rely on null elimination. The results in

the table do not include the additional provisions mentioned above
for the RD, CT, and SC algorithms to support dynamically typed
languages. The redundancy factors have to be appropriately ad-
justed to include selector verification information.

Since we did not have access to the original implementation and
heuristics of SC and CT, redundancy factors reported in the respec-
tive columns present a lower bounds on these values: In SC, the
number of slices is no less than the maximal number of messages
that a type understands. In estimating CT, the set of messages was
divided into chunks of 14 messages each (as prescribed in [67]).
We then applied the SC lower bound estimate in each chunk.

The results of the VFT technique are calculated in the traditional
manner [23], under the assumption that there are no virtual bases.
The size of a type VFTs equals the sum of its parents VFTs plus
the number of newly introduced messages. However, in practice
inheritance is usually shared (not repeated), giving rise to other
overheads [29].

In studying the last column of the table (labeled “Mem”) we see that
the total space requirement of type slicing ranges between 5KB to
almost 1.7MB. When viewed in relative- rather than absolute-terms
(in the penultimate column labeled TS showing redundancy fac-
tors), we find that the space requirement of type slicing is about
three or four times larger than a theoretic optimal duplicates elimi-
nation.

In comparing the columns TS and TSPQ we find that using the PQ-
heuristic does not always improve the space performance. In fact, in
all SI-hierarchies and several MI-hierarchies it increases the mem-
ory consumption of the algorithm. The improvement, in the few
cases it occurs, is quite small; a maximum of 15% in the Vortex3
hierarchy.

RD is better than our main TS algorithm in three out of 35 hierar-
chies: IBM SF (redundancy factor 3.5 in RD vs. 3.7 in TS), IBM
XML (2.6 vs. 3.3), and Orbacus Test (3.0 vs. 3.2) MI hierarchies.
We see that even in these cases the space requirement of TS is com-
parable to that of RD.

TS however always wins against CT, VFT, SC, and against RD in
all other hierarchies, sometimes by factors as large as 30. For in-
stance, in the Vortex3 hierarchy, RD uses 1.24MB, an optimal null
elimination scheme will use 1.22MB, while TS uses 40KB!

The average improvement of TS over RD is by a factor of 4.6, while
the median improvement is by a factor of 2.6. In fairness, it should
be said that all these algorithms dispatch in constant time, using
simple array references, while TS uses a non-constant time binary
search. This constant time must be extended to include selector
verification in dynamically languages, which is not required in TS.
Conversely, as we saw in Section 3, the search time in TS can be
reduced in statically typed languages.

In general, the VFT algorithm is the next best algorithm among SI
hierarchies. The RD algorithm is usually the second best for MI
hierarchies, while CT performs well on multiple dispatch hierar-
chies.

We remind the reader that the comparison presented in Table 2 is

150

different than that reported in the literature, since even though we
used the same hierarchies, we eliminated degenerate families from
the benchmark. Different algorithms compress such families to dif-
ferent levels.

Creation time Table 3 compares the times for creating the com-
pressed dispatching data structures using RD with those of TS and
those of TSPQ. Since we could not obtain the original implemen-
tations of SC and CT, their runtime is not reported. Vitek and
Horspool [67] report that CT required 1.5 seconds for NextStep
hierarchy, and 4.8 seconds for Visualworks2, on a Sparc station 5.
The implementation of VFT is so straightforward and fast that its
runtime overhead can be considered as zero for many practical pur-
poses.

Hierarchy RD TS TSPQ

Single
Inheritance

Visualworks1 54 5 261
Visualworks2 250 13 2,430
Digitalk2 54 3 130
Digitalk3 281 9 1,040
IBM Smalltalk 2 3,430 15 3,790
VisualAge 2 18,800 24 8,160
NextStep 13 1 50
ET++ 9 1 60
SI: JDK 1.3.1 162 26 33,600
SI: Corba 11 3 561
SI: HotJava 22 2 211
SI: IBM SF 1,620 69 30,300
SI: IBM XML 1 1 10
SI: Orbacus 27 4 401
SI: Orbacus Test 12 1 110
SI: Orbix 18 3 571

M
ultiple

Inheritance

Self 242 30 27,600
Unidraw 9 3 371
LOV 18 5 3,430
Geode 182 38 66,800
MI: JDK 1.3.1 240 88 324,000
MI: Corba 26 9 10,400
MI: HotJava 30 7 3,390
MI: IBM SF 903 307 1,740,000
MI: IBM XML 2 1 140
MI: Orbacus 31 11 12,700
MI: Orbacus Test 11 4 1,740
MI: Orbix 31 14 12,400

M
ultiple

D
ispatching

Cecil 57 9 6,410
Dylan 48 5 1,870
Cecil- 18 4 2,490
Cecil2 16 1 2,650
Harlequin 23 2 2,710
Vor3 24 9 23,400
Vortex3 394 11 42,100

Table 3: Encoding creation time in milliseconds, on a 900 Mhz
Pentium III, of different dispatching algorithms

TS is consistently better than RD, sometimes by a factor of hun-
dreds. The average improvement of TS over RD is by a factor
of 37.4, while the median is 6.3. (Since RD is a heuristic it may
sometimes find a good solution quickly.) TSPQ is very slow.

Dispatch time Recall that in TS we associate with each message
an array of the � addresses of the appropriate binary search code
in each slice. The main performance metric of such code is the
number of conditionals.

We computed the average number of such conditionals, taking care
to weigh each slice proportionally to the number of types in it. The

average number of such conditionals in the 35 hierarchies ranged
between 0.6 and 3.4; the median value being 2.5. (Even though
the experiments used only non-degenerate families, i.e., families
with two or more methods, it turned out to be that the number of
conditionals was sometime zero, precisely when there was only one
method implementation in a slice.)

A potentially better technique eliminates the jump by coalescing
the jump and the binary branch code of each message. If this is
implemented, the average number of comparisons now ranges be-
tween 2.5 to 3.8; the median becomes 2.9. We see that the indirect
jump is substituted by about one or two comparisons on average.
We should also say that this coalescing technique reduces the to-
tal memory requirement, since it eliminates the array of the � ad-
dresses which was associated with each message.

6. Multiple Dispatching
Interestingly, our results have applications also to the more general
multiple dispatching problem.

6.1 Introduction to Multiple Dispatching
Remember that in ordinary dispatching, the method to be invoked
depends only on the type of a single receiver. In contrast to this
single dispatching, multiple dispatching is the dispatch over several
arguments. Consider, for example, a geometric modeling applica-
tion, in which shapes such as rectangles, triangles, circles, are to
be depicted on various drawing canvases, such as screens, print-
ers and files. Then, the appropriate drawing method is to be se-
lected according to both the shape and canvas kind. Languages such
as POLYGLOT [1], KEA [50], COMMONLOOPS [7], CLOS [6],
CECIL [9], DYLAN [60] make only a partial list of the new genera-
tion OO languages which support multiple-dispatching in the form
of multi-methods.

Even though multi-methods are believed to be more expressive, nat-
ural and readable than mono-methods, they did not find their way
into more mainstream languages. One of the reasons is probably
the perceived cost of implementation. The prospect of efficient
multiple dispatching drew much research effort [4, 10, 11, 27, 28,
36,42,46,57]. The contribution that this paper makes is in improv-
ing the memory requirements of two existing practical techniques
of multiple-dispatching.

We note that multiple dispatching can be viewed as dispatching over
tuples. Given a hierarchy

� �
 ����� ��
we define the � -tuple hierarchy, denoted

��� �
 � � ��� � , where

�� � ���������#� � .� �
�� � ���%������� � iff � � � � �%����������� �
��5��
��
A multi-method 	�
 � � ���%����� � � in

�
, can be thought of as a mono-

method of the multi-type
 ��������������� � & � � . However, this per-
spective does not lead to any efficient algorithms because of the
size of

� �
.

6.2 Review of Algorithms for Multiple Dis-
patching

The best practical techniques for multiple dispatching known today
are Compressed N-dimensional Tables (CNT) [4,28,46] and Single-
Receiver Projections (SRP) [42]. Both techniques begin with the

151

same mono-dispatch stage, in which � independent single-dispatch
queries are executed for a multi-method of arity � . The results of
these queries are then used in the resolution stage which is tech-
nique specific.

The mono-dispatch stage quickly reduces the number of candidate
methods using the following observation. For a given multi-method
family �0� ,

� �0� � � # � , let �
1
,	 be the set of all types which occur
in the � th position in an implementation of 	 . Then, the dispatching
of 	 on a multi-type
 �����%��������� � , can be made easier by first using
a single-dispatch algorithm for finding for each � � � �%��������� , the
most specific � �
 &��

,	 , such that � �
 8��
 .
Consider, for example, the multi-method family

�0� � � 	�
 A � A ���	�
 A � D ���	�
 B � D ���	�
 E � D #"$� (6.1)

defined over the type hierarchy of our running example (Figure 1.1).
Then,

� �
,	 � � A � B � E " �
� �
,	 � � A � D "$� (6.2)

In dispatching the multi-type
 G � H , the mono-dispatch stage first
determines that ��� � � A and that ��� � � D. The resolution stage then
continues with the multi-type
 A � D .

FACT 6.1. (DUJARDIN ET AL. [28, P. 129]). If dispatching
never result in an error message then there is always a unique
such � �
 . Further, dispatching on
 � � �������%��� � is the same as dis-
patching on
 � � � �������%��� �� , i.e.,

dispatch
,	-��� � �������%��� � � dispatch
,	�� � � � �%��������� �� ��

The CNT technique creates a � -dimensional dispatch table with en-
tries for each multi-type in the cartesian product

���
,	 � � ��� � � �
,	 ��
The dispatching table for the multi-method family of (6.1) is shown
in Table 4.

A D
A � � A � A � � � A � D �
B �����	� � � B � D �
E � � A � A � � � E � D �

Table 4: CNT representation for the multi-method family
of (6.1)

The resolution stage in CNT requires only ��
 �% time. The number
of memory cells for representing the multi-dimensional dispatch
table is reduced from ��
 � � to

�
���
,	 � � � ����� �

� �
,	0 � � ��
1
 # � � �� (6.3)

which might still be very large.

SRP gives a different tradeoff in which the time of resolution in-
creases to ��
 � # � , while the space (in bits) is

�6
 �
� �
,	0 � % � � � % �

� �
,	 � � ��
 �
 # ��
�
�� (6.4)

An asymptotic comparison of the bound (6.4) with ��
1
 # � � ����� # � ,
the bound on number of bits in the CNT representation obtained

from (6.3), as well as practical experience, shows that SRP is usu-
ally more space efficient than CNT.

SRP uses an encoding of subsets of ��� as bit vectors of length # � .
The positions in this bit vector are given in a topological order, so
that more specific methods are positioned first. For all � � � �%��������� ,
and for all � &
�
#
,	 , the technique encodes the set of all multi-
methods which might be applicable if the � th argument is of type � ,
i.e., the set

� 	�
 � � ��������� ��
����%����� � � & �0� � � ����
 "$� (6.5)

At the resolution phase, the intersection of all � sets defined by (6.5)
is computed by ANDing the bit-vector representation of these sets.
The most specific method in the intersection is then found using a
find-first-set operation, which can often be implemented as a single
machine instruction.

Assuming that the multi-methods in (6.1) are positioned in the fol-
lowing order:

� 	�
 E � D ���	�
 B � D ���	�
 A � D ���	�
 A � A #" �
then the bit-vectors assigned with the sets � �
,	0 and � �
,	 of (6.2)
are shown in Table 6.

� � ����� vector
A 0011
B 0100
E 1111

� � ��� � vector
A 0001
D 1111

Table 6: SRP representation for the multi-method family
of (6.1)

6.3 Reducing the Space Requirement of the
Mono-dispatch Stage with Type Slicing

We applied the mono-dispatch reduction on multiple-dispatching
benchmarks, drawn from various languages. The resulting hierar-
chies were used as benchmarks to single-dispatching algorithms.
Degenerate multi-method families, and degenerate arguments were
removed.3

The mono-dispatch stage in SRP or CNT [4, 28, 42, 46] is currently
carried out using either the technique of SC or RD for single dis-
patching, which are both null elimination schemes.

Table 5 compares the average number of bits per multi-method fam-
ily for the mono-dispatch stage and the resolution stage. The mono-
dispatch stage is carried out using either our type slicing (TS) tech-
nique, or using an ideal null elimination scheme which requires �
entries. The resolution stage is carried out using either SRP or CNT.
The results were broken down by arity of the multi-method, which
ranged between 2 to 4.

The space requirements presented in the table are in a way a lower
bound, since we used a bit granularity rather than byte. For in-
stance, in the ideal null elimination scheme, an entry for message 	
occupies � ����� � � �0� � � bits. Also, in the � -dimensional matrix of
CNT, the number of bits in one matrix entry is not necessarily di-
visible by 8. The same is true for the bit-vector size in SRP, or the
� A family �0� is degenerate if

� �0� � � �
. The � th argument is degen-

erate if
�
�

,	 � � �

.

152

Arity
Hierarchy 2 3 4

TS � a SRP CNT TS � a SRP CNT TS � a SRP CNT
Cecil 296 718 234 110 380 1,718 168 501 263 2,798 16 16
Dylan 228 1,100 115 142 496 3,903 609 8,906 697 4,031 801 38,475
Cecil- 269 177 180 473 327 137 30 73 408 272 16 16
Cecil2 241 373 270 644 286 740 30 73 352 272 16 16
Harlequin 283 466 148 185 284 471 123 238 0 0 0 0
Vor3 330 303 347 925 485 278 666 1,449 328 320 16 16
Vortex3 351 2,100 294 720 469 5,996 302 828 472 320 16 16

�
An ideal null elimination scheme

Table 5: Average number of bits per family for the mono-dispatch stage and the resolution stage

size of entries in our array implementation of TS. Therefore, shift
and mask operations are needed in order for the assumption to hold.

We observe the following in the table:

1. The relative advantage of SRP over CNT (in the resolution
stage) increases with the arity. For example, in the DYLAN

hierarchy SRP improves on CNT by 19% for an arity of 2,
by 93% for an arity of 3, and by 98% for an arity of 4.
This fact is in agreement with the theoretical analysis of SRP
in (6.4) and of CNT in (6.3).

2. The space requirement of the mono-dispatch stage using an
ideal null elimination scheme dominates those of the resolu-
tion stage using SRP. In other words, the benefits of a space
efficient resolution stage are wasted if we simply use RD or
SC in the mono-dispatch stage.

The reason that null elimination performs so poorly in the
multiple dispatching benchmark is that many multi-methods
have root-type arguments to handle unexpected combination
of arguments. Null elimination schemes cannot compress
such multi-methods. Therefore, it was even suggested [42] to
compare different algorithms on data sets without such multi-
methods. Duplicates elimination schemes, such as CT and
our TS, performs especially well on such cases.

3. Using TS instead of a null elimination scheme reduces, in
most cases, the space requirement of the mono-dispatch stage.
In the Cecil- and Vor3 hierarchies (and in the Cecil2 hierar-
chy for the case of an arity 4) an ideal null elimination scheme
is better than TS. However, in the other five hierarchies TS is
better by as much as 92%.

7. Incremental Algorithm for Constant-time
Subtyping Tests

7.1 Introduction
In the incremental version of the subtyping problem the type hierar-
chy may grow during program execution when new types are added
as leaves. Such additions are allowed, e.g., in JAVA [5]. This dy-
namic hierarchy model gains increasing popularity since it shortens
the initialization time of applications loaded from a local storage
device, such as a disk, and even more so from a remote device such
as the network. Also, in mission critical systems, in which an ap-
plication cannot be restarted, it is convenient to make updates to the
running software by simply loading more types.

Almost all previous work on the subtyping problem [34, 44, 47, 48,
58,62] mention an incremental extension of the proposed algorithm.
However, these after thought additions invariably suffer from the
limitation that the total time for building the associated data struc-
tures is much greater in a piecemeal feed of the type hierarchy, than
if the entire hierarchy is supplied up front.

An algorithm for the dispatching problem is also a solution to the
subtyping problem, since if we associate with each type � a unique
message 	
 , then � � � holds precisely when � recognizes the mes-
sage 	 � . We know of no opposite reduction. Indeed, solutions of
the subtyping problem tend to be more efficient then their dispatch-
ing counterparts.

After this reduction, applying TS gives constant-time subtyping
tests. The reason is that the dispatch time is ��
 ����� # � , where # � �� �0� � � �

. (Recall that for each type we created a unique method
family containing only that type.) For completeness we describe
the subtyping algorithm in detail.

7.2 Previous Work on Subtyping Tests
(B)PE: (Bit) Packed Encoding [47] SC was specialized into a
subtyping test scheme called Packed Encoding (PE), by Vitek, Hor-
spool and Krall. They also suggested packing several identifiers
into the same byte, resulting in an encoding called Bit Packed En-
coding (BPE).

NHE: Near Optimal Hierarchical Encoding [48] Bit-vector en-
coding embeds the hierarchy in the lattice of subsets of � � �%����������" .
In this scheme, each type � is encoded as a vector � +�� � of � bits,
such that relation � �5� holds iff

� +�� ��� � +�� � � � +�� � � (7.1)

The challenge in building a bit-vector encoding is in finding the
minimal � for which such an embedding is possible. The problem is
NP-hard [41], but several good heuristics were proposed. Currently,
NHE due to Krall, Vitek and Hoorspool, is the best (in terms of
smallest �) algorithm for bit vector encoding.

Bommel and Beck [62] describe an incremental technique for up-
dating a bit-vector encoding. Although no asymptotic results are
given, and testing was limited to “randomly generated hierarchies”,
it appears from the authors description that the technique is useful
for small hierarchies, with at most 300 types.

PQE: PQ-Encoding [71] PQE encoding, which uses PQ-trees [8]
gives one of the best compression results of the subtyping matrix,

153

Hierarchy
PQE a NHE b (B)PE c (B)TS a (B)TSPQ a

Total Per type Total Per type Total Per type Total Per type Total Per type
(mSec) (� Sec) (mSec) (� Sec) (mSec) (� Sec) (mSec) (� Sec) (mSec) (� Sec)

IDL 1 15 - - 5 75 0.1 1 1 15
Laure 3 10 21 71 9 31 0.5 2 90 305
Unidraw 1 2 93 151 10 16 1.6 3 90 147
JDK 1.1 1 4 19 84 10 44 0.3 1 30 133
Self 48 27 1,367 759 22 12 20.2 11 12,100 6,715
Ed 29 67 136 313 12 28 1.7 4 711 1,638
LOV 42 96 168 385 10 23 2.0 5 941 2,158
Eiffel4 146 73 - - 29 15 19.5 10 11,400 5,703
Geode 311 236 1,902 1,443 28 21 20.6 16 22,700 17,223
JDK 1.18 15 9 - - 26 15 10.0 6 2,520 1,479
JDK 1.22 81 19 - - 77 18 38.1 9 32,500 7,490
JDK 1.30 113 21 - - 90 17 53.8 10 49,800 9,158
Cecil 24 26 - - 13 14 4.4 5 2,000 2,146

Total 815 42 - - 341 17 172.8 9 134,883 6,880
Median 29 21 136 313 13 18 4.4 5 2,000 2,146

�
900 Mhz Pentium III�
500 Mhz 21164 Alpha�
750 Mhz Pentium III, user time in Linux

Table 7: Total time (in mSec) and average time per type (Sec) for generating a subtyping encoding

while maintaining constant time for queries. PQE is not incremen-
tal since it requires feeding whole program information into a very
sophisticated data structure.

Dynamic subtyping in SI Dietz [17, 18] suggested an asymptoti-
cally optimal solution to the dynamic subtyping problem, i.e., linear
space requirement and constant time for queries and additions. The
idea is to maintain the pre- and post-orders of the tree in an ordered
list (see Appendix A). Subtyping tests are answered by using two
ORDER queries relying on the fact that �7� � iff � occurs before �
in the post-order and � occurs before � in the pre-order.

A different incremental algorithm for SI is Cohen’s algorithm [12].
Let �
 � � 1 � �"+� � � *
 �# �

denote the level of � . The algorithm as-
sociates with each type � an array of length �
 , storing the type-
id of each � � 8 � in position �
�� . Cohen’s algorithm gives simple
and constant-time subtyping tests. The cost is that the space re-
quirement might be ��
 � � if the hierarchy is, for instance, a long
chain. In practice, since the maximal number of ancestors is rel-
atively small, the space requirement of Cohen’s encoding is toler-
able. Jalapeño [3], IBM implementation of the JAVA virtual ma-
chine (JVM), uses Cohen’s algorithm for subtyping tests where the
supertype is a class.

7.3 Subtyping using Type Slicing Scheme
Our incremental subtyping algorithm is based on the order-preserving
heuristic for maintaining the slices (described in Appendix A). The
non-incremental variant is described next.

Figure 3.2 showed the slicing of the running example into two slices.
We associate with type A, for example, the following data,

8 A � � �
��� A � � �

� �
 A � � � � 	 � �
� �
 A � � � � ��� �

(7.2)

Encoding a hierarchy in this fashion requires at most
�

� � % � �
memory cells.

Since ��+����+ � � 1 ��� %
 �# ��� ���
 � � ��
#
 �# , we have that � �5� holds
iff the position of � is within the appropriate interval of � , i.e.,

��� � & ���
	�
����� (7.3)

For instance, we test whether G � A, by retrieving the slice of G, 8 G ��
, and its identifier, ��� G � 	 . We then determine whether this iden-

tifier falls inside the appropriate interval of A. In this example, we
conclude that G � A since 	�& � � � 	 � .

7.4 Experimental Results for TS
To make the comparison of incremental and non-incremental al-
gorithms meaningful, we do not include in the space requirement
pointers or other auxiliary data used in computing the encoding or
in maintenance of the dynamic data structure. In the case of our
type slicing (TS) algorithm this auxiliary data is a small number of
(about four) words per type.

The BTS variant of the basic TS algorithm applies bit packing to
compress the identifiers of types in small slices, in a manner sim-
ilar to BPE. Note that the BTS and the BPE variants are slower
than their non-packing counterparts, since they are obliged to use
shifts and masks to unpack the type identifiers. As mentioned in
Section 5, the superscript PQ shall denote the variant which use the
PQ heuristic.

Creation time Table 7 compares both the total and the per-type
run time of different subtyping algorithms on modern computing
platforms. In the worst case hierarchy (Geode), the average time a
modern computing platform requires to insert a type using (B)TS
algorithms is as little as 16 micro-seconds. We also see that the PQ
variants of TS are very slow, requiring 17.223 mSec per type in this
hierarchy, whereas the basic TS algorithms require just a little more
(21 mSec) to process the entire hierarchy.

To estimate the cost of using the PQE in an incremental fashion,
we can compare the total time of PQE with the per-type time of
the incremental (B)TS. In doing so we find that (B)TS is three to
four orders of magnitude faster than PQE. Even the total runtime of

154

the (B)TS algorithms is, on average, three times faster than that of
PQE.

Despite the fact that the data on the NHE runs was generated on a
different architecture, we argued [71] that PQE is in general faster
than NHE.

Space requirement The main metric of subtyping algorithms is
the encoding length, i.e., the number of bits per type. Table 8 com-
pares the encoding length obtained by TS and its three variants
with those of some other algorithms over the standard ensemble
of 13 MI-hierarchies.

Hierarchy PQE NHE BPE PE BTSPQ BTS TSPQ TS
IDL 0 17 32 96 56 64 40 56
Laure 6 23 63 128 72 80 88 152
Unidraw 2 30 63 96 72 72 88 88
JDK 1.1 1 19 32 64 64 64 56 56
Self 39 53 126 344 88 96 120 152
Ed 36 54 94 216 144 152 376 408
LOV 42 57 94 216 144 152 376 408
Eiffel4 65 72 157 312 160 176 312 344
Geode 80 95 157 408 248 264 600 632
JDK 1.18 25 39 94 128 104 112 152 184
JDK 1.22 36 62 157 184 152 168 280 312
JDK 1.30 41 65 188 216 160 192 280 376
Cecil 22 58 94 192 104 112 184 216

Total 40 61 145 227 144 161 266 315
Median 36 54 94 192 104 112 184 216
Minimum 0 17 32 64 56 64 40 56
Maximum 80 95 188 408 248 264 600 632

Table 8: The encoding lengths of different subtyping algorithms

In comparing the last two columns of the table we learn that our
quick order-preserving heuristic can be improved, sometimes by as
much as 40% by applying the PQ heuristic. However, in going
through the BTS column we discover that bit-packing is a more
effective compression technique, outperformed by TSPQ in only two
out of the 13 hierarchies. Therefore, it seems worthwhile to spend
the little extra time in the subtyping tests of BTS.

Note also that applying the PQ heuristic on top of bit packing does
not yield much: the maximal compression of the encoding length
in doing so is 16.7%. Therefore, our basis of comparison of the in-
cremental algorithms with their static counterparts will be the BTS
column.

The BTS encoding is better than PE in all hierarchies, but is only
better than BPE in the Self hierarchy. It is slightly worse than BPE
in all but the Geode hierarchy. BTS does not yield as good encoding
length as NHE and PQE. However, since BTS is incremental, it can
answer subtyping queries during any stage of the creation process—
a task in which PE, BPE, NHE and PQE fail.

8. Open Problems
The most important problem this paper leaves open is an incremen-
tal dispatching algorithm, i.e., allowing additions of types, along
with their methods, at the bottom of the hierarchy. Another nat-
ural extension worth investigating is in allowing also deletion of
leaves from the hierarchy, as supported, at least in part, by JAVA.
Other extensions include addition of new methods to existing types,
or as it might be the case in knowledge representation, reasoning,

database management, and query processing, allowing insertion of
types anywhere in the hierarchy.

Preliminary results include an incremental variant of TS with the
same theoretical space and dispatch-time bounds [70]. An insertion
of a method 	�
 �# to the dispatching data structure takes ��
 � ����� # ��%� ��+���"+ � � 1 ��� %
 �1 � amortized time.

In the more pure algorithmic front, it would be both interesting and
useful to generalize the PQ-tree data structure to support modifi-
cations of existing constraints when a new element is added to the
universe.

Our algorithms assumed that ambiguities are resolved by an appro-
priate augmentation of method families. Some OO languages re-
solve ambiguities based on a linearization of the partial order � .
COMMONLOOPS [7], for example, uses a global type ordering,
while CLOS [6] uses a local type ordering. Extending our algo-
rithms to support linearization based ambiguity resolution appears
to be a worthy prospect.

Dispatching and linearization also occur in JAVA exception han-
dling, as the following code excerpt shows.

try � ... "
catch(D d) � ... "
catch(E e) � ... "
catch(A a) � ... "

When an object � of a dynamic type � � �
��$ is thrown in a try
block, the program executes the first catch block whose argument
is a supertype of � . Thus, each of the catch clauses is a subtyping
test. When the number of such clauses is large, it might be worth-
while to choose the exception handler using a dispatching algorithm
which will find the clause with the most specific supertype.4 Am-
biguities are resolved using the order of the catch blocks chosen
by the programmer.5

Acknowledgements Tal Cohen contributed the database of JAVA

hierarchies. Eric Dujardin made the multi-method hierarchies of
CECIL and DYLAN available for our experiments. Wade Holst con-
tributed the other five multi-method hierarchies. All the other dis-
patching data was supplied by Karel Driesen. Driesen’s help in
supplying the RD implementation and answering our questions in
porting it was invaluable. We pay tribute to Jan Vitek for his inspir-
ing remarks.

9. References
[1] R. Agrawal, L. Demichiel, and B. Lindsay. Static type

checking of multi-methods. In Proceedings of the 6th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Phoenix, Arizona, USA, Oct.

�
The above code, if read in C++ [61], leads to the same problem.

This is due to the separate compilation model of C++, in spite of
the fact that exceptions are caught according to the static type of
the thrown object.�
In fact, there is no possibility for ambiguity in JAVA exception

handling. The reason is that a type in the catch block must be
a subtype of the class Throwable, and JAVA has a SI class
hierarchy (and ambiguities cannot occur in an SI hierarchy).

155

6-11 1991. OOPSLA’91, ACM SIGPLAN Notices 26(11)
Nov. 1991.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber.
Efficient implementation of JAVA interfaces:
invokeinterface considered harmless. In
OOPSLA’01 [53].

[3] B. Alpern, A. Cocchi, and D. Grove. Dynamic type checking
in Jalapeño. In J. Clifford, B. G. Lindsay, and D. Maier,
editors, Java Virtual Machine Research and Technology
Symposium, Monterey, California, Apr. 2001. USENIX.

[4] E. Amiel, O. Gruber, and E. Simon. Optimizing
multi-method dispatch using compressed dispatch tables. In
Proceedings of the 9th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 244–258, Portland, Oregon, USA, Oct.
23-27 1994. OOPSLA’94, ACM SIGPLAN Notices 29(10)
Oct. 1994.

[5] K. Arnold and J. Gosling. The Java Programming Language.
The Java Series. Addison-Wesley, Reading, Massachusetts,
1996.

[6] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene,
G. Kiczales, and D. A. Moon. Common Lisp object system
specification. X3J13 Document 88-002R, June 1988.

[7] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: Merging Lisp and
object-oriented programming. In Proceedings of the 1st

Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 17–29,
Portland, Oregon, USA, Sept. 29 - Oct. 2 1986. OOPSLA’86,
ACM SIGPLAN Notices 21(11) Nov. 1986.

[8] K. S. Booth and G. S. Leuker. Testing for the consecutive
ones property, interval graphs, and graph planarity using
PQ-tree algorithms. J. Comput. Sys. Sci., 13(3):335–379,
Dec. 1976.

[9] C. Chambers. The Cecil language, specification and
rationale. Technical Report TR-93-03-05, University of
Washington, Seattle, 1993.

[10] C. Chambers and W. Chen. Efficient multiple and predicate
dispatching. In OOPSLA’99 [56], pages 238–255.

[11] W. Chen, V. Turau, and W. Klas. Efficient dynamic look up
strategy for multi-methods. In Proceedings of the 8th

European Conference on Object-Oriented
Programming [31], pages 408–431.

[12] N. H. Cohen. Type-extension tests can be performed in
constant time. ACM Trans. Prog. Lang. Syst., 13:626–629,
1991.

[13] T. Cohen and J. Y. Gil. Self-calibration of metrics of Java
methods. In Proceedings of the International Conference on
Technology of Object-Oriented Languages and Systems,
pages 94–106, Sydney, Australia, Nov. 20-23 2000. TOOLS
Pacific 2000, Prentice-Hall.

[14] T. J. Conroy and E. Pelegri-Llopart. An Assessment of
Method-Lookup Caches for Smalltalk-80 Implementations.
Addison-Wesley, Menlo Park,CA 94025, 1983.

[15] B. J. Cox. Object-Oriented Programming - An Evolutionary
Approach. Addison-Wesley, Reading, Massachusetts, 1986.

[16] P. Deutsch and A. Schiffman. Efficient implementation of the
Smalltalk-80 system. In 11th Symposium on Principles of
Programming Languages, POPL’84, pages 297–302, Salt
Lake City, Utah, Jan. 1984. ACM SIGPLAN — SIGACT,
ACM Press.

[17] P. F. Dietz. Maintaining order in a linked list. In Proc. of the
14
�� Ann. ACM Symp. on Theory of Computing, pages
122–127, San Francisco, California, United States, 1982.
ACM Press.

[18] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining
order in a list. In Proc. of the 19
�� Ann. ACM Symp. on
Theory of Computing, pages 365–372, New York, New York,
United States, 1987. ACM Press.

[19] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf
der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput.,
23(4):738–761, Aug. 1994.

[20] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer. A fast
method dispatcher for compiled languages with multiple
inheritance. In Proceedings of the 4th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 211–214, New Orleans, Louisiana, Oct.
1-6 1989. OOPSLA’89, ACM SIGPLAN Notices 24(10) Oct.
1989.

[21] K. Driesen. Selector table indexing & sparse arrays. In
OOPSLA’93 [54], pages 259–270.

[22] K. Driesen. Software and hardware techniques for efficient
polymorphic calls. Technical Report TRCS99-24, University
of California, Santa Barbara. Computer Science., July 15,
1999.

[23] K. Driesen and U. Hölzle. Minimizing row displacement
dispatch tables. In Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 141–155, Austin, Texas,
USA, Oct. 15-19 1995. OOPSLA’95, ACM SIGPLAN
Notices 30(10) Oct. 1995.

[24] K. Driesen and U. Hölzle. The direct cost of virtual functions
calls in C++. In Proceedings of the 11th Annual Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 306–323, San Jose, California, Oct. 6-10
1996. OOPSLA’96, ACM SIGPLAN Notices 31(10) Oct.
1996.

[25] K. Driesen, U. Hölzle, and J. Vitek. Message dispatch on
modern computer architectures. Technical Report
TRCS94-20, University of California, Santa Barbara.
Computer Science., Feb. 9, 1995.

[26] K. Driesen, U. Hölzle, and J. Vitek. Message dispatch on
pipelined processors. In Proceedings of the 9th European
Conference on Object-Oriented Programming, number 952
in Lecture Notes in Computer Science, pages 253–282,
Aarhus, Denmark, Aug. 7–11 1995. ECOOP’95, Springer
Verlag.

156

[27] E. Dujardin. Efficient dispatch of multimethods in constant
time using dispatch trees. Technical Report RR-2892, Inria,
Institut National de Recherche en Informatique et en
Automatique, 1996.

[28] E. Dujardin, E. Amiel, and E. Simon. Fast algorithms for
compressed multimethod dispatch table generation. ACM
Trans. Prog. Lang. Syst., 20(1):116–165, Jan. 1998.

[29] N. Eckel and J. Y. Gil. Empirical study of object-layout
strategies and optimization techniques. In Proceedings of the
14th European Conference on Object-Oriented Programming,
number 1850 in Lecture Notes in Computer Science, pages
394–421, Sophia Antipolis and Cannes, France, June 12–16
2000. ECOOP 2000, Springer Verlag.

[30] ECOOP’91. Proceedings of the 5th European Conference on
Object-Oriented Programming, number 512 in Lecture Notes
in Computer Science, Geneva, Switzerland, July15–19 1991.
Springer Verlag.

[31] ECOOP’94. Proceedings of the 8th European Conference on
Object-Oriented Programming, number 821 in Lecture Notes
in Computer Science, Bologna, Italy, July 4-8 1994. Springer
Verlag.

[32] ECOOP’99. Proceedings of the 13th European Conference on
Object-Oriented Programming, number 1628 in Lecture
Notes in Computer Science, Lisbon, Portugal, June 14–18
1999. Springer Verlag.

[33] Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, Massachusetts, Jan.
1994.

[34] A. Fall. Sparse term encoding for dynamic taxonomies. In
P. W. Eklund, G. Ellis, and G. Mann, editors, Proceedings of
the Fourth International Conference on Conceptual
Structures (ICCS-96): Knowlegde Representation as
Interlingua, volume 1115 of LNAI, pages 277–292, Berlin,
Aug. 19–22 1996. Springer.

[35] P. Ferragina and S. Muthukrishnan. Efficient dynamic
method-lookup for object oriented languages. In J. Dı́az and
M. Serna, editors, Algorithms—ESA ’96, Fourth Annual
European Symposium, volume 1136 of Lecture Notes in
Computer Science, pages 107–120, Barcelona, Spain,
25–27 Sept. 1996. Springer.

[36] P. Ferragina, S. Muthukrishnan, and M. de Berg.
Multi-method dispatching: A geometric approach with
applications to string matching problems. In Proc. of the 31 �

Ann. ACM Symp. on Theory of Computing, pages 483–491,
Atlanta, Georgia, United States, 1999. ACM Press.

[37] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and
related techniques for geometry problems. In Proc. of the
16
�� Ann. ACM Symp. on Theory of Computing, pages
135–143, Washington, DC, United States, 1984. ACM Press.

[38] J. Gil and A. Itai. The complexity of type analysis of Object
Oriented programs. In Proceedings of the 12th European
Conference on Object-Oriented Programming, number 1445
in Lecture Notes in Computer Science, pages 601–634,
Brussels, Belgium, July 20–24 1998. ECOOP’98, Springer
Verlag.

[39] J. Y. Gil and P. Sweeney. Space- and time-efficient memory
layout for multiple inheritance. In OOPSLA’99 [56], pages
256–275.

[40] A. Goldberg. Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley, Reading, Massachusetts,
1984.

[41] M. Habib and L. Nourine. Bit-vector encoding for partially
ordered sets. In V. Bouchitte and M. Morvan, editors,
International Workshop on Orders, Algorithms, and
Applications (ORDAL’94), number 831 in Lecture Notes in
Computer Science, pages 1–12, Lyon, France, July 1994.
Springer Verlag.

[42] W. Holst, D. Szafron, Y. Leontiev, and C. Pang.
Multi-method dispatch using single-receiver projections.
Technical Report TR-98-03, University of Alberta,
Edmonton, Alberta, Canada, 1998.

[43] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In Proceedings of the 5th

European Conference on Object-Oriented
Programming [30].

[44] H. Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient
implementation of lattice operation. ACM Trans. Prog. Lang.
Syst., 11:115–146, 1989.

[45] G. Kiczales and L. Rodriguez. Efficient method dispatch in
PCL. In 1990 ACM Conference on Lisp and Functional
Programming, pages 99–105, Nice, France, June 1990.
ACM, ACM Press.

[46] E. Kidd. Efficient Compression of Generic Function Dispatch
Tables. Technical Report TR2001-404, Dartmouth College,
Computer Science, Hanover, NH, June 2001.

[47] A. Krall, J. Vitek, and R. N. Horspool. Efficient type
inclusion tests. In OOPSLA’97 [55], pages 142–157.

[48] A. Krall, J. Vitek, and R. N. Horspool. Near optimal
hierarchical encoding of types. In Proceedings of the 11th

European Conference on Object-Oriented Programming,
number 1241 in Lecture Notes in Computer Science, pages
128–145, Jyväskylä, Finland, June 9-13 1997. ECOOP’97,
Springer Verlag.

[49] B. Meyer. EIFFEL the Language. Object-Oriented Series.
Prentice-Hall, Hemel Hempstead, Hertfordshire, UK, 1992.

[50] W. Mugridge, J. Hamer, and J. Hosking. Multi-methods in a
statically-typed programming languages. In Proceedings of
the 5th European Conference on Object-Oriented
Programming [30].

[51] S. Muthukrishnan and M. Müller. Time and space efficient
method-lookup for object-oriented programs. In Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 42–51, New York/Philadelphia, Jan. 28–30
1996. ACM/SIAM.

[52] M. Naik and R. Kumar. Efficient message dispatch in
object-oriented systems. ACM SIGPLAN Notices,
35(3):49–58, Mar. 2000.

157

[53] OOPSLA’01. Proceedings of the 16th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Tampa Bay, Florida, Oct. 14–18 2001. ACM
SIGPLAN Notices 36(10) Oct. 2001.

[54] OOPSLA’93. Proceedings of the 8th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Washington, DC, USA, Sept. 26 - Oct. 1 1993.
ACM SIGPLAN Notices 28(10) Oct. 1993.

[55] OOPSLA’97. Proceedings of the 12th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Atlanta, Georgia, Oct. 5-9 1997. ACM
SIGPLAN Notices 32(10) Oct. 1997.

[56] OOPSLA’99. Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Denver, Colorado, Nov.1–5 1999. ACM
SIGPLAN Notices 34(10) Nov. 1999.

[57] C. Pang, W. Holst, Y. Leontiev, and D. Szaforon.
Multi-method dispatch using multiple row displacement. In
Pang, et al. [32], pages 304–328.

[58] O. Raynaud and E. Thierry. A quasi optimal bit-vector
encoding of tree hierarchies. application to efficient type
inclusion tests. In J. Knudsen, editor, Proceedings of the 15th

European Conference on Object-Oriented Programming,
number 1850 in Lecture Notes in Computer Science, pages
165–181, Budapest, Hungary, June 12–16 2001. ECOOP
2001, Springer Verlag.

[59] A. Royer. Optimizing Method Search with Lookup Caches
and Incremental Coloring. In Proceedings of the 7th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 110–126, Vancouver,
British Columbia, Canada, Oct.18-22 1992. OOPSLA’92,
ACM SIGPLAN Notices 27(10) Oct. 1992.

[60] A. Shalit. The Dylan Reference Manual: The Definitive
Guide to the New Object-Oriented Dynamic Language.
Addison-Wesley, Reading, Mass., 1997.

[61] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 3rd edition, 1997.

[62] M. F. van Bommel and T. J. Beck. Incremental encoding of
multiple inheritance hierarchies. In Proceedings of the 8
��
International Conference on Information Knowledgement
(CIKM-99), pages 507–513, N.Y., Nov. 2–6 2000. ACM
Press.

[63] P. van Emde Boas. Preserving order in a forest in less than
logarithmic time and linear space. Information Processing
Letters, 6(3):80–82, 1977.

[64] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Math. Systems
Theory, 10:99–127, 1977.

[65] J. Vitek. Compact dispatch tables for dynamically typed
programming languages. Master’s thesis, University of
Victoria, 1995.

[66] J. Vitek and R. N. Horspool. Taming message passing:
Efficient method lookup for dynamically typed
object-oriented languages. In Proceedings of the 8th

European Conference on Object-Oriented
Programming [31].

[67] J. Vitek and R. N. Horspool. Compact dispatch tables for
dynamically typed object oriented languages. In T. Gyimothy,
editor, Compiler Construction, 6
�� International Conference,
volume 1060 of Lecture Notes in Computer Science, pages
309–325, Linköping, Sweden, 24–26 Apr. 1996. Springer.

[68] D. E. Willard. New trie data structures which support very
fast search operations. J. Comput. Sys. Sci., 28:379–394,
1984.

[69] O. Zendra, C. Colnet, and S. Collin. Efficient dynamic
dispatch without virtual function tables: The SmallEiffel
compiler. In OOPSLA’97 [55], pages 125–141.

[70] Y. Zibin and J. Y. Gil. Theory and practice of incremental
subtyping tests and message dispatching.
http://www.cs.technion.ac.il/˜zyoav. Manuscript.

[71] Y. Zibin and J. Y. Gil. Efficient subtyping tests with
PQ-encoding. In OOPSLA’01 [53], pages 96–107.

APPENDIX
A. An Order-Preserving Heuristic for Finding

The Slices
The algorithm for creating the slices uses the order-preserving heuris-
tic as an internal procedure in the following fashion. We traverse
the types in a topological order, i.e., as if the hierarchy is given
to us incrementally where new types can be added only as leaves.
For each such type we try to find the first slice it can be added to,
without violating the slicing property. If no such slice is found, we
create a new slice.

Given a slice �
 and a type � , we give an algorithm whose runtime
is

� 1 � �"+� � � *
 �# �
, which checks whether there is an eligible list lo-

cation for inserting � , and if so, finds it. The idea is to maintain an
ordered list for all types in a slice. The slicing property is slightly
modified so that the sets �

 �1 are consecutive in the ordered list of
slice �
 .
An ordered list is a data structure supporting two kinds of oper-
ations: INSERT transactions and ORDER queries of the following
sort. Given two positions in the list (usually as pointers to list
nodes), determine which one precedes the other. In a paper en-
titled “Two Algorithms for Maintaining Order in a List”, Dietz
and Sleator [18] give the best algorithm for this problem, achiev-
ing ��
 � worst-case time per operation. However, the authors com-
ment that their other algorithm “is probably the best algorithm to
use in practice”, even though it is theoretically inferior, since its
amortized6 insertion time is ��
 ����� � . This other algorithm is based
on a technique known as self-adjustment. In a nutshell, each list
node is assigned an integer position in an increasing order, thus
ORDER queries are answered in constant time. “Holes” are left

� The amortized time of an operation is �
 � , if a sequence of �
operations requires at most � �
 � time. The worst case time of any
single operation can however be much greater than �
 � .

158

to support future insertions, and if a “hole” is filled, then we re-
distribute the positions in some “sufficiently large and uneven” list
interval. We implemented this simple algorithm and indeed found
it to be very fast in practice.

Before describing the order-preserving heuristic we need to make
the notions of list locations and list intervals more precise.

DEFINITION A.1. A location of a linked list is either (i) the be-
ginning of the list, (ii) the end of the list, or (iii) any point between
two consecutive nodes of the list. An interval in the list is a set of
consecutive locations. The boundary of an interval comprises its
first and last locations. All other locations are called the interior of
the interval.

The boundary usually contains two locations, the first and the last.
For example, the interval marked as � �
 A in Figure A.1 has two
interior locations and two boundary locations.

AB CD FG J

0

D1(A)

0 1 3 1 1 2 0

1 12

D1(C)

Figure A.1: Addition of a new type to the first slice of Figure 3.2

The interior of degenerate intervals is empty; in such intervals the
first and last locations are the same. An empty interval has an empty
boundary and an empty interior.

DEFINITION A.2. The interval of the set �

 �1 in the ordered
list of �
 includes all locations in the sub-list defined by ��

 �1 .

In other words, the interval of the set �
#
 �# also includes the lo-
cation prior to the first element of �

 �# , as well as the location
following its last element.

In the example, we see in Figure 3.2 that A has three descendants in
the first slice, i.e., � �
 A ��� A � D � G " . In Figure A.1 we see that
these three types are consecutive in the ordered list of the first slice
and that the interval of � �
 A has four locations.

When inserting a new type � to the ordered list of �	
 , we search for
a list location where inserting � will not violate the slicing property.
Such locations must belong to the interval of ��
#
 � � for all ances-
tors � � of � , i.e., � � 8�� . Let

�
denote the set of all such intervals, and

let � denote the intersection of all intervals in
�

. A list locations
in � is called a candidate for inserting � .
Algorithmically, � is computed by finding the largest first location
of the intervals in

�
, and the smallest last location of these intervals.

(Comparisons are carried out using simple ORDER queries.) If �
is empty, then we conclude that � cannot be inserted into �
 . The
time for computing the intersection and for checking whether it is
empty is in the following asymptotic growth class:

��
 �) 1 *,+ � �
 �1 � .2 ��
 � 1 � �"+� � � *
 �# � ��

It is also required that � does not “break” any interval of �

 ��� , ��� �8� . More precisely, a location is an invalid candidate if it belongs
to the interior of these intervals. Although it is possible to check
each candidate location

� &�� against every interval of a type ����&
��� 1 � �"+ � � *
 �# , the running time of this exhaustive search may
be linear in the size of the hierarchy!

Figure A.1 shows the ordered list of the first slice of Figure 3.2. We
try to insert to that slice a new type whose parents are A and C. We
see the intervals of � �
 A and � �
 C , and their intersection � . The
new type can only be inserted in a candidate location

� &�� . The
candidate location between types D and G, for example, is invalid
since it belongs to the interior of the interval of � �
 D , and D is not
an ancestor of the new type. The other two candidate locations are
valid.

The counts 	 � associated with each location in Figure A.1 are a part
of a more efficient implementation for determining if a location is
an invalid candidate. For each location

�
in the ordered list, let 	 �

be the number of all intervals �
1
 �1 , such that
�

is in the interior
of �

 �1 . For instance, the location between types D and G has a
count of � , since it is in the interior of � �
 A , � �
 C and � �
 D .
A location

�
in the interior of � is contained in the interior of all

intervals defined by ��

 � � , � � 8 � . Therefore, for all candidate
locations

� &
� we have that

	 ��� � 1 � �"+ � � *
 �# � � (A.1)

The location is an invalid candidate if it is contained in the interior
of any other interval, and therefore

	 �� � 1 � �"+ � � *
 �# � � (A.2)

In the example of Figure A.1, the location between types D and G
is an invalid candidate, since its count is strictly higher than the
number of ancestors.

We must be more careful in checking a location
�

in the boundary
of � . Let ��& � be arbitrary. Then, by definition

� &�� . It is
not however guaranteed that

�
is in the interior of � . We therefore

compute the number � � of intervals � & � such that
�

is in the
interior of � . A boundary location

�
is an invalid candidate iff

	 � � � � (A.3)

In our example, both boundary locations are valid candidates.

Although there are several special cases and many nitty-gritty de-
tails, it is a straightforward matter to update in ��
 � time the counts 	 �
with every insertion. (Note that the count may change only for two
locations: before and after the insertion point.) Also, computing � �
and checking (A.3) can be done in ��
 � 1 � ��+� � � *
 �# � time. It is
potentially more time consuming to do the check (A.2) since we
have no a priori bounds on

� � �
.

Non-exhaustive techniques for finding an eligible insertion lo-
cation We found empirically that if � could not be inserted at the
boundary of � , then it was rarely possible to insert it to the interior
of � . For example, out of the 4339 types of JDK 1.22, only 22
types (less than 0.5%) were inserted in the interior of � . In all other
hierarchies of our data set, the total number of such types was even
smaller, and their fraction was always lower than 1%.

Therefore, it does not seem necessary to apply the check (A.2) at

159

all. Nevertheless, we should note that there are ways of imple-
menting (A.2) more efficiently than an exhaustive search. It follows
from (A.1) and (A.2) that an interior candidate location

�
is valid iff

/ � � � 	 � � �
is in the interior of � " � � 1 � �"+� � � *
 �1 � �

Therefore, the problem of finding an eligible location in the interior
of � is reduced to the famous range minima problem [37]. A simple
solution to the range minima problem is to maintain a balanced
binary search tree (BBST) over the ordered list of �
 , such that
each internal node in it stores the minimum of 	 � of all locations

�
in

the subtree rooted at this node. This representation adds ��
 ����� �
time to each insertion operation. It is standard to use this BBST
to compute the minimum of any given interval. More sophisticated
solutions to the range minima problem require only constant time
per operation [37]. It is not clear whether these algorithms have any
practical utility.

Inserting SI types into MI hierarchies Finally, we present an
optimization for quickly inserting a type � with a single parent � .
Let � be the slice of � , i.e., �7&7�
 . Consider the ordered list of �
 ,
and a list location

�
immediately to the left (or to the right) of � .

We claim that
�

is eligible for � . Assume the contrary, i.e.,
�

is in
the interior of some interval defined by ��
#
 ��� , ��� �8 � . Combined
with the fact that � is adjacent to

�
, we conclude that � & ��

 ��� ,

and therefore, �(� ��� . Since � ��� , it follows that � � ��� , which
contradicts our assumption.

Incremental subtyping algorithm Recall that each slice is kept
in an ordered list. Instead of associating integer values with ���

and ��
1
 �1 as in (7.2), we now use pointers to cells in the ordered
list. The test (7.3) can be carried out in constant time using two
ORDER queries. We show next how to update this representation as
new types are added.

When a type � is added to the ordered list of slice �	
 , only the list
intervals of its ancestors can change. Therefore, for each � � 8 � we
check if � was added at the boundary of ��

 ���, , and if so update
it. Updating all list intervals ��

 ���, takes ��
 � 1 � ��+� � � *
 �# � time.
Since the insertion time of the heuristic is ��
 �

� 1 � ��+� � � *
 �# � , the
asymptotic time bound remains the same.

When a new slice is created, the arrays which store �
#
 �# , � �� �%������� � , must be extended. Note that with the cost of a constant
factor increase of the space requirement, the amortized time for
extending an array is constant. Using techniques of “background
copying” [19], the worst case time for an array extension operation
becomes constant as well.

160

