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Thefirst order isomorphism problemis to decide whether two non-recursive types using product-
and function-type constructors, are isomorphic under the axioms of commutative and associative
products, and currying and distributivity of functions over products. We show that this problem can
be solved inO(n log2 n) time andO(n) space, wheren is the input size. This result improves upon
theO(n2 log n) time andO(n2) space bounds of the best previous algorithm. We also describe
anO(n) time algorithm for thelinear isomorphism problem, which does not include the distributive
axiom, thereby improving upon theO(n log n) time of the best previous algorithm for this problem.

1. Introduction

It is a matter of basic high school algebra to prove the equality

(
(ab)(ab)

)(ba)
= aabba

bbaab

. (1.1)

Yet, as we shall see in this paper, a systematic and efficient production of such a proof is non-
trivial. With the familiar perspective of viewing multiplication as product-types, exponentiation
as function-types, and variables as primitive-types, (1.1) becomes an instance of a simple, i.e.,
non-recursive, type isomorphism problem. In its turn, type isomorphism has close connections
to category theory (Soloviev, 1983; Bruce et al., 1991) and intuitionistic logic (Howard, 1980).

The isomorphism variant which concerns us here is characterized by commutativity and asso-
ciativity of products, and currying and distributivity of functions over products. This variant has
practical interest in the context of the search for compatible functions in function libraries.† (A
detailed treatise of this application can be found in Di Cosmo’s book (1995), which discusses
also extensions to second order types and the ML type theory.)

More formally, we consider the set of first order isomorphisms holding in all models of the
lambda calculus with product-types (surjective pairing), function-types, and unit types, as defined

† A preliminary version of this paper was published in the proceedings of POPL’03 (Zibin et al., 2003).
‡ Research supported in part by the generous funding of the Israel Science Foundation, grant No. 128/02.
† Besides being sufficient for the proof of equations such as (1.1).
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by the followinggeneral grammar

τ ::= T | x | τ → τ | τ × τ ,

whereT is the unit type,x stands for an arbitrary primitive-type,→ denotes a function-type,
and× denotes a product-type.

In defining the isomorphism relation we shall use the following seven axiom schemas.

(A.1) A×T = A

(A.2) A → T = T
(A.3) T → A = A

(A.4) A×B = B ×A (Commutative)
(A.5) A× (B × C) = (A×B)× C (Associative)
(A.6) (A×B) → C = A → (B → C) (Currying)
(A.7) A → (B × C) = (A → B)× (A → C) (Distributive)

(Here and henceforth, the range of variablesA, B andC is any type expression in the general
grammar.)

For a long time, the problem of deciding first order isomorphisms of simple types was thought
to require exponential time (Bruce et al., 1991). It was recently shown (Considine, 2000) that
the variant of our interest can be decided inO(n2 log n) time andO(n2) space, wheren is the
length of some standard representation of the two input types. The main contribution of this paper
is an improvement of this result toO(n log2 n) time andO(n) space. We also give algorithms
usingO(n) time and space for important special cases.

1.1. Background

The arithmetic version of these seven axioms (substituting multiplication, exponentiation, and
the constant one, for×, → andT) was proved to be complete for the Cartesian closed cate-
gories (Bruce et al., 1991; Soloviev, 1983). Since the models of the lambda calculus with unit,
product- and function-types are exactly the Cartesian closed categories (Bruce et al., 1991), the
set is also complete for the type isomorphisms we examine. Through the Curry-Howard isomor-
phism (Howard, 1980), these isomorphisms are also equivalent to equational equality in posi-
tive intuitionistic logic so the same axioms apply there too (again, with appropriate notational
changes).

Besides their theoretical connections, type isomorphisms can be used as a means of searching
large program libraries. Specifically, the desired type of a function is used as a search key and
functions with isomorphic types are returned as candidates. A famous example (Rittri, 1990)
shows that even the simple function, folding a list, can be implemented with many different
types, varying argument order and the use of “Curried” style. Employing type isomorphisms
in the search will retrieve all compatible function implementations. Moreover, the isomorphism
proof can often automatically generate bridge code converting the functions found to the desired
type. It was even argued (Barthe and Pons, 2001) that type isomorphisms can be employed in
proof reuse.

Second order isomorphismsaugment first order isomorphisms with universal quantifiers, as
in ∀A.A → A = ∀B.B → B. Universal quantifiers make second order isomorphisms more
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effective in searching program libraries since they are necessary to capture parametric polymor-
phism. While some of the issues of second order isomorphisms are similar (some of the space
sharing techniques are applicable), they are known to be graph isomorphism complete (Basin,
1990; Di Cosmo, 1995) and we do not attempt to decide them in this work. A different system
of type isomorphisms is that of the core ML language. It is known (Di Cosmo, 1992) that second
order isomorphisms are insufficient to describe these, although the addition of one more axiom
suffices.

Recursivevariants of the type isomorphism problem at our hand were also considered in
the literature. In the Mockingbird project the recursive type system comprised of product- and
function-types (Auerbach and Chu-Carroll, 1997; Auerbach et al., 1998; Palsberg and Zhao,
2000). Gil (2001) describes how algorithms for polynomial equality can be used for deciding
isomorphism in the “algebraic type system”, i.e., the recursive type system comprising of union-
and product-types.

The more general isomorphism problem, for a non-recursive type system which includes
product-, union-andfunction-types is equivalent to Tarski’shigh school algebra problem(Tarski,
1951). Such a system does not have a finite and complete set of axioms. Nonetheless, there exists
a (non-polynomial) algorithm for determining isomorphism (Gurevič, 1985). There also exists
a (non-polynomial) algorithm for deciding isomorphism in the recursive “algebraic type sys-
tem” (Gil, 2001). Finally, we should mention that adding empty and sum types breaks down the
relationship between the equational theory and type isomorphisms (Fiore et al., 2002).

1.2. Definitions: The First Order Isomorphism Problem and its Variants

In this paper, we concentrate on first order isomorphism and two restricted variants (product and
linear isomorphism). We now make the necessary definitions in order to give a precise statement
of the problem and its variants.

Next we define four successive theories of isomorphism of types.

Definition 1.1. Let Equality be the theory of equality of types defined as the set of propositions
obtained by the deductive closure of the axiom schema

(A.0) A = A (Reflexive)

and the following four inference rules.

A = B
B = A

symmetry

A = B, B = C
A = C

transitivity

A = B, C = D
A× C = B ×D

congruence of×

A = B, C = D
A → C = B → D

congruence of→

Thus,Equality is the usual theory of equality, sometimes denoted asTh0 (Considine, 2000).
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Definition 1.2. Let Product be the theoryEquality augmented with axiom schemasA.1–A.5.
Let Linear be the theoryProduct augmented with axiom schemaA.6. Let First be the the-
ory Linear augmented with axiom schemaA.7.

TheoryProduct adds the unit axioms to the theory of equality as well as the rules of commu-
tative and associative products. The currying axiom is added in theoryLinear. Finally,First is the
theory of first order isomorphisms, which is often referred to in the literature asTh1

×T (Bruce
and Longo, 1985; Bruce et al., 1991; Di Cosmo, 1995).

WhenT does not occur in the input, it is convenient to use theory variants which do not
include the unit axioms.

Definition 1.3. Let Product− be the theoryEquality augmented with axiom schemasA.4 andA.5.
Let Linear− be the theoryProduct− augmented with axiom schemaA.6. Let First− be the the-
ory Linear− augmented with axiom schemaA.7.

Definition 1.4 (Axiom instance). An instance of an axiomA is the result of a consistent substi-
tution of all the variables inA by type expressions of the general grammar.

For example,
(
a → (T × b)

) × c = c × (
a → (T × b)

)
is an instance of the commutative

axiomA.4.

Definition 1.5 (Derivation sequence).Let Θ be a theory, e.g.,Θ = Equality, or Θ = First−.
Then, the sequenceτ1 = τ ′1, . . . , τm = τ ′m is called aderivation sequencein Θ if for i =
1, . . . ,m, τi = τ ′i is either an instance of an axiom inΘ or the result of applying one of the four
inference rules on previous equalities. For typesτ, τ ′ we writeΘ ` τ = τ ′ when there exists a
derivation sequence ending with the equalityτ = τ ′.

Let τ andτ ′ be two given types. We use the notationτ = τ ′ as an abbreviation forEquality `
τ = τ ′.

Definition 1.6. Thefirst order isomorphismproblem is to decide whetherFirst ` τ = τ ′.

The first order isomorphism problem has been known to be decidable for over a decade (Soloviev,
1983; Bruce et al., 1991). Previous to our work, the best known bound wasO(n2 log n) time
usingO(n2) space (Considine, 2000).Our main result is in reducing the time toO(n log2 n)
time and the space toO(n).

One of the difficult issues in obtaining an efficient algorithm for the problem is dealing with
the commutative and associative nature of product (axiomsA.4 andA.5). Concentrating on this
we define the product isomorphism problem.

Definition 1.7. Theproduct isomorphismproblem is to decide whetherProduct ` τ = τ ′.

We apply the standard abbreviation of using the
∏

symbol to denote (an associated to the left)
product of severalterms, i.e., fork ≥ 2,

k∏

i=1

τi =
(
· · ·

(
(τ1 × τ2)× τ3

)
· · · × τk

)
, (1.2)
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When the commutative and associative axioms apply, we shall write products without paren-
thesis. Consider, for example, the following product:

abracadabra. (1.3)

(Lower case, sanserif letters denote here and henceforth primitive-types. We shall use the arith-
metical and type notations interchangeably. No confusion will arise.) An instance of the product
isomorphism problem variant is to determine whether the above is isomorphic to

carrabadaba. (1.4)

One may be tempted to attack the problem by bringing each product into a unique sorted normal
form, which in this case is

aaaaabbcdrr. (1.5)

In this paper we show that the product isomorphism problem is decidable in linear time.‡ This
result is based on the observation that it can be determined that (1.3) and (1.4) are isomorphic
without using a super-linear sorting procedure, but rather by employing an algorithm formulti-
set comparison. More generally, to determine whether

∏k
i=1 Ai is isomorphic to

∏k
i=1 Bk the

multi-set comparison algorithm checks whether there exists a permutationπ such thatAπ(i) is
isomorphic toBi.

This product isomorphism variant was not considered previously as such in the literature.
Palsberg and Zhao (2000) gave anO(n2) time algorithm for arecursiveproduct isomorphism
problem, defined by the addition of a grammar ruleτ ::= µα.τ whereα is a type variable, and a
folding/unfolding axiom

(A.8) µα.A = A[(µα.A)/α].

(As usual, the notationA[B/α] stands for a type expressionA where each occurrence ofα is
replaced byB.) This result was later improved toO(n log n) time (Jha et al., 2002a) using a
reduction to the problem of finding size-stable partitions of a directed graph.

We note that the recursive product isomorphism problem is not a simple a generalization of our
product isomorphism problem. The reason is that isomorphism between recursive product-types
should be defined in terms of their infinite unfoldings which are regular trees. To reason about
these infinite structure, inductive variants of thecongruence of× andcongruence of→ infer-
ence rules must be used. It was found (Palsberg, personal communication) that the combination
of these variants with the folding/unfolding axiom and the unit axiomsA.1–A.3. gives rise to
an inconsistent system. These axioms were therefore omitted from the recursive product type
systems. It remains a challenge to find a reformulation of the inference rules in Definition 1.1
which is consistent with all axiomsA.1–A.8.

More difficult than the problem of product isomorphism is the problem variant defined by
theLinear theory, which adds the currying axiom.

Definition 1.8. The linear isomorphismproblem is to decide whetherLinear ` τ = τ ′.

‡ Jha (personal communication, September 2002) reports on independent discovery of an algorithm for this sub-
problem, with similar complexity bounds, published in (Jha et al., 2002b).
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Polynomial time results for this problem were known before those of the first order problem.
Linear isomorphism can be decided in linear space andO(n log2 n) time (Andreev and Soloviev,
1997). Although not previously mentioned, both algorithms (Jha et al., 2002a; Considine, 2000)
improve the running time toO(n log n). We advance the state of the art by showing that linear
isomorphism is also decidable in linear time.

Linear isomorphism combined with the folding/unfolding axiom may generate products with
an unbounded number of terms, which makes it difficult to apply the standard algorithms for
recursive type isomorphisms. Consider, for example, the type

µα.(a → α). (1.6)

The following equality is an instance of the folding/unfolding axiom

µα.(a → α) = a → (
µα.(a → α)

)
.

Repeated use of the folding/unfolding axiom proves that type (1.6) is isomorphic to

a →
(

a → · · · → (
µα.(a → α)

) · · ·
)

.

Finally, by using the currying axiom we can produce a product with any number of terms.
The final step toward solving the first order isomorphism problem is to deal with the distribu-

tive axiomA.7. As we shall see, the difficulty in doing so is that a naive application of this axiom
may lead to an exponential blowup of the input types.

1.3. Intuition: Reduction Systems and Normal Forms

Isomorphism proofs are usually based uponreduction systemsproducing a normal form repre-
sentation of the input, which can be more easily compared. We assume that types use a standard
expression-tree representation in memory, and that eachrule applicationin the reduction system
is implemented as a transformation of this data structure.

For example, the reduction system of Rittri (1990) has seven rules

R.1 T×A ⇒ A

R.2 A×T ⇒ A

R.3 T → A ⇒ A

R.4 A → T ⇒ T
R.5 A× (B × C) ⇒ (A×B)× C

R.6 A → (B → C) ⇒ (A×B) → C

R.7 A → (B × C) ⇒ (A → B)× (A → C)

(1.7)

Rittri proved that the rulesR.1–R.7 are confluent and terminating. Therefore, by repeated appli-
cation of the rules the input types are reduced to anormal form.

In the degenerate case in which one or both of the inputs is reduced toT, the input types are
isomorphic if and only if they both reduce toT. (This intuitive statement is given a formal proof
in Section 2.) Otherwise, the normal forms do not contain the symbolT. Furthermore, these rules
can always simplify the structure of the right operand of→, unless it is a primitive-type.

An algorithm for deciding first order isomorphism is to recursively compare the resulting
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normal forms: two nodes are isomorphic if they are of the same kind (product or function) and
their operands are isomorphic. In function-nodes the comparison of arguments is straightforward:
the left (right) operand of one node must be isomorphic to the left (right) operand of the other.
In comparing product-nodes however we must solve an instance of the product polymorphism
problem to check whether the terms of one node is pair-wise isomorphic to some permutation of
the terms of the other node. If this comparison is not done carefully it adds to the complexity of
the problem.

An even more serious inefficiency factor is that the system (1.7) (specifically, the distributive
ruleR.7) may introduce an exponential blowup in the size of the representation. RulesR.1–R.6
do not increase the representation size. However, each application ofR.7 creates a duplicate
copy of the subtree whose root isA. Repeated applications may produce a very large normal
form representation. In the sequence of types{Xi}, defined byX0 = a andXi = (bici)Xi−1

for i > 0, we have thatXn ⇒ bXn−1
n cXi−1

i and successive applications of this rule to each
occurrence ofXi, i = n − 1, . . . , 1, will lead to exponentially many copies ofa in the normal
form of Xn.

If graphs, rather than trees, are used to represent types, then an application ofR.7, can be im-
plemented bysharingthe node representingA. This sharing can be thought of as an application
of a slightly different transformation

A → (B × C) ⇒
{

(α → B)× (α → C)

α = A
, (1.8)

where a newly introduced symbolic variableα is represented as a pointer to the data-structure
representation of typeA.

Rittri (1991) observed that using (1.8) ensures a polynomially sized representation of the nor-
mal form: Each application of transformation (1.8) adds one edge to the graph. The application
reduces the nesting level of the× node, and this nesting level cannot be increased by the other
rules. We obtain that the space of the graph normal form isO(n2) by noticing that initially
there are at mostn product-nodes, and that even though additional product-nodes may be created
byR.6, these nodes cannot take part in the other two rules.

To see that the representation can indeed by quadratic, consider the following example (written
using the arithmetical notation):

(
b1

(
b2 · · ·

(
bn−2(bn−1ban

n )an−1

)an−2 · · ·
)a2

)a1

, (1.9)

whose normal form is

ba1
1 ba2a1

2 · · · ban−1···a1
n−1 ban···a1

n . (1.10)

This normal form consumes quadratic space if derived by applyingR.7 starting at the inner most
parenthesis.

Remark 1.9. Deriving (1.9) starting at the outer-most parenthesis, yields the representation

bα1
1 · · · bαn

n , (1.11)
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whereα1 = a1, andαi = aiαi−1 for i = 2, . . . , n. Note that (1.11) requires only linear space
whereas (1.10) is quadratic.

Having bounded the space explosion, Rittri stopped short of giving a polynomial time algo-
rithm for the problem. By noticing that the graph representation is acyclic, and by using a variant
of Rittri’s normal form, Considine (2000) was able to reduce the runtime to polynomial. We
should note that Considine’s rules were different than Rittri’s in that ruleR.6 was applied in the
opposite direction. The resulting normal form is such that instead ofABCD, it uses the equivalent

representation
((

AB
)C

)D

. Thus, strictly speaking, his normal form did not use product-nodes,

other than in the upper most level. However, the alternative representation must still deal with the
difficulties of associativity and commutativity as in the more familiar representation of products.

Considine’s algorithm partitions all nodes in the directed acyclic graph (DAG) representation
of the input types into equivalence classes, such that all nodes in the same equivalence class are
isomorphic. This partitioning is built in a bottom-up traversal of the DAGs, while maintaining
a hash table mapping each node into the unique identifier of its equivalence class. The most
difficult task in this traversal was to determine whether product-nodes are isomorphic. Two key
properties made Considine’sO(n2 log n) time andO(n2) space result possible:

1. Expansion of product-types.Considine showed that his normal form, which includes
complete expansion of product-types, is such that each product consists of no more
thann terms.

2. Sorting product terms.Since the graph is acyclic, terms in product-types must have
been visited and classified by the bottom up traversal before the product itself. Each
product-node is first normalized by sorting the identifiers of the equivalence classes of
their terms. The fact that the order of terms is completely determined by this sorting
makes it possible to employ ahash-consingtechnique to produce a unique identifier for
each product-type, thereby partitioning product-type nodes into equivalence classes.

Our algorithm uses the same bottom-up classification of nodes into equivalence classes. However,
the reduction of space toO(n) and of time toO(n log2 n) are made possible by breaking away
from the above principles. Specifically, the new algorithm is characterized by:

1. Application ofR.7 to “outer-most” functions first.As demonstrated in Remark 1.9 the
space is kept linear if the distributive rule is applied starting at the outer-most parenthe-
sis.

2. Unexpanded product-types.The expansion of product-types leads to quadratic time and
space. Instead, we describe a graph based representation, which keeps the space linear,
and show that unexpanded products can still be efficiently compared.

3. Unsorted product terms.Isomorphism of product-nodes is decided by a procedure which
can be thought of as hashing or range compaction, rather than sorting. A similar pro-
cedure is used to partition the multi-sets of products in each stage of the traversal into
their equivalence classes.

Road map Our algorithms employ four successive normal forms, all of which can be com-
puted in linear time and space. Each normal form stands for a “simpler” isomorphic representa-
tion, obtained by exhaustively applying some of the rules (1.7).
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The normal formnfT, described in Section 2, is computed by applying rulesR.1–R.4 to
remove (essentially) all occurrences ofT. We further show in this section, thatnfT makes it
possible to completely ignore the unit axioms in the main algorithms.

The normal formnfc, which takes care of thecurrying axiom, is the subject of Section 3,
where we show how linear isomorphism can be reduced to product isomorphism.

To solve the product isomorphism problem, we need a procedure for comparing long products
without sorting their terms. Section 4 develops this procedure as part of a general algorithm for
multi-set partitioning. Section 5 then gives the concrete algorithm for the product isomorphism
problem. In the algorithm theassociativeruleR.5 is first applied to produce the normal formnfa.
The normalized types are then compared in a bottom-up traversal, while invoking the multi-set
partitioning algorithm at each level.

Section 6 then shows how an exhaustive application of thedistributive rule R.7 produces
the normal formnfd. A linear space encoding fornfd, called theP/F-graph, is also described
in this section. Unexpanded products in theP/F-graph form atree structure, such that each
product inherits the terms of its parent. Section 7 employs multi-set partitioning in comparing
unexpanded products in this tree structure. Section 8 fine-tunes this procedure to its application in
a bottom-up classification of the nodes of theP/F-graph. Finally, we present our main algorithm
for deciding first order isomorphisms of simple types in Section 9. Section 10 lists some open
questions.

2. Eliminating Unit Types

This section describes a linear time and space algorithm for eliminating the unit axioms. Algo-
rithm EliminateUnits receives as input two types:τ andτ ′, both conforming to thegeneral
grammar, describing arbitrary first order types.

General Grammar

τ ::= T | x | τ → τ | τ × τ.

The output comprises two typesσ andσ′, such that

First ` τ = τ ′ ⇔ First− ` σ = σ′.

(At the end of this section we show that a similar claim can be made with regards to theo-
riesLinear andProduct.) The details are in Algorithm 1.

If either of τ or τ ′ is isomorphic toT then the algorithm returns a decision whetherFirst `
τ = τ ′ (lines 4 and 6). Otherwise, i.e., when bothτ andτ ′ are not isomorphic toT, the algorithm
returns two typesσ andσ′ such thatFirst ` τ = τ ′ ⇔ First− ` σ = σ′ (line 8). Bothσ andσ′

conform to the followingno-unit grammar, in which the symbolT never occurs.

No-Unit Grammar

τ ::= x | τ → τ | τ × τ

The crux of the algorithm is the transformation of the inputs into their normal form in lines 1
and 2. For a typeτ , its normal formnfT(τ) is a type isomorphic toτ , i.e.,First ` τ = nfT(τ),
wherenfT(τ) is either the typeT or it conforms to the no-unit grammar.
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Algorithm 1 EliminateUnits (τ, τ ′)
Given two typesτ and τ ′ conforming to the general grammar, return either (i) a
decision whetherFirst ` τ = τ ′, or (ii) a pair of two typesσ, σ′ conforming to the
no-unit grammar such thatFirst ` τ = τ ′ ⇔ First− ` σ = σ′.

1: σ ← nfT(τ)
2: σ′ ← nfT(τ ′)
3: If σ = T and σ′ = T then
4: return true // Typesτ andτ ′ are isomorphic
5: else ifσ = T or σ′ = T then
6: return false // Typesτ andτ ′ are not isomorphic
7: else
8: return 〈σ, σ′〉
9: fi

The following is an algorithmic definition of the normalizing functionnfT.§ The function
recursively traverses the tree representing the input type, while applying rulesR.1–R.4 whenever
possible.

nfT(τ) =





T if τ = T

x if τ = x

R1,2(nfT(τa), nfT(τb)) if τ = τa × τb

R3,4(nfT(τa), nfT(τb)) if τ = τa → τb

(2.1)

After the children of a node have been simplified by the recursive calls, functionnfT may invoke,
depending on the node type, one of two auxiliary functions to simplify the node itself. The first
such function applies the product-unit rules (R.1 andR.2).

R1,2(σa, σb) =





σb if σa = T // apply ruleR.1

σa if σb = T // apply ruleR.2

σa × σb otherwise

(2.2)

The other auxiliary function applies the function-unit rules (R.3 andR.4).

R3,4(σa, σb) =





σb if σa = T // apply ruleR.3

T if σb = T // apply ruleR.4

σa → σb otherwise

(2.3)

Let |τ | denote thesizeof a typeτ , defined as the number of nodes in the standard abstract
syntax tree representation ofτ . Many of our proofs employstructural inductionwhich is essen-
tially induction on the input size. In the inductive step, we shall rely on thetype decomposability
property: if |τ | > 1 (i.e., τ 6= x andτ 6= T) thenτ is represented as a type-operator node with
two children representing typesτa andτb, such that|τ | = |τa|+ |τb|+ 1.

§ Here and henceforth, we use the same notation for thenormal form, and for the (algorithmic) function which given a
type, generates and returns its normal form. No confusion should arise as a result of this overloading.
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Lemma 2.1. Let τ be a type which conforms to the general grammar, and letσ = nfT(τ). Then,
(i) the invocationnfT(τ) requiresO(|τ |) time, (ii) |σ| ≤ |τ |, (iii) σ = T or σ conforms to the
no-unit grammar, and(iv) Product ` τ = σ.

PROOF. All parts are proved by structural induction. The inductive base,|τ | = 1, is covered
by the first two cases (τ = x andτ = T) in (2.1). Both these cases execute in constant time,
and their output is identical to their input. Moreover, this output either conforms to the no-unit
grammar or isT.

In proving the inductive step we use the inductive hypothesis and the decomposability prop-
erty. For(i) we note that only a constant amount of work is carried out prior to and after the
recursive calls (i.e., inR1,2 andR3,4). Noting thatR1,2 andR3,4 do not create new nodes proves
the inductive step of(ii) . The inductive step of(iii) is carried out by checking that the output
of R1,2 andR3,4 satisfies(iii) whenever their input does. Part(iv) is proved by noting that func-
tionsR1,2 andR3,4 only apply rules conforming to the axiomsA.1–A.4.

Lemma 2.1 proves the correctness of Algorithm 1 in the cases it terminates in line 4. Next
we would like to prove that when the algorithm terminates in line 6 thenτ andτ ′ are indeed not
isomorphic. Note that the algorithm terminates in line 6 if and only if eitherσ = T andσ′ 6= T or
the reverse. Therefore we must prove thatT cannot be isomorphic to any typeσ which conforms
to the no-unit grammar. We will use the technique of abstract interpretation (Cousot and Cousot,
1992) for doing so.

For a typeτ define the abstract interpretation functionisT(τ) as follows

isT(τ) =





1 if τ = T

0 if τ = x

isT(τa) · isT(τb) if τ = τa × τb

isT(τb) if τ = τa → τb

(2.4)

Note thatisT(τ) returns either 0 or 1. We next prove thatisT(τ) is 1 precisely whennfT(τ) = T
(hence the nameisT).

Lemma 2.2. nfT(τ) = T ⇔ isT(τ) = 1.

PROOF. By examining the definitions ofnfT, R1,2 andR3,4 we see thatnfT(τ) = T if and
only if one of the following holds

1. τ = T.
2. τ = τa × τb, wherenfT(τa) = T andnfT(τb) = T.
3. τ = τa → τb, wherenfT(τb) = T.

ThereforenfT(τ) = T if and only if isT(τ) = 1.

Lemma 2.3. First ` τ = τ ′ ⇒ isT(τ) = isT(τ ′)

PROOF. By induction on the length of the derivation sequence ofFirst ` τ = τ ′. Recall that
each equality in the derivation sequence is either an instance of an axiom or an application of
one of the inference rules on previous equalities.

The induction base is that there is precisely one such equalityτ = τ ′, which must be an
instance of an axiomA.0, . . . ,A.7. We can easily check in each of the axioms thatisT(τ) =
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isT(τ ′). For example, ifτ = τ ′ is an instance ofA.7. thenτ = τa → (τb × τc) andτ ′ = (τa →
τb)× (τa → τc). We have

isT(τ) = isT
(
τa → (τb × τc)

)
= isT(τb × τc) = isT(τb) · isT(τc),

and

isT(τ ′) = isT
(
(τa → τb)× (τa → τc)

)
= isT(τa → τb) · isT(τa → τc) = isT(τb) · isT(τc).

To prove the induction step we examine the last step of the derivation sequence. If this step
is an axiom instance, then the same considerations as in the induction base apply. Otherwise
one of the following inference rules was applied: symmetry, transitivity, congruence of×, or
congruence of→. We can easily check each of inference rules by using the inductive hypothesis.
For instance, suppose that the congruence rule of× was applied:

τa = τb, τc = τd

τa × τc = τb × τd

.

By the inductive hypothesis, we have thatisT(τa) = isT(τb) andisT(τc) = isT(τd). Therefore,
we can deduce that

isT(τa × τc) = isT(τa) · isT(τc) = isT(τb) · isT(τd) = isT(τb × τd).

Corollary 2.4. Let σ be a type conforming to the no-unit grammar. Thenσ is not isomorphic
to T, i.e.,First 6` σ = T.

PROOF. Assume by contradiction thatFirst ` σ = T. Then, by Lemma 2.3,isT(σ) = isT(T).
Sinceσ conforms to the no-unit grammar, we have thatisT(σ) = 0, which contradicts the fact
thatisT(T) = 1.

Finally, we will prove the correctness of Algorithm 1 in the cases it terminates in line 8, i.e.,
we need to show that

First ` τ = τ ′ ⇔ First− ` nfT(τ) = nfT(τ ′).

The⇐ direction follows directly from Lemma 2.1(iv) combined with the facts thatFirst− ⊆ First

andProduct ⊆ First.

Lemma 2.5. Let τ andτ ′ be two types conforming to the general grammar. Then,

First ` τ = τ ′ ⇒ First− ` nfT(τ) = nfT(τ ′).

PROOF. By induction on the length of the derivation sequence ofFirst ` τ = τ ′, whose final
step must be the equalityτ = τ ′. In the induction base, this equality must be instance of one of
the axiomsA.0, . . . ,A.7. If τ = τ ′ is an instance ofA.3, thenτ = T → τa andτ ′ = τa. We
see thatnfT(τ) = nfT(τ ′), and henceFirst− ` nfT(τ) = nfT(τ ′). A similar consideration and
conclusion applies ifτ = τ ′ is an instance of axiomsA.0–A.2

Suppose thatτ = τ ′ is an instance of the commutative axiomA.4, i.e.,τ = τa × τb andτ ′ =
τb × τa. We have

nfT(τ) = R1,2(nfT(τa), nfT(τb)),

nfT(τ ′) = R1,2(nfT(τb),nfT(τa)).
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If either nfT(τa) = T or nfT(τb) = T thennfT(τ) = nfT(τ ′), thereforeFirst− ` nfT(τ) =
nfT(τ ′). Otherwise

nfT(τ) = nfT(τa)× nfT(τb),

nfT(τ ′) = nfT(τb)× nfT(τa),

and the commutative axiomA.4 proves thatFirst− ` nfT(τ) = nfT(τ ′). A similar, though more
laborious, consideration proves the same induction base in the case thatτ = τ ′ is an instance
of A.5–A.7.

In the induction step, we focus on the case that the final equality was obtained by one of the
inference rules: symmetry, transitivity, congruence of×, or congruence of→. (The case that this
equality is an axiom instance is identical to the induction base.)

Consider, for instance, the inference rule for congruence of×. Thenτ = τa × τb andτ ′ =
τc × τd. The inductive hypothesis is thatFirst− ` nfT(τa) = nfT(τc) andFirst− ` nfT(τb) =
nfT(τd). We need to show thatFirst− ` nfT(τa × τb) = nfT(τc × τd), or in other words, that

First− ` R1,2

(
nfT(τa), nfT(τb)

)
= R1,2

(
nfT(τc), nfT(τd)

)
. (2.5)

Examining definition (2.2) ofR1,2 we see that the proof must distinguish between several cases,
depending on whether the arguments to this function areT.

To make this distinction, we apply Lemma 2.3, obtaining thatnfT(τa) = T if and only
if nfT(τc) = T, andnfT(τb) = T if and only if nfT(τd) = T. (The lemma condition is met by
the inductive hypothesis and the fact thatFirst− ⊆ First.)

Consider the case thatnfT(τa) 6= T andnfT(τb) 6= T. Then, (2.5) takes the form

First− ` nfT(τa)× nfT(τb) = nfT(τc)× nfT(τd).

The derivation sequence for this can be obtained by concatenating the derivation sequences of the
inductive hypothesis and a single application of the congruence of× inference rule. The other
cases of (2.5) are simpler, since the desired derivation sequence is one of those of the inductive
hypothesis.

The induction step in the case the final equation is an instance of any of the other inference
rules is carried out similarly.

It is straightforward to check that ifσ conforms to the no-unit grammar, thennfT(σ) = σ. We
therefore have:

Corollary 2.6. Suppose that bothτ andτ ′ conform to the no-unit grammar. Then,

First ` τ = τ ′ ⇔ First− ` τ = τ ′.

Much in the same fashion we can show

Corollary 2.7. Suppose that bothτ andτ ′ conform to the no-unit grammar. Then,

Linear ` τ = τ ′ ⇔ Linear− ` τ = τ ′,

Product ` τ = τ ′ ⇔ Product− ` τ = τ ′.
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3. Reduction of Linear Isomorphism to Product Isomorphism

In this section we show a linear time and space reduction of linear isomorphism to product iso-
morphism. The inputs are two typesτ andτ ′ conforming to the no-unit grammar. The algorithm
outputs are two typesσ, σ′ such that

Linear− ` τ = τ ′ ⇔ Product− ` σ = σ′.

Noting thatLinear− adds toProduct− the currying axiom (A.6), the algorithm converts the
inputsτ andτ ′ into a normal form in which all curried functions are brought into an equivalent
un-curried representation. This is achieved by recursively applying the anti-currying ruleR.6 to τ

andτ ′. The result then conforms to the un-curried grammar, in which the patternA → (B → C)
is not allowed.

Un-curried Grammar

τ ::= x | τ → x | τ → (τ × τ) | τ × τ

Algorithmically, the normal form is computed using functionnfc.

nfc(τ) =





x if τ = x

nfc(τa)× nfc(τb) if τ = τa × τb

R6(nfc(τa), nfc(τb)) if τ = τa → τb

(3.1)

If a node represents a function-type, then functionR6 checks whether the return type of this
function is another function type, and if so, applies the anti-currying rule.

R6(σa, σb) =

{
(σa × σ1) → σ2 if σb = σ1 → σ2 // apply ruleR.6

σa → σb otherwise
(3.2)

Lemma 3.1. Let τ be a type conforming to the no-unit grammar, and letσ = nfc(τ). Then,(i)
the callnfc(τ) executes inO(|τ |) time; (ii) Linear− ` τ = σ; (iii) |σ| = |τ |; and(iv) type σ

conforms to the un-curried grammar.

PROOF. Parts(i), (ii) , and(iii) are proved by structural induction, following the outline of the
proof of Lemma 2.1.

In proving (iv) we note that there are two restrictions in the un-curried grammar. The first is
that there are no occurrences ofT. This follows from the assumption thatτ conforms to the
no-unit grammar.

The second restriction is that the return type of all function-types is not a function-type. We
show thatnfc(τ) conforms to this restriction by induction on the depth of the recursive calls
of nfc. The inductive base is the first case of (3.1) and is trivial. In the inductive step we must
show that the return type of a function cannot be a function itself. A node corresponding to a
function-type can be generated bynfc only in the third case of (3.1). This node itself is generated
by the invocationR6(σa, σb). Examining (3.2) we see that the return type of this node isσb

precisely whenσb is not a function-type. If howeverσb is a function-type, i.e.,σb = σ1 → σ2,
then recall thatσb was computed by a recursive application ofnfc. Therefore, by the inductive
hypothesis,σ2, the return type of the current node is not a function-type.

It follows from Lemma 3.1(ii) that if the normal formsnfc(τ) andnfc(τ ′) are isomorphic by
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applications of the commutative and associative axioms, thenτ andτ ′ are also isomorphic by
application of the commutative, associative and currying axioms, i.e.,

Product− ` nfc(τ) = nfc(τ ′) ⇒ Linear− ` τ = τ ′. (3.3)

The remainder of this section is dedicated to proving the converse, i.e., that after the types where
brought to their un-curried normal form, all that is required in deciding isomorphism is to apply
the commutative and associative axioms. The proof is similar in spirit to that of Andreev and
Soloviev (1997).

Lemma 3.2. Linear− ` τ = τ ′ ⇒ Product− ` nfc(τ) = nfc(τ ′).

PROOF. The proof is by induction on the length of the derivation sequence ofLinear− ` τ =
τ ′, and follows the same outline as the proof of Lemma 2.3.

The induction base is thatτ = τ ′ is an instance of an axiomA.0, . . . ,A.6. This cannot be one
of the unit axiomsA.1, . . . ,A.3 since by assumptionT does not occur in the input. In the case
that the reflexive axiom (A.0) was applied, it is trivial to see thatnfc(τ) = nfc(τ ′).

In the case that this axiom was the commutative axiom (A.4), thenτ = τa × τb andτ ′ =
τb × τa. It is easy to see thatnfc(τ) = nfc(τa) × nfc(τb) andnfc(τ ′) = nfc(τb) × nfc(τa).
Therefore,Product− ` nfc(τ) = nfc(τ ′). Similar consideration apply when this axiom was the
associative axiom (A.5).

The last axiom to consider is the currying axiomA.6. In this caseτ = (τa × τb) → ρ

andτ ′ = τa → (τb → ρ). There are two cases to consider:

1. Typeρ is not a function-type.Examining the definitions (3.1) and (3.2), we find that

nfc(τ) = nfc(τ ′) =
[
nfc(τa)× nfc(τb)

]
→ nfc(ρ).

2. Typeρ is a function-type.In this case we find the maximalk such thatρ can be written
as

ρ = ρ1 →
(
ρ2 → · · · (ρk−1 → ρk) · · · ).

Note that, by definition,ρk is not a function-type. Let

% = nfc(ρ1)×
(

nfc(ρ2)× · · · ×
(
nfc(ρk−2)× nfc(ρk−1)

) · · ·
)
.

It is then easy to check that

nfc(τ) =
[(

nfc(τa)× nfc(τb)
)× %

]
→ nfc(ρk),

nfc(τ ′) =
[
nfc(τa)× (

nfc(τb)× %
)] → nfc(ρk).

In both cases we have thatProduct− ` nfc(τ) = nfc(τ ′).
To prove the induction step we examine the last step of the derivation sequence. If this step

is an axiom instance, then the same considerations as in the induction base apply. Otherwise
one of the following inference rules was applied: symmetry, transitivity, congruence of×, or
congruence of→. The only difficulty is with the congruence rule of→. Consider an instance of
this inference rule:

τa = τb, τc = τd

τa → τc = τb → τd

.
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By the inductive hypothesis, we have thatProduct− ` nfc(τa) = nfc(τb) and Product− `
nfc(τc) = nfc(τd). We would like to prove thatProduct− ` nfc(τa → τc) = nfc(τb → τd).

Note that sinceProduct− ` nfc(τc) = nfc(τd), their root nodes have the same type, i.e.,
both nfc(τc) andnfc(τd) are product-types, function-types, or primitive-types. There are two
cases to consider:

1. Typesnfc(τc) andnfc(τd) are both not function-types.We find that

nfc(τa → τc) = nfc(τa) → nfc(τc),

nfc(τb → τd) = nfc(τb) → nfc(τd).

2. Typesnfc(τc) andnfc(τd) are both function-types.Let nfc(τc) = % → ρ andnfc(τd) =
%′ → ρ′. SinceProduct− ` nfc(τc) = nfc(τd) we have thatProduct− ` % = %′

andProduct− ` ρ = ρ′. It is then easy to check that

nfc(τa → τc) =
[
nfc(τa)× %

]
→ nfc(ρ),

nfc(τb → τd) =
[
nfc(τb)× %′

]
→ nfc(ρ′).

In both cases we have thatProduct− ` nfc(τa → τc) = nfc(τb → τd).

4. Multi-set Partitioning Algorithms

For the purpose of processing product-nodes in which the terms are unsorted, we need a linear
time procedure for comparing multi-sets. More generally, we develop in this section an algo-
rithm for partitioning a collection of multi-sets of integers into equivalence classes. This algo-
rithm runs inO(n) time, wheren is the size of the input representation, while using temporary
(uninitialized) storage whose size is the maximal input value. Cai and Paige (1995) review other
linear-time algorithms for partitioning multi-sets.

Definition 4.1 (Compact integer partitioning).
Given integersa1, . . . , an, whereai ∈ [1, n] for i = 1, . . . , n, thecompact integer partitioning
problemis to partition the input into its equivalence classes, i.e., all equal integers will be in the
same partition (and only them).

The output partitioning is presented with respect to the input: Each equivalence class is pro-
duced as a list of indices,i1, . . . , im, such thatai1 = · · · = aim . The partitioning into equivalence
classes is thus represented as a list of lists of indices.

Lemma 4.2. Compact integer partitioning can be solved inO(n) time andO(n) space.

PROOF. A standard bucket sort algorithm usingn buckets achieves these bounds.

More general than compact integer partitioning is the case that the input range is not restricted
to the range[1, n].

Definition 4.3 (Broad integer partitioning).
Given integersa1, . . . , an, whereai ∈ [1, U ] for i = 1, . . . , n, thebroad integer partitioning
problemis to partition the input into its equivalence classes.
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To deal with this problem, we first reduce the input range.

Definition 4.4 (Renaming). Let U be an arbitrary domain and letΓ ⊆ U , |Γ| = n. Then a
partial functionΩ : U 7→ [1, n] is a renamingof Γ if Ω is defined onΓ and for anya, b ∈ Γ,

a 6= b ⇒ Ω(a) 6= Ω(b).

Algorithm 2 finds a renaming function for a sequence of integers drawn from the range[1, U ].
The algorithm uses the standard trick of inverse pointers to maintainO(1) access time into a
sparse uninitialized array of arbitrary size. Note that main loop invariant:After processing indexi,
thenΩ[ai] = t andf[t] = ai, for somet ∈ [1, `].

Algorithm 2 Rename(a1, . . . , an)
Given the sequencea1, . . . , an, whereai ∈ [1, U ], i = 1, . . . , n, return (i) ` =
|{a1, . . . , an}| and (ii) a renaming function represented as an arrayΩ[1, . . . , U ],
such thatΩ[ai] is a unique integer in the range[1, `]. The values of the other entries
of Ω are arbitrary.

1: Ω ← new int[U] // An uninitialized array of sizeU
2: f← new int[n] // The inverse mapping ofΩ
3: ` ← 0 // ` is the current number of distinct values in the input
4: For i = 1, . . . , n do // ComputeΩ[ai]
5: t ← Ω[ai] // t may be arbitrary if the value ofai is new
6: If 1 ≤ t ≤ ` andalso f[t] = ai then
7: next i // No new mapping sinceai = aj for somej < i

8: else// Create a new mapping entry
9: ` ← ` + 1 // A new distinct input value

10: Ω[ai] ← ` // Store the mapping entry
11: f[`] ← ai // Record the inverse pointer
12: fi
13: od

Renaming makes it possible to generalize Lemma 4.2.

Lemma 4.5. Broad integer partitioning can be solved inO(n) time andO(U + n) space.

PROOF. After applying Algorithm 2, we apply arenaming process, i.e., the replacementai ←
Ω(ai) for i = 1, . . . , n. The problem is then reduced to compact integer partitioning.

A more general partitioning problem is when the input consists of ordered pairs.

Definition 4.6 (Pair partitioning). Given a collectionΓ of n pairs of integers

〈a1, b1〉, . . . , 〈an, bn〉,
whereai, bi ∈ [1, U ] for i = 1, . . . , n, thepair partitioning problemis to partitionΓ into its
equivalence classes.

Lemma 4.7. The pair partitioning problem can be solved inO(n) time andO(U + n) space.
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PROOF. Apply broad integer partitioning first ona1, . . . , an to obtain an initial partitioning
of Γ. Each of the resulting equivalence classes is then refined by broad integer partitioning with
respect to thebi’s.

Renaming with pair partitioning is also easy. Each pair is replaced by the index of its equiva-
lence class. In fact, every partitioning algorithm gives rise to a corresponding renaming.

Lemma 4.7 can be generalized further.

Lemma 4.8 (Tuple partitioning). Given a collectionΓ of n tuples ofk integers each, where
each integer is drawn from the range[1, U ], it is possible to partitionΓ into its equivalence
classes, inO(nk) time andO(U + n) extra space.

PROOF. Similar to Lemma 4.7, however, instead of two passes we now havek passes. The
input to the first pass is the entire collectionΓ, and the output is a partitioning ofΓ according to
the first element of each tuple.

The output of passi is a partitioning ofΓ satisfying the following invariant:all elements in the
same partition have an equali-prefix, i.e., the same firsti integers in their tuples.Passi refines
each partition by applying broad integer partitioning according to theith element of each tuple.
Since broad integer partitioning is performed in linear time, the running time of a pass is linear
in the sum of partition sizes, which is exactlyn = |Γ|. Thus the total running time isO(nk).

At the end of thekth pass the tuple partitioning problem is solved. Broad integer partitioning
requires (reusable)O(U + n) space. In addition, onlyO(n) space is required for storing the
current partitioning ofΓ in the form of indices to the input array.

Notice that the time requirement in the above is linear in the size of the input, not the number
of tuples. Also, observe that the algorithm for the tuple partitioning problem is in factincremental
in the sense that in theith pass we only examine theith integer in each tuple.

Corollary 4.9 (Incremental tuple partitioning).
Let Γ be a collection ofn tuples ofk integers each, where each integer is drawn from the
range[1, U ]. Then, it is possible to incrementally partitionΓ in k passes where theith com-
ponent of each tuple is specified in theith pass, inO(n) time for each pass andO(U + n) extra
space.

A more challenging situation occurs in the case that the input consists of unordered tuples,
rather than tuples. Next we will show that multi-set partitioning can also be solved in time linear
in the size of the input.

Definition 4.10 (Multi-set partitioning). Given a collectionΓ of multi-sets of integers drawn
from the range[1, U ], the multi-set partitioning problemis to partitionΓ into its equivalence
classes.

Lemma 4.11. Multi-set partitioning can be solved inO(n) time andO(U + n) space, wheren
is the sum of sizes of all multi-sets.

PROOF. First, Algorithm 2 is invoked to rename all integers in the input to fit the range[1, n].
The next step is to sort the multi-sets. However, if each of these is sorted independently the
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running time would not be linear. Instead, we concatenate the sets together, prefixing each in-
put integer with the identifier of its multi-set. All the multi-sets can then be sorted by a single
application of a radix sort.

We stress that we sort therenamedintegers, not the initial multi-sets. This process is known
asweak sort(Paige, 1994). Weak sort is possible in linear time since the renaming process is not
order preserving.

Next, the ordered multi-sets are partitioned according to size. Each such partition is a collec-
tion of ordered multi-sets of equal size; in other words, each partition is a collection of tuples
of equal size. All that is left is to solve the tuple partitioning problem, employing Lemma 4.8 in
each partition.

5. An Algorithm for the Product Isomorphism Problem

After units are eliminated, product isomorphism theory has only the commutative and associative
axioms. These axioms allow products to be reordered until the two types match. Thus product
isomorphism is in essence a series of multi-set partitioning problems. In this section we use the
algorithms described in the previous section for these problems in developing anO(n) time and
space algorithm for product isomorphism. This algorithm receives two types,τ andτ ′, conform-
ing to the no-unit grammar, and determines whetherProduct− ` τ = τ ′.

The algorithm begins byflattening all productsin the input, so that it conforms to the following
product grammar.

Product Grammar

ρ ::=

k∏
i=1

σ (k ≥ 1)

σ ::= x | ρ → ρ

Note that we have extended the
∏

convention (1.2) to include products with a single term. Thus,
in this grammar

∏
(x) = x. (5.1)

Recall that by assumption the input cannot be isomorphic toT, hence the start symbolρ denotes
products of at least one term. Each of these terms is either a primitive-type or a function-type.

Consider, for example, the following type, which will serve as a running example,

(
(a× b) → c

) →
((

d× (e× f)
)× (

g → (h× i)
))

. (5.2)

Figure 5.1 shows the expression tree of this type before and after flattening.

Algorithmically, the flattening process is carried out by computing the normal form defined
by the functionnfa. This function receives a typeτ conforming to the no-unit grammar, and
exhaustively applies the associative ruleR.5. The output is a type conforming to the product
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Fig. 5.1. An abstract syntax tree of type (5.2) before (a) and after (b) flattening

grammar.

nfa(τ) =





∏
(x) if τ = x∏
(nfa(τa) → nfa(τb)) if τ = τa → τb

nfa(τa) ./ nfa(τb) if τ = τa × τb // apply ruleR.5

(5.3)

The operation./ denotes the concatenation of the terms of two products, i.e.,

k′∏

i=1

τi ./

k∏

i=k′+1

τi =
k∏

i=1

τi.

Lemma 5.1. Let τ be a type conforming to the no-unit grammar, and letσ = nfa(τ). Then,
(i) the callnfa(τ) executes inO(|τ |) time; (ii) |σ| ≤ 2|τ |; (iii) typeσ conforms to the products
grammar; and(iv) Product− ` τ = σ

PROOF. Trivial by structural induction. Part(iv) is proved by interpreting
∏

nodes with con-
ventions (1.2) and (5.1) and noting that only the associative ruleR.5 was applied in the definition
of nfa(τ).

The flattened representation makes it easier to decide product isomorphism. The following
lemma shows how this decision might be carried out.

Lemma 5.2. Let τ andτ ′ be two types conforming to the product grammar. Then,Product− `
τ = τ ′ if and only if one of the following three statements holds:

1. Typesτ andτ ′ are equal to the same primitive-typex.
2. Typesτ andτ ′ are function-types, i.e.,τ = ρ1 → ρ2 andτ ′ = ρ′1 → ρ′2, andProduct− `

ρ1 = ρ′1 andProduct− ` ρ2 = ρ′2.
3. Typesτ andτ ′ are product-types with the same number of terms, i.e.,τ =

∏k
i=1 σi

andτ ′ =
∏k

i=1 σ′i, and there exists a bijectionπ : [1, k] 7→ [1, k], such thatProduct− `
σi = σ′π(i) for all i, 1 ≤ i ≤ k.

PROOF. Direction⇐ is trivial. Direction⇒ is done by induction on the length of the derivation
sequence ofProduct− ` τ = τ ′.
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The product grammar produces abstract syntax trees in which function- and product-types
occur alternately on the path from the root to any leaf. We can thus define a height for each tree
node, so that product (function) types are always represented by nodes of odd (even) height.

Definition 5.3 (Height). Let τ be a type conforming to the product grammar. Then, theheight
of a type, denotedh(τ), is the length of the longest path fromτ to any leaf, i.e.,

h(τ) =





0 if τ = x

1 + maxk
i=1 h(σi) if τ =

∏k
i=1 σi

1 + max2
i=1 h(ρi) if τ = ρ1 → ρ2

(5.4)

Edges in Figure 5.1b were stretched so that nodes of the same height are drawn at the same
level. Observe that product-types always have odd heights and function-types always have even
heights. This can be easily proved by induction on the product grammar.

Lemma 5.4. Let τ, τ ′ be two types conforming to the product grammar. Then,

Product− ` τ = τ ′ ⇒ h(τ) = h(τ ′).

PROOF. Trivial by structural induction onτ andτ ′ using Lemma 5.2.

Theorem 5.5. Product isomorphism can be decided inO(n) time and space.

PROOF. Consider the types represented by all of the nodes of the tree representations ofτ

andτ ′. We will label each of thesen types with an identifier drawn from the range[1, n], such
that two types are isomorphic if and only if they have the same identifier.

Since two types cannot be equivalent unless their heights are the same, identifiers may be
assigned in ascending order of heights. LetTι be the set of all types of heightι. The setT0 is
the set of primitive-types. The algorithm starts by passingT0 to the broad integer partitioning
algorithm. A renaming process then yields unique identifiers for all primitive-types.

The processing ofTι, ι ≥ 1 depends on whetherι is even or odd. Ifι is even, then types inTι

correspond toσ symbols in the grammar of the normal form, i.e., function-types. Equivalence
among these are discovered using pair partitioning algorithm.

If howeverι is odd, then the types inTι are products, i.e.,ρ symbols. We apply the multi-set
partitioning algorithm to find all equivalence classes among these.

In both even and odd levels, we apply a renaming process that assigns identifiers to types in
the current level, starting at the first unused identifier.

Each node is passed to a partitioning algorithm at most twice, first in the partitioning of nodes
in its height, and then as component of its parent. Therefore the total input size in all invocations
of partitioning algorithms is linear, and hence the total runtime of our algorithm is linear.

The above algorithm is applicable also in the case that types use a DAG rather than a tree
representation. The runtime in this case is linear in the number of nodesplus the number of
edgesof the graph.
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6. TheP/F-graph

To generalize the linear isomorphism algorithm to deal with the first order isomorphism problem,
we now introduce the normal formnfd in which thedistributive ruleR.7 is not applicable.
As noted in Section 1.3, an exhaustive application of this rule may lead to a representation of
exponential size. TheP/F-graph, described in this section, is a linear size representation of the
normal formnfd.

Let τ andτ ′ be two arbitrary types conforming to the product grammar. The problem is to
determine whetherFirst− ` τ = τ ′. (The assumption that the inputs conform to the product
grammar is safe since the normalizing functionnfa can be applied in linear time to flatten all
products.)

Repeated applications of rulesR.6 andR.7 will bring each of the inputs to the normal form
defined by thefirst order grammar:

First order Grammar

% ::=

k∏
i=1

ς (k ≥ 1)

ς ::= x | % → x

Comparing the first order grammar and the product grammar we see that the derivationσ ::=
ρ → ρ is replaced byς ::= % → x, i.e., all functions must return a primitive-type.

Algorithmically, this normal form can be generated by applying the normalizing functionnfd,
defined by

nfd(τ) =





∏
(x) if τ = x

./k
i=1 nfd(σi) if τ =

∏k
i=1 σi

R6,7

(
nfd(ρ1), ρ2

)
if τ = ρ1 → ρ2

(6.1)

whereR6,7 is an auxiliary function, mutually recursive withnfd, which handles function types:

R6,7(%, τ) =





∏
(% → x) if τ = x

./k
i=1 R6,7

(
%, σi

)
if τ =

∏k
i=1 σi // apply ruleR.7

R6,7

((
% ./ nfd(ρ1)

)
, ρ2

)
if τ = ρ1 → ρ2 // apply ruleR.6

(6.2)

Functionsnfd andR6,7 musteagerlyevaluate their arguments to ensure that the distributive rule
is applied in outer-first order (Remark 1.9). In other words, given a function typeρ1 → ρ2,
ruleR.7 is first applied toρ1 and only then toρ2. This is the reason that the call toR6,7 in (6.1)
cannot commence beforenfd(ρ1) finishes.

We shall see that the definition ofR6,7 gives rise to a multiple-terms version of the distributive
transformation (1.8). In this version, an input node% → ∏k

i=1 σi is converted to
∏k

i=1(α → σi)
whereα is represented as a pointer to the node corresponding to the product%.

We now examine definitions (6.1) and (6.2) more formally. First, we show that the value re-
turned by these functions is isomorphic to their input. Let% be an arbitrary type.
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Lemma 6.1.

First ` τ = nfd(τ),

First ` % → τ = R6,7(%, τ).

PROOF. We first note that sinceτ conforms to the product grammar, then exactly one of the
three cases in the definition of eithernfd (6.1) or R6,7 (6.2) must apply. The lemma is then
proved bysimultaneousstructural induction onτ . The induction base is the first case in both
definitions. By examining the second and third cases of (6.1) we see that it immediately follows
from the (simultaneous) inductive hypothesis that functionnfd returns a type isomorphic toτ .
The distributive (currying) axiom and the same inductive hypothesis show thatR6,7 returns a
type isomorphic to% → τ in the second (third) case of its definition (6.2).

Lemma 6.2. Typenfd(τ) conforms to the first order grammar. Further, if% also conforms to this
grammar, then so doesR6,7(%, τ).

PROOF. Note that all types conforming to this grammar are products whose terms are either
primitive or function types. The proof is again carried out by simultaneous induction on the
structure ofτ . Again, the induction base is trivially given by the first case of (6.1) and (6.2).
The induction step is also easy: in the second case of both definition the returned value is simply
a product of terms covered by the inductive hypothesis. In the third case of these definitions
the returned value is of a recursive callR6,7(·, ρ2) where|ρ2| < |τ |. The proof is completed
by checking that the first argument in both of these recursive calls conforms to the first order
grammar as required for satisfying the inductive hypothesis.

We stress thatnfd(τ) may be of sizeO(n2), as indeed happens in example (1.10). The reason
for this blowup is in the third case ofR6,7: the concatenation% ./ nfd(ρ1) creates a new prod-
uct node whose list of terms are the concatenation of two lists of terms: that of% andnfd(ρ1).
Note that the terms themselves are not duplicated, but a new list of terms must be created. The
reason that we cannot reuse the two existing lists of terms is that% can be shared among in-
dependent recursive calls due to the second case ofR6,7: we havek independent calls of the
form R6,7

(
%, σi

)
.

In order to give the linear space and time bounds for the normalization process, we describe
a sharedrepresentation of types in the first order grammar. Instead of the usual expression tree,
we shall use a special rooted acyclic graph. We use the termP/F-graph since the nodes in it are
eitherP-nodes (representing product-types) orF-nodes (representing function-types).

A P-nodev has a fieldϕ(v) storing the non-empty set of pointers to term nodes. Terms are
eitherF-nodes or primitive-types, which are encoded simply by identifiers in the range[1, n]. In
addition,v has a fieldparent (v) pointing to anotherP-node, from whichv inherits additional
terms.

An F-nodeu has a fieldarg (u), which is a pointer to theP-node storing the function argu-
ment type, and a fieldret (u), which is a primitive-type specifying the function return type.

P/F-graphs are further restricted by the demand thatparent edges define a tree over the
P-nodes called theproduct tree, and denotedT . The treeT is rooted at a dummyP-node,
denotedP⊥, which has no terms, i.e.,ϕ(P⊥) = ∅. P-nodes are therefore initialized with
theirparent field pointing atP⊥.
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Definition 6.3 (Expanded terms). The expanded terms of aP-nodev, denotedφ(v), are the
union of terms of its ancestors in the product tree, i.e.,

φ(v) =

{
∅ if v = P⊥
ϕ(v) ∪ φ(parent (v)) otherwise.

Consider, for example, Figure 6.1a which shows type (5.2) in the product grammar. Figure 6.1b
shows the result of applying algorithmNormalizeProduct (described later) on this type.

Fig. 6.1. (a) Type (5.2) in the product grammar, and (b) itsP/F-graph representation. Theparent

edges are depicted in bold.

TheP-nodes in Figure 6.1b are:

P⊥ =
∏

P1 = P⊥ ./
∏

(a, b)
P3 = P⊥ ./

∏
(F2)

P4 = P3 ./
∏

(g)
P10 = P⊥ ./

∏
(F5,F6,F7,F8,F9)

(6.3)

We see that each term of aP-node is either a primitive type (e.g.,a) or anF-node (e.g.,F2). In
addition to the set of terms, eachP-node (exceptP⊥) inherits additional terms via theparent
edge. For example,parent (P4) = P3, i.e.,P4 inherits the terms ofP3 which recursively in-
herits the terms ofP⊥. Therefore, the extended terms ofP4 are the union of the terms ofP4, P3,
andP⊥:

φ(P4) = ϕ(P4) ∪ ϕ(P3) ∪ ϕ(P⊥).

Algorithms 3 and 4 present two mutually recursive routines, namelyNormalizeProduct
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andFunctionIntoProduct . These routines are storage-minded variants of functionsnfd
andR6,7, respectively. Together, the two describe a single pass traversal of an abstract syntax
tree of a type conforming to the product grammar. The output is a linear sizedP/F-graph of an
isomorphic type in the first order grammar.

Algorithm 3 NormalizeProduct (τ)
Given a typeτ conforming to the product grammar, return aP-nodev of an isomor-
phic type in the first order grammar.

1: v ← new P-node //Initially parent (v) = P⊥, ϕ(v) = ∅
2: If τ is a primitive-typex then
3: ϕ(v) ← {x}
4: else ifτ is a product-typethen
5: Let k andσi, i = 1, . . . , k, be such thatτ =

∏k
i=1 σi

6: For i = 1, . . . , k do // Normalize all terms in the product
7: ui ← NormalizeProduct (σi)
8: ϕ(v) ← ϕ(v) ∪ ϕ(ui) // Collect terms ofui

9: od
10: else// τ is a function-type
11: Let ρ1 andρ2 be such thatτ = ρ1 → ρ2

12: u ← NormalizeProduct (ρ1)
13: v ← FunctionIntoProduct (u, ρ2)
14: fi
15: Return v

Lines 2–3 of Algorithm 3 correspond to the first case of functionnfd, lines 4–9 to the second
case, and lines 10–14 to the third. The union operation in line 8 correspond to the concatenation
operation./ in the second case ofnfd.

Algorithm 4 follows the same outline as functionR6,7: lines 2–5 correspond to the first case
of R6,7, lines 6–11 to the second, and lines 12–17 to the third. Again, the union operation in
line 10 correspond to the concatenation operation./ in the second case ofR6,7. However, the con-
catenation operation./ in the third case ofR6,7 was translated into an assignment to theparent
field of w in line 15. This line is the crux of the two routines, making the linear space represen-
tation possible.

Let us examine lines 12–17 and the third case ofR6,7. Nodeu represents type%, and nodew
represents the product% ./ nfd(ρ1). In line 14, we assignNormalizeProduct (ρ1) to w.
Then, instead of adding the terms ofu to w (i.e.,ϕ(w) ← ϕ(w) ∪ ϕ(u)) we point theparent
field ofw to u in line 15. Therefore the expanded terms ofw are equal to those of the product% ./

nfd(ρ1).
The next lemma proves that algorithms 3 and 4 run inO(n) time and space.

Lemma 6.4. Let τ be a type conforming to the product grammar, and letu be aP-node.
Then, the function callsNormalizeProduct (τ) andNormalizeProduct (u, τ) execute
in O(|τ |) time and space.



J. Gil and Y. Zibin 26

Algorithm 4 FunctionIntoProduct (u, τ)
Given aP-nodeu and a typeτ (which is a product-type) returnv, a newP-node
describing a type isomorphic to the function-type% → τ , where% is the type repre-
sented by theP-nodeu.

1: v ← new P-node //Initially parent (v) = P⊥, ϕ(v) = ∅
2: If τ is a primitive-typex then
3: w ← newF-node
4: arg (w) ← u; ret (w) ← x // w represents the type% → x

5: ϕ(v) ← {w}
6: else ifτ is a product-typethen
7: Let k andσi, i = 1, . . . , k, be such thatτ =

∏k
i=1 σi

8: For i = 1, . . . , k do // Normalize all terms in the product
9: ui ← FunctionIntoProduct (u, σi)

10: ϕ(v) ← ϕ(v) ∪ ϕ(ui) // Collect terms ofui

11: od
12: else// τ is a function-type
13: Let ρ1 andρ2 be such thatτ = ρ1 → ρ2

14: w ← NormalizeProduct (ρ1)
15: parent (w) ← u // Share the common argument%

16: v ← FunctionIntoProduct (w, ρ2)
17: fi
18: Return v

PROOF. Proved by mutually-recursive structural-induction onτ . The induction base is whenτ
is a primitive type. It is mundane to check that lines 2–3 of Algorithm 3 and lines 2–5 of Al-
gorithm 4 execute in constant time and space. In the induction step,τ is either a function or a
product. The amount of time and space invested in addition to the recursive calls is either con-
stant ifτ = ρ1 → ρ2 or O(k) if τ =

∏k
i=1 σi. Note that the union in line 8 of Algorithm 3 and

line 10 of Algorithm 4 can be computed in constant time since the terms ofui are not shared (in
contrast to the terms ofu which are shared among other calls).

The following lemma shows that first order isomorphism of two types can be decided by
bringing each of these types into theirP/F representation, and then traversing the two graphs in
tandem, comparing at each stage the expanded terms of the current nodes.

Lemma 6.5. Two nodesu, v in a P/F-graph represent isomorphic types if and only if one of
the following three statements holds:

1. Nodesu andv represent the same primitive-typex.
2. Nodesu andv are bothF-nodes,ret (u) = ret (v) andarg (u) andarg (v) (recur-

sively) represent isomorphic types.
3. Nodesu andv are bothP-nodes, and there exists a bijectionπ from φ(u) to φ(v), such

that everyv′ ∈ φ(u) (recursively) represents a type isomorphic toπ(v′).

PROOF. Let τ andτ ′ be the typesu andv represent, respectively. Then, bothτ andτ ′ con-
form to the first order grammar. Rittri (1990) proved that, in such a case (i.e., when none of the
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rulesR.1–R.7 can be applied), we have that

First ` τ = τ ′ ⇔ Product− ` τ = τ ′.

Deciding the latter can be done using Lemma 5.2.

If the terms inP-nodes are expanded, then the size of the representation may increase toO(n2)
(as in (1.10)). With this expansion, the problem becomes an instance of product isomorphisms,
which, as explained in the previous section, can be solved in linear time. We can thus obtain a
simpleO(n2) time and space algorithm for the first order isomorphism problem, thereby improv-
ing upon theO(n2 log n) best previous result. To obtain a more efficient algorithm, we develop
in the next two sections the machinery for comparing unexpanded products.

7. Tree Partitioning

We need to further develop our partitioning algorithms to deal with thenon-expandedrepre-
sentation of products in the tree ofP-nodes rooted atP⊥. The partitioning of these nodes is
tantamount to finding the type isomorphism relationships betweenP-nodes: TwoP-nodes are in
the same equivalence class of the partitioning when theexpandedterms of the respective nodes
are the same, which happens if and only if the types these two nodes represent are isomorphic.

To understand this need better, consider again our running example type (5.2)

(
(a× b) → c

) →
((

d× (e× f)
)× (

g → (h× i)
))

.

Algorithm NormalizeProduct generated theP/F-graph representation of this type. This
representation is depicted again in Figure 7.1a below.

By definition, removing allF-nodes and the edges incident on them from aP/F-graph will
result in a tree. Figure 7.1b shows the tree thus obtained from Figure 7.1a. As explained above,
the extended terms of eachP-node are computed by inheriting the extended terms of its parent
(see Definition 6.3). For example, tree nodeP4 in the figure inherits the terms of tree nodeP3.

Let us ignore theF-nodes for now, and concentrate on a variant of the multi-set partitioning
problem in which the multi-sets are defined by an inheritance tree. We will first develop an
algorithm for this variant. Still, we note that this algorithm does not completely solve the general
problem of sorting the nodes of aP/F-graph into equivalence classes. The reason is that the
terms in the product-tree are not always known in advance. In Figure 7.1b we see for example
that the termF6 in P10 is not available upfront. We need to process nodeP3 before we can be
certain that this term is not isomorphic to, for example, termF8, which in turn depend uponP4.
The next section will take care of this subtlety by developing an incremental algorithm for the
problem.

In this section, our concern lies with the simpler, non-incremental, setting, described as fol-
lows: Given is a treeT of n nodes such that a multi-setϕ(v) of integers is associated with each
nodev ∈ T . Theexpanded multi-setof a nodev is the union of multi-sets of the ancestors ofv,
i.e.,

φ(v) =
⋃

u¹v

ϕ(u).
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Fig. 7.1. (a)P/F-graph representation in Figure 6.1b, and (b) its product-tree with the multi-set of
terms of each product.

These expanded multi-sets will be in our applications the expanded terms (Definition 6.3) of
P-nodes.

Definition 7.1 (Tree partitioning). Given a treeT , the tree partitioningis the partitioning de-
fined by the multi-set partitioning of the expanded multi-sets{φ(v) | v ∈ T }.

Let M denote the total number of elements in multi-sets ofT , i.e.,M =
∑

v∈T |ϕ(v)|. We can
assume that the integers in the input to the problem are condensed so that

⋃
v∈T ϕ(v) = [1,m].

(This condition can be ensured by a simple application of a renaming process.)
Figure 7.2a shows an example of a tree withn = 8 nodes with their associated multi-sets

(only four of which are non-empty). In the example,m = 4 distinct integers take part in these
multi-sets. The total number of elements in these multi-sets isM = 9.

We have for nodesE andF, for instance,

ϕ(E) = ∅
ϕ(F) = {1, 3, 4}
φ(E) = {1, 2, 3, 4}
φ(F) = {1, 2, 3, 4, 1, 3, 4}

Figure 7.2b depicts the solution of the tree partitioning problem for the multi-set tree of Fig-
ure 7.2a. We see that there are 5 partitions:

{A}, {H}, {B, C}, {D, E, G}, {F}. (7.1)
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Fig. 7.2. A small multi-set tree (a) and its tree partitioning (b)

The callout attached to each partition shows the expanded multi-set of all nodes in this partition.
For example,{1, 2, 3, 4} is the expanded multi-set of the partition{D, E, G}.

The näıve solutionto the tree partitioning problem is by directly computing the expanded
multi-setsφ(v). In order to do so, we represent an expanded multi-setφ(v) as an integer ar-
rayCountv[1, . . . , m].

Definition 7.2. Given an expanded multi-setφ(v), itsarray-representation, denotedCountv, is
an array over the indices[1, . . . ,m], such thatCountv[i] = k if integeri occursk times inφ(v).

Array Countv can be easily computed fromϕ(v) andCountu, whereu is v’s parent. Af-
ter having obtained the arraysCountv, the tree partitioning problem becomes the partitioning
problem of these arrays, viewed asm-sized tuples. The total size of thosen arrays isnm cells,
while the time required for computing them isO(nm + M) time since we also examined all the
termsϕ(v). To conclude, the runtime of the naı̈ve solution isO(nm + M) while usingO(nm)
space.

We now present an algorithm for finding the tree partitioning whose runtime isO(M log m)
usingO(M) space. This algorithm relies on thedual representation in which, instead of associ-
ating a multi-set of integers with each node, a multi-set of nodes is associated with each integer.
(To simplify the complexity analysis we assume thatn ≤ M . This assumption is true in our
application sinceP-nodes have a non-empty set of terms, i.e.,|ϕ(u)| ≥ 1.)

Definition 7.3. A family Fi, i = 1, . . . , m, is a multi-set of nodes such that ifi occursk times
in ϕ(v), thenv occursk times inFi.
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In our example, four such families are defined:

F1 = {B, F, H, H},
F2 = {B},
F3 = {B, F},
F4 = {D, F}.

(7.2)

Note that
∑m

i=1|Fi| = M .
Given a treeT and a multi-setF of its nodes, it is easy to define a partitioning of the nodes ofT

where the classification criterion is the number of occurrences of a node inF . We shall however
be interested in a more sophisticated such partitioning, denoted∇F , in which the classification
criterion is the number of times a node “inherits” membership inF . More precisely,

Definition 7.4. Let u, v be two nodes ofT , and letancestors(u) (respectively,ancestors(v)) be
the set of ancestors ofu. Then,u andv are in the same partition of∇F if and only if

|ancestors(u) ∩ F | = |ancestors(v) ∩ F |.
In our example, the four family partitionings induced by the families of (7.2) are:

∇F1 = {{A}, {F, H}, {B, C, D, E, G}},
∇F2 = {{A, H}, {B, C, D, E, F, G}},
∇F3 = {{A, H}, {F}, {B, C, D, E, G}},
∇F4 = {{A, B, C, H}, {F}, {D, E, G}}.

(7.3)

Note that all the nodes in a certain partition of∇Fi, 1 ≤ i ≤ 4, have the same number of
occurrences ofi. For example,CountF[1] = CountH[1] = 2. In fact, it is easy to prove the
following:

Lemma 7.5. Let Fi be a family, andv be a node ofT , then

|ancestors(v) ∩ Fi| = Countv[i].

The performance gain of the dual representation is due to the fact that the multi-set of nodes
in which a value participates is often a subtree ofT . For example, the partition{B, C, D, E, F, G}
of ∇F2 is a subtree rooted atB.

Next we define theintersectionof two partitioningsP1 andP2, written asP1 × P2, and show
that∇F1 × · · · × ∇Fm is in fact the tree partitioning.

Definition 7.6. Let P1 andP2 be two partitionings. Then, theirintersection, denotedP1×P2, is
defined by

P1 × P2 = {p1 ∩ p2 | p1 ∈ P1, p2 ∈ P2}.
In other wordsP1 × P2 is obtained by intersecting each partition ofP1 with each partition

of P2. For example, the intersection of∇F1 and∇F2 is

∇F1 ×∇F2 = {{A}, {F, H}, {B, C, D, E, G}} × {{A, H}, {B, C, D, E, F, G}}
= {{A}, {H}, {F}, {B, C, D, E, G}}.

It is mundane to see that× is commutative and associative.
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Lemma 7.7. The partitioning∇F1 × · · · × ∇Fm is the tree partitioning.

PROOF. Let P be the tree partitioning. Letu, v ∈ T be arbitrary. For a partitioningX, we
write u ≡ v mod X to denote thatu, v belong to the same partition ofX. Then we need to prove
thatu ≡ v mod P if and only if

u ≡ v mod ∇F1 × · · · × ∇Fm.

Suppose first that

u ≡ v mod P. (7.4)

Then, from the definition of the tree partitioning (Definition 7.1) we have that

φ(u) = φ(v). (7.5)

It follows by the definition of the array-representationCount[1, . . . , m] (Definition 7.2) that

∀1 ≤ i ≤ m •Countu[i] = Countv[i]. (7.6)

If Countu[i] = Countv[i] then, by Lemma 7.5,|ancestors(u)∩Fi| = |ancestors(v)∩Fi|, so
we may write

∀1 ≤ i ≤ m • |ancestors(u) ∩ Fi| = |ancestors(v) ∩ Fi|. (7.7)

From the definition of the∇ operator (Definition 7.4) we have that

∀1 ≤ i ≤ m • u ≡ v mod ∇Fi. (7.8)

Finally, from the definition of the intersection of two partitionings (Definition 7.6)

u ≡ v mod ∇F1 × · · · × ∇Fm. (7.9)

To show that (7.4) follows from (7.9) we trivially follow the above reasoning chain in the
reverse direction.

We now devise an efficient representation of family partitionings and a way to compute their
intersection. To this end, we describe below thesegmented-arrayrepresentation of a family
partitioning∇F which requiresO(|F |) space. We also show how to intersect two segmented-
arraysA1 andA2, which results in another segmented-arrayA3 which representsA1×A2 where

|A3| ≤ |A1|+ |A2|.
The trick is to consider a pre-order traversal of the tree, in which subtrees can be simply

encoded as intervals. Therefore, members of a familyF define intervals, which in turn break the
pre-order into segments. Thus, the partitioning∇F can be encoded as an array mapping those
segments to their containing partition.

In our example, let the pre-order traversal be

π = (A, B, C, D, E, F, G, H).

As can be seen in Figure 7.3, the descendants of any given node form an interval. This figure
highlights the intervals of the descendants of nodesB andF:

descendants(B) = {B, C, D, E, F, G} = [B, G],

descendants(F) = {F} = [F, F].
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Fig. 7.3. The intervals and segments defined by familyF3 = {B, F}

Consider now the familyF3 defined by these two nodes,F3 = {B, F}. In Figure 7.3 we see
that the two intervals ofF3,

Intervals(F3) = {[B, G], [F, F]},
breakπ into five segments

Segments(F3) = {[A, A], [B, E], [F, F], [G, G], [H, H]}.
Consider any arbitrary such segment defined byF3, and letv range over the nodes of this seg-
ment. Then, the multiplicity of the value3 in φ(v) is the same, e.g., the multiplicity of the value3
in the segment[B, E] is 1. Thesegmented-arrayrepresentation associates a multiplicity to each
segment. This multiplicity is called thesegment descriptor. The segmented-array of familyF3 is
therefore

SegmentedArray(F3) = 〈[A, A] 7→ 0, [B, E] 7→ 1, [F, F] 7→ 2, [G, G] 7→ 1, [H, H] 7→ 0〉,
and its family partitioning is

∇F3 = {{A, H}, {F}, {B, C, D, E, G}}.
Observe that each segment is contained in some partition of∇F3, and that two segments with
the same descriptor belong to the same partition. For example, both segments[B, E] and[G, G]
are contained in the partition{B, C, D, E, G} of ∇Fi. In fact, the union of those two segments is
exactly this partition. It is easy to check that this is no coincidence, i.e., the union of segments
with the same descriptor is equal to some partition in∇F3, and vice versa.

More formally,

Definition 7.8. Let P be a partitioning of the nodes ofT , and letπ be a pre-order traversal
of T . Then, asegmented-arrayrepresentation ofP is an array of segment records, each record
containing the segment starting and ending indices and a descriptor such that:

1. The segments are distinct and coverπ, i.e., the segments are a partitioning ofπ.
2. Each segment is contained in some partition ofP . In other words, the segmented array

represents a finer-grained partitioning thanP .
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3. Two segments have the same descriptor if and only if they are contained in the same
partition ofP .

4. The segments are sorted in an increasing order.

We will sometimes refer to a family partitioning∇F as a segmented-array. No confusion will
arise.

A segmented-array representation of a family partitioning∇F can be created inO(|F |) time
and space since the number of segments is linear in|F |. More precisely, a familyF defines at
most|F | distinct intervals inπ, one for each distinct node inF . These intervals breakπ into at
most2|F |+ 1 segments.

Figure 7.4 depicts the segmented-array representations of the family partitionings of (7.3).

A B C D E F G H

1 2 1 20

1 00

1 2 1 00

1 2 1 00

∇F2

∇F1

∇F4

∇F3

 

Fig. 7.4. The segmented-arrays of the families of Figure 7.2a

The intersectionof two segmented-arraysP1 andP2, whose sizes ares1 ands2, is carried
out by merging their arrays inO(s1 + s2) time into a single array of size at mosts1 + s2. The
descriptors of the segments inP1 × P2 are therenamedpairs of descriptors of the originating
segments fromP1 andP2 (using Lemma 4.7).

Figure 7.5 depicts the intersection of the segmented-arrays of∇F1 and∇F2 from (7.2).

Fig. 7.5. Computing the intersection of the two segmented-arrays∇F1 and∇F2 defined by
Figure 7.2a.

The third row in the figure shows the intermediate stage in which the segments in the intersec-
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tion still use pairs of integers as descriptors. For example,〈1, 1〉 is the descriptor of the segment
containing nodesB, C, D, andE. This descriptor was renamed to 1. Note that the other segment
(singleton withG) with the pair descriptor〈1, 1〉 was also renamed to 1.

We are now ready to state the principal result of this section describing the (non-incremental)
tree partitioning algorithm and its performance.

Theorem 7.9. There is anO(M log m) time andO(M) space algorithm solving the tree parti-
tioning problem.

PROOF. Using Lemma 7.7, we wish to compute∇F1 × · · · ×∇Fm. We therefore build a bal-
anced binary tree whose leaves are the segmented-arrays∇F1, . . . ,∇Fm. In each internal node
we compute the intersection of the two segmented-arrays of its two children. The segmented-
array at the root of this tree represents the tree partitioning.

Consider the first level of this tree which contains the segmented-arrays∇F1, . . . ,∇Fm. Re-
call that the size of the segmented-array∇Fi is 2|Fi| + 1. Therefore, the size of the entire first
level is

m∑

i=1

(2|Fi|+ 1) = O(M).

In calculating the second level of the tree, we intersect pairs of segmented-arrays∇Fi ×
∇Fi+1, for odd values ofi. Recall also that the time (and space) for creating∇Fi × ∇Fi+1

is O(|Fi|+ |Fi+1|). Thus, the time (and space) for creating the second level is againO(M).
In general, since all the segmented-arrays propagate to the root, we have that the total size of all

segmented-arrays at each tree level, and thus the work to generate the next level, isO(M). Since
the number of levels isdlog2 me+1, we have that the total time for computing∇F1×· · ·×∇Fm

is O(M log m).

For an example, refer to Figure 7.6 which depicts the balanced binary tree of the families
of (7.2). We see in the figure that the segmented-array at the root of this binary tree, i.e.,∇F1 ×
∇F2 × ∇F3 × ∇F4, partitions the orderingπ into 6 segments. The segment of typesD andE

hasid = 2. This is also theid of the segment ofG. Together, these two segments represent the
partition{D, E, G}. We have thus obtained the desired partitioning (7.1) of the tree in Figure 7.2a.

A B C D E F G H

1 2 1 20

1 00

1 2 1 00

1 2 1 00

1 2 1 30

2 3 2 010

2 3 2 410

∇F2

∇F1

∇F1×∇F2

∇F1×∇F2×∇F3×∇F4

∇F3×∇F4

∇F4

∇F3

 

Fig. 7.6. The balanced binary tree of the families of Figure 7.2
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8. Incremental Tree Partitioning

The tree partitioning problem (Definition 7.1) solved in the previous section does not capture
in full the intricacies of the bottom up classification into isomorphism classes of the nodes of
aP/F-graph. The difficulty is that the terms ofP-nodes in any given height areF-nodes. These
F-nodes must be classified prior to the classification of theP-nodes in this height. The algorithm
behind Theorem 7.9 however assumes that all multi-sets members are directly comparable. It is
applicable only in the case when all terms are primitive-types.

In this section, we develop the algorithm which after having classified all theP-nodes up to
heightι, will use this information to classify theF-nodes in heightι + 1. The identifier found in
the classification of theseF-nodes must take part in the classification of theP-nodes at heightι+
2.

To this end, this section deals with a more general variant of the tree partitioning problem, in
which the multi-sets are supplied in apiecemeal fashion. In this variant, the different possible
values of the multi-sets in the tree nodes are exposed in iterations. The algorithm for this variant
will add another logarithmic factor to the time complexity.

The requirements from a data structure for theincremental tree partitioning problemare best
defined in terms of the dual representation.

Definition 8.1. Given a treeT , anincremental tree partitioning data structuremust support two
kinds of operations, which might be interleaved:

1. Operationinsert (Fj), whereFj is a family, i.e., a multi-set of nodes ofT .
2. Query classify (Tk), whereTk is a subset of the nodes ofT . This query returns

the tree partitioning ofTk according to the families inserted so far. More formally,
let {F1, . . . , Fj} be the set of families inserted so far. Then, the query returns the restric-
tion of∇F1×· · ·×∇Fj to the setTk. This restriction is defined in the obvious manner,
i.e., it is the partitioning obtained by intersecting each partition of∇F1 × · · · × ∇Fj

with Tk, and ignoring all thusly obtained empty partitions.

To make the complexity analysis easier, we assume that the sets{Tk} are disjoint, that
⋃

k Tk =
T and that the data structure is never required to classify a node before its parent.

These assumptions hold in our application: the set of nodesTk is exactly the set ofP-nodes
whose height is2i, and a familyFj is inserted after having discovered that a certain collection
of F-nodes belong in the isomorphism class whose identifier isj. (These identifiers are allocated
consecutively.)

Our main objective is to minimize the resources for processing the entire interleaved sequence
of data structure operations. The next theorem states the performance characteristics of our in-
cremental tree partitioning algorithm.

Theorem 8.2. Incremental tree partitioning can be solved inO(M log m + n log n log m) time
andO(M) space.

PROOF. We use a lazy representation of an infinite complete binary tree, similar to the binary
tree of Theorem 7.9, The leaves of this tree are given by the infinite sequence∇F1,∇F2, . . .

Figure 8.1 shows (part of) this tree, after families∇F1, . . . ,∇F7 have been inserted.
This infinite tree is used to guide the computation of the intersection of the partitioning which
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∇F2

∇F1

∇F4

∇F3

∇F6

∇F5

∇F7

∇F1×∇F2

∇F1×∇F2×∇F3×∇F4

∇F3×∇F4

∇F5×∇F6

...

...

...

...

 

Fig. 8.1. An embedding of seven families into an infinite balanced binary tree

were inserted so far: we delay the intersection of partitionings in an internal node untilboth its
children exist. Atemporary rootis a node in which the partitioning was computed, but not in its
parent.

In the figure the nodes at which partitionings were intersected are drawn with thicker lines.
Specifically, at this stage we have computed∇F1×∇F2,∇F3×∇F4,∇F1×∇F2×∇F3×∇F4,
and∇F5 × ∇F6. There are three temporary roots in figure, which are the nodes corresponding
to∇F1 ×∇F2 ×∇F3 ×∇F4,∇F5 ×∇F6 and∇F7.

Assume that a new familyF8 is inserted. We first calculate its segmented-array∇F8, and
proceed to compute the following three intersections:

P1 = ∇F8 ×∇F7,

P2 = P1 × (∇F5 ×∇F6),

P3 = P2 × (∇F1 ×∇F2 ×∇F3 ×∇F4).

After this insertion we will have a single temporary root.
The total time for all insert operations, i.e.,insert (F1), . . . , insert (Fm), is the same as

in the non-incremental tree partitioning problem, i.e.,O(M log m) time usingO(M) space.
The algorithm is lazy in the sense that we do not compute the intersection of the temporary

rootsP1, . . . , Pr. Instead, the classification of a setTk, i.e., classify (Tk) query, is carried
out by consulting the segmented-arrays at those temporary roots. Recall thatPi is represented
as a sorted array of segment-identifier pairs (see Definition 7.8). Since the size of this array is
bounded byn, we can support searches inPi in O(log n) time. For eachv ∈ Tk, we search for
the descriptor of the segment which containsv, in Pi for i = 1, . . . , r.

After obtaining anr-tuple of descriptors for allv ∈ Tk, we apply a tuple partitioning algorithm
to classifyTk. In order to keep the space linear, we cannot actually store|Tk| tuples of lengthr.
Therefore, we will use theincremental tuple partitioning algorithm. Specifically, we will use|Tk|
memory cells to find the first elements of the tuples, pass them to the tuple partitioning algorithm,
and proceed to find the second elements of the tuples, etc.
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Note that afterj families were inserted, there are at mostdlog2 je temporary roots, so we
always have thatr ≤ dlog2 me. Thus, the total time for computing ther-tuple isO(r log n) ⊆
O(log m log n). The total time for theclassify (Tk) query is thereforeO(|Tk| log m log n),
while usingO(M) space. Since every nodev ∈ T can take part in a classification query at most
once, the total time for all classifications isO(n log n log m).

The total time for all insertions and classifications isO(M log m + n log n log m), while the
total space used isO(M).

9. An Algorithm for the First Order Isomorphism Problem

Having developed the algorithms for generating the linear sizeP/F representation, and for effi-
ciently comparing the multi-setsφ without actually creating them, we are ready to describe the
main result described in this chapter: an efficient algorithm for deciding first order isomorphisms.
In essence, the algorithm uses Lemma 6.5. A naive recursive application of the lemma may lead
to an exponential running time. To bound the time complexity, we instead traverse the graphs
bottom-up, classifying the nodes into their isomorphisms equivalence classes as we do so.

The bottom-up traversal is guided by height, where all nodes of the same height are processed
together. Height is defined as in Definition 5.3. Algorithm 5 shows how heights can be computed
in linear time even in the non-expanded,P/F representation.

Algorithm 5 Height (v)
Given a nodev in a P/F-graph, ensure thath(v′) stores the height ofv′ for all
nodesv′ reachable fromv and returnh(v).

1: If v was visitedthen
2: Return h(v)
3: fi
4: markv as visited
5: If v is a primitive-typeor v = P⊥ then
6: h(v) ← 0; return h(v) // Recursion base
7: fi
8: If v is anF-nodethen
9: h(v) ← 1 + Height (arg (v)); return h(v)

10: fi

// v must be an ordinaryP-node
11: h(v) ← Height (parent (v))
12: For all u ∈ ϕ(v) do // recurse on all (non-expanded) terms
13: h(v) ← max(h(v), 1 + Height (u))
14: od
15: Return h(v)

Given a nodev, the algorithm uses a standard recursive depth first search to visit, compute
and store the height of every nodev′ reachable fromv. Lines 8–9 deal with the case thatv is an
F-node. The recursive call in this case is only onarg (u), sinceret (v) must be a primitive-type.
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Another easy case is thatv is P⊥. Since there are no terms in this product-node, its height
is 0. Lines 11–15 deal with ordinaryP-nodes. The height of such nodes is one more than the
maximum height of all expanded terms. The reason why in line 11 we do not add 1 toHeight
(parent (v)) is that the expanded terms include the termsφ(parent (v)), and notparent (v)
as a term.

Once the height of all nodes inP/F-graph is computed, Algorithm 6 can be invoked to par-
tition these nodes into equivalence classes. We assume that unique identifiers, drawn from the
range[1, n], are given to all primitive-types. To process non-primitive-types, the algorithm relies
on the fact that nodes cannot represent isomorphic types unless they are of the same kind and the
same height. Accordingly, the nodes ofG are processed by height.

Algorithm 6 NodesPartitioning (G)
Given aP/F-graphG representing a type in the first order grammar, return a parti-
tioning Λ of all the nodes ofG into equivalence classes, such that two nodes are in
the same class if and only if they represent isomorphic types.

1: Let Υ be an incremental tree partitioning data-structure for the tree ofP-nodes
of G

2: j ← 0 // The identifier of current isomorphism class
3: Let r be the root ofG
4: l ← Height (r)
5: For ι = 1, . . . , l do // Process the nodes by height
6: Let Tι ← {v ∈ G | h(v) = ι}
7: If ι is oddthen // Tι is a collection ofP-nodes
8: Λ ← Λ ∪Υ.classify (Tι)
9: else// Tι is a collection ofF-nodes

10: PartitionTι using pair partitioning
11: Let the resulting partition beTι = C1 ∪ · · · ∪ Ck

12: Λ ← Λ ∪ {C1, . . . , Ck}
// UpdateΥ

13: For i = 1, . . . , k do // Inserting a new family
14: j ← j + 1 // Process a new isomorphism classj

15: Let Fj be the multi-set ofP-nodes with a term inCi

16: Υ.insert (Fj)
17: od
18: fi
19: od
20: Return Λ

The main data-structure used by the algorithm is incremental tree partitioning (see Theo-
rem 8.2). Nodes at odd height areP-nodes. The classification of these nodes is carried out by
querying this data-structure.

Lines 10–17 in the algorithm take care ofF-nodes. Classification of these nodes is carried out
by a simple pair partitioning algorithm. We then generate identifiers for each of the isomorphism
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classes. AllF-nodes take parts as terms ofP-nodes. We must make sure that twoF-nodes in the
same isomorphism class are regarded as equal when comparingP-nodes in the next iteration.
Line 15 defines the multi-setFj of P-nodes in which isomorphicF-nodes are terms. Note thatFj

is a multi-set since aP-node may have several terms belonging toCi. In line 16 the incremental
tree partitioning data structure is updated.

Lemma 9.1. If G hasn nodes andO(n) edges then, Algorithm 6 runs inO(n log2 n) time and
while consumingO(n) space.

PROOF. We first note that computing the height as in Algorithm 5 requires linear time, since
every node and every edge is visited at most once.

The algorithm uses linear space, since the two main procedures it invokes: incremental tree
partitioning algorithm (lines 8 and 16) and pair partitioning (line 10) use linear space.

The running time of all the applications of pair partitioning isO(n) (see Lemma 4.7).
The total number of families inserted isO(n). Moreover, the total size of those families is

alsoO(n), and all the sets of classified nodes are disjoint. Therefore, using Theorem 8.2, the
total time of all the operations performed onΥ is

O(M log m + x log x log m)

while usingO(M) space, wherex is the number of nodes in the product-tree (which is the
number ofP-nodes),m is the number of families, andM is the total size of those families. Since
all the above parameters areO(n), the total runtime isO(n log2 n) usingO(n) space.

The bottom-up node classification of Algorithm 6 can be used to solve the first order isomor-
phism problem. To do so, we first create theP/F-graphs of the two input types, and then merge
these graphs, by e.g., making their roots descendants of a newP-node. (TheP⊥ nodes of the
respective graphs must be unified.) Algorithm 6 is then invoked on the merged graph. The inputs
are isomorphic if and only if these two roots are placed in the same equivalence class.

Theorem 9.2. First order isomorphism can be decided inO(n log2 n) time andO(n) space,
wheren is the size of the input.

PROOF. As noted above theP/F-graph representation uses linear space. Moreover, bring-
ing the input to this representation requires linear time. The complexity of comparing inputs in
theP/F-graph representation is given by Lemma 9.1.

10. Open Problems

The only lower bound for the first order type isomorphism problem is the trivial information
theoretic linear time. An important research direction is to bridge this gap by eitherreducing the
time complexityof our main algorithm even further, or obtaining betterlower bounds.

For example,dynamic fractional cascading(Melhorn and N̈aher, 1990) might be used to de-
crease the running time fromO(n log2 n) to O(n log n log log n). Recall that in the incremental
tree partitioning algorithm (Section 8) aclassify query was implemented by conductingin-
dependentlogarithmic time searches inO(log n) temporary roots. The fractional cascading data
structure makes it possible to use the result of each search in expediting the subsequent search,
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bringing down the runtime ofclassify (Tk) toO(|Tk| log n log log n). Unfortunately, this rep-
resentation makes it difficult to use the incremental tuple partitioning algorithm, and increases
the space toO(n log n).

Time complexity might be improved also by taking the perspective in which primitive types
are thought of as variables, while compound types are considered expressions over these. Then,
it follows from the fact that axiomsA.1–A.7 are complete (Bruce et al., 1991) that the first order
isomorphism problem is reduced to function identity. This identity might in turn be checked by
an appropriate random assignment to the variables, possibly leading to a more time efficient, yet
randomizedalgorithm for the problem. For example, if infinite precision arithmetic is allowed,
then, it might be possible to extend the type isomorphism heuristics of Katzenelson, Pinter and
Schenfeld (1992), and check identity by assigning into the variables values drawn at random
from, say, the range[0, 1]. We note however that such a randomized algorithm does not yield the
isomorphism proofas does our deterministic algorithm.

Another interesting direction comes from the generalization in which type expression trees
may share nodes, i.e., the input isdirected acyclic graphrather than a tree. This situation occurs
naturally in programming languages in which non-primitive types can be named, and where these
names can be used in the definition of more complex types.

Perhaps the most important problem which this paper leaves open is efficient algorithms for
subtyping(of products, functions, or both) which include the distributive and the currying ax-
ioms.
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