Under consideration for publication in Math. Struct. in Comp. Science

Efficient Algorithms for Isomorphisms of Simple
Types

JOSEPH (YOSSI) GIEL and YOAV ZIBIN
Technion—Israel Institute of Technology

Email: yogi |zyoav @ cs.technion.ac.il

Received October 2003; Revised July 2004

Thefirst order isomorphism probleiis to decide whether two non-recursive types using product-
and function-type constructors, are isomorphic under the axioms of commutative and associative
products, and currying and distributivity of functions over products. We show that this problem can
be solved inD(n log? n) time andO(n) space, where is the input size. This result improves upon
the O(n?log n) time andO(n?) space bounds of the best previous algorithm. We also describe
anO(n) time algorithm for thdinear isomorphism problepwhich does not include the distributive
axiom, thereby improving upon th@(n log n) time of the best previous algorithm for this problem.

1. Introduction

It is a matter of basic high school algebra to prove the equality

((ab)(ab)) = _ PRI (1.1)

Yet, as we shall see in this paper, a systematic and efficient production of such a proof is non-
trivial. With the familiar perspective of viewing multiplication as product-types, exponentiation
as function-types, and variables as primitive-types, (1.1) becomes an instance of a simple, i.e.,
non-recursive, type isomorphism problem. In its turn, type isomorphism has close connections
to category theory (Soloviev, 1983; Bruce et al., 1991) and intuitionistic logic (Howard, 1980).

The isomorphism variant which concerns us here is characterized by commutativity and asso-
ciativity of products, and currying and distributivity of functions over products. This variant has
practical interest in the context of the search for compatible functions in function libfages.
detailed treatise of this application can be found in Di Cosmo’s book (1995), which discusses
also extensions to second order types and the ML type theory.)

More formally, we consider the set of first order isomorphisms holding in all models of the
lambda calculus with product-types (surjective pairing), function-types, and unit types, as defined

t A preliminary version of this paper was published in the proceedings of POPL'03 (Zibin et al., 2003).
 Research supported in part by the generous funding of the Israel Science Foundation, grant No. 128/02.
 Besides being sufficient for the proof of equations such as (1.1).

J. Giland Y. Zibin 2

by the followinggeneral grammar
7u=T | = | 7—=71 | 7x7 |

whereT is the unit typex stands for an arbitrary primitive-type; denotes a function-type,
and x denotes a product-type.
In defining the isomorphism relation we shall use the following seven axiom schemas.

(A1) AxT=A
(A.2) A—-T=T
(A.3) T A=A
(A.4) AxB=BxA (Commutative)
(A5) Ax(BxC)=(AxB)xC (Associative)
(A46) (AxB)—-C=A—(B—0(0) (Currying)

(A7) A—(BxC)=(A— B)x(A—C) (Distributive)

(Here and henceforth, the range of variablesB andC' is any type expression in the general
grammar.)

For a long time, the problem of deciding first order isomorphisms of simple types was thought
to require exponential time (Bruce et al., 1991). It was recently shown (Considine, 2000) that
the variant of our interest can be decidedifn? logn) time andO(n?) space, where: is the
length of some standard representation of the two input types. The main contribution of this paper
is an improvement of this result 10 (nlog® n) time andO(n) space. We also give algorithms
usingO(n) time and space for important special cases.

1.1. Background

The arithmetic version of these seven axioms (substituting multiplication, exponentiation, and
the constant one, fox, — and T) was proved to be complete for the Cartesian closed cate-
gories (Bruce et al., 1991; Soloviev, 1983). Since the models of the lambda calculus with unit,
product- and function-types are exactly the Cartesian closed categories (Bruce et al., 1991), the
set is also complete for the type isomorphisms we examine. Through the Curry-Howard isomor-
phism (Howard, 1980), these isomorphisms are also equivalent to equational equality in posi-
tive intuitionistic logic so the same axioms apply there too (again, with appropriate notational
changes).

Besides their theoretical connections, type isomorphisms can be used as a means of searching
large program libraries. Specifically, the desired type of a function is used as a search key and
functions with isomorphic types are returned as candidates. A famous example (Rittri, 1990)
shows that even the simple function, folding a list, can be implemented with many different
types, varying argument order and the use of “Curried” style. Employing type isomorphisms
in the search will retrieve all compatible function implementations. Moreover, the isomorphism
proof can often automatically generate bridge code converting the functions found to the desired
type. It was even argued (Barthe and Pons, 2001) that type isomorphisms can be employed in
proof reuse.

Second order isomorphisnasigment first order isomorphisms with universal quantifiers, as
inVA.A — A = VB.B — B. Universal quantifiers make second order isomorphisms more

Efficient Algorithms for Isomorphisms of Simple Types 3

effective in searching program libraries since they are necessary to capture parametric polymor-
phism. While some of the issues of second order isomorphisms are similar (some of the space
sharing techniques are applicable), they are known to be graph isomorphism complete (Basin,
1990; Di Cosmo, 1995) and we do not attempt to decide them in this work. A different system
of type isomorphisms is that of the core ML language. It is known (Di Cosmo, 1992) that second
order isomorphisms are insufficient to describe these, although the addition of one more axiom
suffices.

Recursivevariants of the type isomorphism problem at our hand were also considered in
the literature. In the Mockingbird project the recursive type system comprised of product- and
function-types (Auerbach and Chu-Carroll, 1997; Auerbach et al., 1998; Palsberg and Zhao,
2000). Gil (2001) describes how algorithms for polynomial equality can be used for deciding
isomorphism in the “algebraic type system”, i.e., the recursive type system comprising of union-
and product-types.

The more general isomorphism problem, for a non-recursive type system which includes
product-, unionandfunction-types is equivalent to Tarskfgh school algebra probleifTarski,

1951). Such a system does not have a finite and complete set of axioms. Nonetheless, there exists
a (non-polynomial) algorithm for determining isomorphism (Gutei985). There also exists

a (non-polynomial) algorithm for deciding isomorphism in the recursive “algebraic type sys-
tem” (Gil, 2001). Finally, we should mention that adding empty and sum types breaks down the
relationship between the equational theory and type isomorphisms (Fiore et al., 2002).

1.2. Definitions: The First Order Isomorphism Problem and its Variants

In this paper, we concentrate on first order isomorphism and two restricted variants (product and
linear isomorphism). We now make the necessary definitions in order to give a precise statement
of the problem and its variants.

Next we define four successive theories of isomorphism of types.

Definition 1.1. Let Equality be the theory of equality of types defined as the set of propositions
obtained by the deductive closure of the axiom schema

(A.0) A=A (Reflexive)

and the following four inference rules.

A=1B

T—a symmetry
A=B,B=C I

e transitivity
A=B,C=D
IxC—BxD congruence ok
A=B,C=D

congruence of~

Thus,Equality is the usual theory of equality, sometimes denote@ s (Considine, 2000).

J. Gil and Y. Zibin 4

Definition 1.2. Let Product be the theoryEquality augmented with axiom schemab1-A4.5.
Let Linear be the theoryProduct augmented with axiom schemd.6. Let First be the the-
ory Linear augmented with axiom scher&?7.

TheoryProduct adds the unit axioms to the theory of equality as well as the rules of commu-
tative and associative products. The currying axiom is added in théaryr. Finally, First is the
theory of first order isomorphisms, which is often referred to in the literatutErds, (Bruce
and Longo, 1985; Bruce et al., 1991; Di Cosmo, 1995).

When T does not occur in the input, it is convenient to use theory variants which do not
include the unit axioms.

Definition 1.3. LetProduct™ be the theorgquality augmented with axiom schemds4 and A.5.
Let Linear™ be the theoryroduct™ augmented with axiom scherpd6. Let First™ be the the-
ory Linear™ augmented with axiom scheroh?.

Definition 1.4 (Axiom instance). An instance of an axioni is the result of a consistent substi-
tution of all the variables in4 by type expressions of the general grammar.

For example(a — (T x b)) x ¢ = ¢ x (a — (T x b)) is an instance of the commutative
axiom.A.4.

Definition 1.5 (Derivation sequence).Let © be a theory, e.g§ = Equality, or © = First™.
Then, the sequencg = 7{,...,7, = 7, is called aderivation sequence © if for i =
1,...,m, ; = 7/ is either an instance of an axiom@nor the result of applying one of the four
inference rules on previous equalities. For types we write© - 7 = 7/ when there exists a
derivation sequence ending with the equatity 7'.

Let 7 andr’ be two given types. We use the notatios= 7/ as an abbreviation fagquality -
/
T="T.

Definition 1.6. Thefirst order isomorphisnproblem is to decide whethéirst - 7 = 7.

The first order isomorphism problem has been known to be decidable for over a decade (Soloviev,
1983; Bruce et al., 1991). Previous to our work, the best known boundogaslogn) time
using O(n?) space (Considine, 2000Qur main result is in reducing the time ©(n log® n)
time and the space t0(n).

One of the difficult issues in obtaining an efficient algorithm for the problem is dealing with
the commutative and associative nature of product (axidmsand.4.5). Concentrating on this
we define the product isomorphism problem.

Definition 1.7. Theproduct isomorphismproblem is to decide whetheroduct - 7 = 7.

We apply the standard abbreviation of using ffiesymbol to denote (an associated to the left)
product of severadermsi.e., fork > 2,

]jTiZ(---((7’1X7'2)><7’3>-~'X7'k>, (1.2)

Efficient Algorithms for Isomorphisms of Simple Types 5

When the commutative and associative axioms apply, we shall write products without paren-
thesis. Consider, for example, the following product:

abracadabra. (1.3)

(Lower case, sanserif letters denote here and henceforth primitive-types. We shall use the arith-
metical and type notations interchangeably. No confusion will arise.) An instance of the product
isomorphism problem variant is to determine whether the above is isomorphic to

carrabadaba. 1.4)

One may be tempted to attack the problem by bringing each product into a unique sorted normal
form, which in this case is

aaaaabbcdrr. (1.5)

In this paper we show that the product isomorphism problem is decidable in lineat fiimis.
result is based on the observation that it can be determined that (1.3) and (1.4) are isomorphic
without using a super-linear sorting procedure, but rather by employing an algorithmuftir
set comparisonMore generally, to determine whethEf;_, A, is isomorphic to[_, By, the
multi-set comparison algorithm checks whether there exists a permutasaoh thatd ;) is
isomorphic toB;.

This product isomorphism variant was not considered previously as such in the literature.
Palsberg and Zhao (2000) gave @w?) time algorithm for arecursiveproduct isomorphism
problem, defined by the addition of a grammar rule= ua.7 wherea is a type variable, and a
folding/unfolding axiom

(A.8) po A = Al(pa.A)/al.

(As usual, the notatiol[B/«] stands for a type expressichwhere each occurrence ofis
replaced byB.) This result was later improved ©(nlogn) time (Jha et al., 2002a) using a
reduction to the problem of finding size-stable partitions of a directed graph.

We note that the recursive product isomorphism problem is not a simple a generalization of our
product isomorphism problem. The reason is that isomorphism between recursive product-types
should be defined in terms of their infinite unfoldings which are regular trees. To reason about
these infinite structure, inductive variants of #@ngruence ofx andcongruence of- infer-
ence rules must be used. It was found (Palsberg, personal communication) that the combination
of these variants with the folding/unfolding axiom and the unit axiofns—A4.3. gives rise to
an inconsistent system. These axioms were therefore omitted from the recursive product type
systems. It remains a challenge to find a reformulation of the inference rules in Definition 1.1
which is consistent with all axiomd.1-A4.8.

More difficult than the problem of product isomorphism is the problem variant defined by
theLinear theory, which adds the currying axiom.

Definition 1.8. Thelinear isomorphisnproblem is to decide whetheinear - 7 = 7.

 Jha (personal communication, September 2002) reports on independent discovery of an algorithm for this sub-
problem, with similar complexity bounds, published in (Jha et al., 2002b).

J. Giland Y. Zibin 6

Polynomial time results for this problem were known before those of the first order problem.
Linear isomorphism can be decided in linear space@mﬂog2 n) time (Andreev and Soloviev,
1997). Although not previously mentioned, both algorithms (Jha et al., 2002a; Considine, 2000)
improve the running time t®(n log n). We advance the state of the art by showing that linear
isomorphism is also decidable in linear time.

Linear isomorphism combined with the folding/unfolding axiom may generate products with
an unbounded number of terms, which makes it difficult to apply the standard algorithms for
recursive type isomorphisms. Consider, for example, the type

pa.(a — a). (1.6)
The following equality is an instance of the folding/unfolding axiom
po.(a—a)=a— (pa.(a— a)).

Repeated use of the folding/unfolding axiom proves that type (1.6) is isomorphic to

R

Finally, by using the currying axiom we can produce a product with any number of terms.

The final step toward solving the first order isomorphism problem is to deal with the distribu-
tive axiom.A.7. As we shall see, the difficulty in doing so is that a naive application of this axiom
may lead to an exponential blowup of the input types.

1.3. Intuition: Reduction Systems and Normal Forms

Isomorphism proofs are usually based upeduction systemgroducing a normal form repre-
sentation of the input, which can be more easily compared. We assume that types use a standard
expression-tree representation in memory, and thategelpplicationin the reduction system
is implemented as a transformation of this data structure.

For example, the reduction system of Rittri (1990) has seven rules

R.1 TxA = A

R.2 AxT = A

R.3 T—A = A

R.A A-T = T 1.7)
R5 Ax(Bx(C) = (AxB)xC

R6 A—-(B—-C) = (AxB)—=C

R7 A—-(BxC) = (A—=B)x(A—-0)

Rittri proved that the rule®.1-R.7 are confluent and terminating. Therefore, by repeated appli-
cation of the rules the input types are reduced toanal form

In the degenerate case in which one or both of the inputs is reducBgdth® input types are
isomorphic if and only if they both reduce . (This intuitive statement is given a formal proof
in Section 2.) Otherwise, the normal forms do not contain the sybBurthermore, these rules
can always simplify the structure of the right operand-efunless it is a primitive-type.

An algorithm for deciding first order isomorphism is to recursively compare the resulting

Efficient Algorithms for Isomorphisms of Simple Types 7

normal forms: two nodes are isomorphic if they are of the same kind (product or function) and
their operands are isomorphic. In function-nodes the comparison of arguments is straightforward:
the left (right) operand of one node must be isomorphic to the left (right) operand of the other.
In comparing product-nodes however we must solve an instance of the product polymorphism
problem to check whether the terms of one node is pair-wise isomorphic to some permutation of
the terms of the other node. If this comparison is not done carefully it adds to the complexity of
the problem.

An even more serious inefficiency factor is that the system (1.7) (specifically, the distributive
rule R.7) may introduce an exponential blowup in the size of the representation. Rule® .6
do not increase the representation size. However, each applicatiBnrafreates a duplicate
copy of the subtree whose root i& Repeated applications may produce a very large normal
form representation. In the sequence of typas}, defined byX, = a and X; = (b;c;)*:—*

for ¢ > 0, we have thatX,, = bff"*lc;xi‘l and successive applications of this rule to each
occurrence ofX;,7 = n — 1,...,1, will lead to exponentially many copies afin the normal
form of X,,.

If graphs, rather than trees, are used to represent types, then an applic&iah cdn be im-
plemented byharingthe node representing. This sharing can be thought of as an application
of a slightly different transformation

A—>(BXC):>{(QHB)X(O[HC) , (1.8)
a=A
where a newly introduced symbolic variahleis represented as a pointer to the data-structure
representation of typd.

Rittri (1991) observed that using (1.8) ensures a polynomially sized representation of the nor-
mal form: Each application of transformation (1.8) adds one edge to the graph. The application
reduces the nesting level of thenode, and this nesting level cannot be increased by the other
rules. We obtain that the space of the graph normal for@(is?) by noticing that initially
there are at most product-nodes, and that even though additional product-nodes may be created
by R.6, these nodes cannot take part in the other two rules.

To see that the representation can indeed by quadratic, consider the following example (written
using the arithmetical notation):

an—2 a2 u
bl <b2 t (bn—Q(bn—lbin)a"il) n) ’ (19)

whose normal form is

biill b§2a1 . ban—l"'al b?Lvl"'al. (1.10)

n—1

This normal form consumes quadratic space if derived by appiiifnigstarting at the inner most
parenthesis.

Remark 1.9. Deriving (1.9) starting at the outer-most parenthesis, yields the representation

R (1.11)

J. Giland Y. Zibin 8

wherea; = a;, anda; = a;«o;—1 fori = 2,...,n. Note that (1.11) requires only linear space
whereas (1.10) is quadratic.

Having bounded the space explosion, Rittri stopped short of giving a polynomial time algo-
rithm for the problem. By noticing that the graph representation is acyclic, and by using a variant
of Rittri's normal form, Considine (2000) was able to reduce the runtime to polynomial. We
should note that Considine’s rules were different than Rittri’'s in thatRuewas applied in the
opposite direction. The resulting normal form is such that insteat6t”, it uses the equivalent

representatior((AB)C)D. Thus, strictly speaking, his normal form did not use product-nodes,

other than in the upper most level. However, the alternative representation must still deal with the

difficulties of associativity and commutativity as in the more familiar representation of products.
Considine’s algorithm partitions all nodes in the directed acyclic graph (DAG) representation

of the input types into equivalence classes, such that all nodes in the same equivalence class are

isomorphic. This partitioning is built in a bottom-up traversal of the DAGs, while maintaining

a hash table mapping each node into the unique identifier of its equivalence class. The most

difficult task in this traversal was to determine whether product-nodes are isomorphic. Two key

properties made Considineg®(n? log n) time andO(n?) space result possible:

1. Expansion of product-type€onsidine showed that his normal form, which includes
complete expansion of product-types, is such that each product consists of no more
thann terms.

2. Sorting product termsSince the graph is acyclic, terms in product-types must have
been visited and classified by the bottom up traversal before the product itself. Each
product-node is first normalized by sorting the identifiers of the equivalence classes of
their terms. The fact that the order of terms is completely determined by this sorting
makes it possible to employteash-consingechnique to produce a unique identifier for
each product-type, thereby partitioning product-type nodes into equivalence classes.

Our algorithm uses the same bottom-up classification of nodes into equivalence classes. However,
the reduction of space 10(n) and of time toO(n log® n) are made possible by breaking away
from the above principles. Specifically, the new algorithm is characterized by:

1. Application of R.7 to “outer-most” functions firstAs demonstrated in Remark 1.9 the
space is kept linear if the distributive rule is applied starting at the outer-most parenthe-
Sis.

2. Unexpanded product-typeBhe expansion of product-types leads to quadratic time and
space. Instead, we describe a graph based representation, which keeps the space linear,
and show that unexpanded products can still be efficiently compared.

3. Unsorted product termésomorphism of product-nodes is decided by a procedure which
can be thought of as hashing or range compaction, rather than sorting. A similar pro-
cedure is used to partition the multi-sets of products in each stage of the traversal into
their equivalence classes.

Road map Our algorithms employ four successive normal forms, all of which can be com-
puted in linear time and space. Each normal form stands for a “simpler” isomorphic representa-
tion, obtained by exhaustively applying some of the rules (1.7).

Efficient Algorithms for Isomorphisms of Simple Types 9

The normal formnfr, described in Section 2, is computed by applying rukes—R.4 to
remove (essentially) all occurrencesBf We further show in this section, thaty makes it
possible to completely ignore the unit axioms in the main algorithms.

The normal formnf., which takes care of theurrying axiom, is the subject of Section 3,
where we show how linear isomorphism can be reduced to product isomorphism.

To solve the product isomorphism problem, we need a procedure for comparing long products
without sorting their terms. Section 4 develops this procedure as part of a general algorithm for
multi-set partitioning. Section 5 then gives the concrete algorithm for the product isomorphism
problem. In the algorithm thassociativeule R.5 is first applied to produce the normal forrf,.

The normalized types are then compared in a bottom-up traversal, while invoking the multi-set
partitioning algorithm at each level.

Section 6 then shows how an exhaustive application ofdik&ibutive rule R.7 produces
the normal formnfy. A linear space encoding farfy, called theP /F-graph, is also described
in this section. Unexpanded products in B¢F-graph form atree structure such that each
product inherits the terms of its parent. Section 7 employs multi-set partitioning in comparing
unexpanded products in this tree structure. Section 8 fine-tunes this procedure to its application in
a bottom-up classification of the nodes of ¢F-graph. Finally, we present our main algorithm
for deciding first order isomorphisms of simple types in Section 9. Section 10 lists some open
questions.

2. Eliminating Unit Types

This section describes a linear time and space algorithm for eliminating the unit axioms. Algo-
rithm EliminateUnits receives as input two types:andr’, both conforming to thgeneral
grammar describing arbitrary first order types.

General Grammar

T7u=T | =z | 7T—>7 | TXT.

The output comprises two typesands’, such that
First- 7 =17 < First™ o =0o'.

(At the end of this section we show that a similar claim can be made with regards to theo-
riesLinear andProduct.) The details are in Algorithm 1.

If either of 7 or 7’ is isomorphic tdT then the algorithm returns a decision whethist -
7 = 7’ (lines 4 and 6). Otherwise, i.e., when bathndr’ are notisomorphic t&@, the algorithm
returns two types ando’ such thafFirst - 7 = 7/ < First™ F o = ¢’ (line 8). Botho ando’
conform to the followingno-unit grammayin which the symboll’ never occurs.

No-Unit Grammar

T—=T | TXT

Tu=2x

The crux of the algorithm is the transformation of the inputs into their normal form in lines 1
and 2. For a type, its normal formnfr(7) is a type isomorphic te, i.e.,First - 7 = nfr(7),
wherenfr(7) is either the typél or it conforms to the no-unit grammar.

J. Giland Y. Zibin 10

Algorithm 1 EliminateUnits (r,7)

Given two typesr andt’ conforming to the general grammar, return either (i) a
decision whethekFirst - 7 = 7/, or (ii) a pair of two typesr, o’ conforming to the
no-unit grammar such thatrst - 7 = 7’ < First™ 0 = ¢’.

1: 0 «— nfp(7)
: o' —nfp(r)
If o =T and ¢’ =T then

return true /I Typesr and 7’ are isomorphic
:elseifo=T or o =Tthen

return false /I Typesr and 7’ are not isomorphic
else

return (o,0’)
fi

© ® N o g AN

The following is an algorithmic definition of the normalizing functiafir.® The function
recursively traverses the tree representing the input type, while applyingtule® .4 whenever
possible.

T ifr=T
- -f =
nep(r) =" e (2.1)
Rl’g(nfT(Ta),nfT(Tb» IfT:Ta X Ty
R374(DfT(Ta),DfT(Tb)) if T=Tq — Tp
After the children of a node have been simplified by the recursive calls, fundtiomay invoke,
depending on the node type, one of two auxiliary functions to simplify the node itself. The first
such function applies the product-unit rulg&.{ andRR.2).

op if o,=T Il apply ruleR.1
Ri2(0a,08) =< 0, if o, =T I/ apply ruleR.2 (2.2)
o, X op Otherwise

The other auxiliary function applies the function-unit rul&s§ andR.4).

op if o, =T /I apply ruleR.3
R34(0q,00) =4 T if o, =T Il apply ruleR.4 (2.3)
o, — o, Otherwise

Let |7| denote thesizeof a typer, defined as the number of nodes in the standard abstract
syntax tree representation of Many of our proofs emplogtructural inductionwhich is essen-
tially induction on the input size. In the inductive step, we shall rely ortythe decomposability
property if |7| > 1 (i.e.,7 # x andr # T) thenr is represented as a type-operator node with
two children representing types andr,, such thatr| = |7,| + |7| + 1.

§ Here and henceforth, we use the same notation fontinmal form and for the (algorithmic) function which given a
type, generates and returns its normal form. No confusion should arise as a result of this overloading.

Efficient Algorithms for Isomorphisms of Simple Types 11

Lemma 2.1. Let 7 be a type which conforms to the general grammar, and tetnfr(7). Then,
(i) the invocatiomfr(7) requiresO(|7|) time, (i) |o| < |7|, (iii) o = T or o conforms to the
no-unit grammar, anflv) Product -+ = o.

PrROOEF All parts are proved by structural induction. The inductive b&se= 1, is covered
by the first two casesr(= z andr = T) in (2.1). Both these cases execute in constant time,
and their output is identical to their input. Moreover, this output either conforms to the no-unit
grammar or isT.

In proving the inductive step we use the inductive hypothesis and the decomposability prop-
erty. For(i) we note that only a constant amount of work is carried out prior to and after the
recursive calls (i.e., iR; » andR3 4). Noting thatR, » andR3 4 do not create new nodes proves
the inductive step ofii). The inductive step ofiii) is carried out by checking that the output
of R, » andR3 4 satisfieq(iii) whenever their input does. P4it) is proved by noting that func-
tions R, o andR3 4 only apply rules conforming to the axioros1-4.4. O

Lemma 2.1 proves the correctness of Algorithm 1 in the cases it terminates in line 4. Next
we would like to prove that when the algorithm terminates in line 6 thandr’ are indeed not
isomorphic. Note that the algorithm terminates in line 6 if and only if either T ands’ # T or
the reverse. Therefore we must prove tlatannot be isomorphic to any typewhich conforms
to the no-unit grammar. We will use the technique of abstract interpretation (Cousot and Cousot,
1992) for doing so.

For a typer define the abstract interpretation functieq (1) as follows

1 ifr=T

T tr=a (2.4)
ist(7,) ist(m) F7=70 X7
is(7p) ifr=71—m

Note thatis(7) returns either O or 1. We next prove that (7) is 1 precisely whenfr(7) = T
(hence the nam&T).

Lemma 2.2. nfp(7) =T & isp(r) = 1.

PROOF By examining the definitions aifr, R; » and Rs 4 we see thahfr(r) = T if and
only if one of the following holds
1. 7=T.
2. 7 =14 X 7, Wherenfr(7r,) = T andnfr(7,) = T.
3. 7 =14 — T, Wherenfr(7,) = T.
Thereforenfr(7) = T ifand only ifist(7) = 1. O

Lemma 2.3. Firstk 7 = 7/ = isp (1) = ist(7')

PrROOF By induction on the length of the derivation sequenc€iaft - 7 = 7/. Recall that
each equality in the derivation sequence is either an instance of an axiom or an application of
one of the inference rules on previous equalities.

The induction base is that there is precisely one such equality 7/, which must be an
instance of an axiorm.0, ..., .A.7. We can easily check in each of the axioms tisa{(7) =

J. Giland Y. Zibin 12

isp(7'). For example, ifr = 7’ is an instance ofd.7. thent = 7, — (7, x 7.) andr’ = (7, —
Tp) X (1o — 7). We have

iST(’T) = iST(Ta — (Tb X TC)) = iST(Tb X TC) = iST(’Tb) -iST(’TC),
and
isp(r') = iST((Ta —Tp) X (T4 — TC)) =i87(7q — Tp) * isT (74 — Te) = isT (1) - isT(7C).

To prove the induction step we examine the last step of the derivation sequence. If this step
is an axiom instance, then the same considerations as in the induction base apply. Otherwise
one of the following inference rules was applied: symmetry, transitivity, congruenee of
congruence of-. We can easily check each of inference rules by using the inductive hypothesis.
For instance, suppose that the congruence rube whs applied:

Ta = ToyTc = Td

TaXTCZTbXTd.
By the inductive hypothesis, we have thaf (7,) = ist(7) andist(7.) = ist(74). Therefore,
we can deduce that
isT (7 X 1) = is7(70) - isT(7¢) = is7(7p) - isT(74) = i8T(TH X Tal)-
U

Corollary 2.4. Let o be a type conforming to the no-unit grammar. Theis not isomorphic
toT,i.e.,Firstl/ o = T.

PROOF Assume by contradiction th&trst - o = T. Then, by Lemma 2.3s(0) = ist(T).
Sinceo conforms to the no-unit grammar, we have that(c) = 0, which contradicts the fact
thatisp(T) = 1. O

Finally, we will prove the correctness of Algorithm 1 in the cases it terminates in line 8, i.e.,
we need to show that

First 7 = 7' & First™ F nfp(7) = nfp (7).
The <« direction follows directly from Lemma 2(i/) combined with the facts th&irst™ C First
andProduct C First.
Lemma 2.5. Let 7 andr’ be two types conforming to the general grammar. Then,

First 7 = 7' = First™ I nfp(7) = nfp (7).

PrROOF By induction on the length of the derivation sequenc€icft - 7 = 7/, whose final
step must be the equality= 7’. In the induction base, this equality must be instance of one of
the axiomsA.0, ..., A.7. If = 7’ is an instance of4.3, thent = T — 7, and7’ = 7,. We
see thahfr(7) = nfr(7'), and hencé&irst™ F nfr(7) = nfr(7’). A similar consideration and
conclusion applies if = 7’ is an instance of axiomd.0—A4.2

Suppose that = 7’ is an instance of the commutative axiof¥, i.e.,7 = 7, x 7, and’ =
Ty X T4. We have

nfr(7) = Ry 2(ufr(7.), nfr (7)),
nfy(7') = Ry 2(nfr (), nfr(7,)).

Efficient Algorithms for Isomorphisms of Simple Types 13

If either nfr(7,) = T or nfy(r,) = T thennfr(7) = nfr(r'), thereforeFirst™ F nfr(7) =
nfr (7). Otherwise

nfr(7) fr(7.) x nfp(m),

=n
nfT(T/) = nfT(Tb) X IlfT(Ta),

and the commutative axiom.4 proves thaFirst™ - nfr(7) = nfr(7'). A similar, though more
laborious, consideration proves the same induction base in the case thaf is an instance
of A.5—-A.7.

In the induction step, we focus on the case that the final equality was obtained by one of the
inference rules: symmetry, transitivity, congruencexgbr congruence of-. (The case that this
equality is an axiom instance is identical to the induction base.)

Consider, for instance, the inference rule for congruence.ofhent = 7, x 7, and7’ =
Te X T4. The inductive hypothesis is thatrst™ + nfr(7,) = nfr(7.) andFirst™ - nfp(7) =
nfr(74). We need to show tha&trst™ F nfr (7, x 7,) = nfr(7. X 74), Or in other words, that

First™ + RLQ(nfT(Ta), I’lfT(Tb)) = Rlvg(nfT(TC%nfT(Td)). (25)

Examining definition (2.2) oR; » we see that the proof must distinguish between several cases,
depending on whether the arguments to this functiorilare

To make this distinction, we apply Lemma 2.3, obtaining thét(7,) = T if and only
if nfr(7.) = T, andnfr(7,) = T if and only if nfr(74) = T. (The lemma condition is met by
the inductive hypothesis and the fact tRast~ C First.)

Consider the case thafr(7,) # T andnfr(7,) # T. Then, (2.5) takes the form

First™ F nfr(7,) x nfr(7) = nfr () x nfp(7q).

The derivation sequence for this can be obtained by concatenating the derivation sequences of the
inductive hypothesis and a single application of the congruence inference rule. The other
cases of (2.5) are simpler, since the desired derivation sequence is one of those of the inductive
hypothesis.

The induction step in the case the final equation is an instance of any of the other inference
rules is carried out similarly.]

It is straightforward to check that i conforms to the no-unit grammar, thefir (o) = 0. We
therefore have:

Corollary 2.6. Suppose that both andr’ conform to the no-unit grammar. Then,
First-7=17" & First” -7 =1".

Much in the same fashion we can show

Corollary 2.7. Suppose that both andr’ conform to the no-unit grammar. Then,

Linear - 7 = 7’ < Linear™ -7 = 7/,

Product - 7 = 7’ < Product™ -7 = 7.

J. Giland Y. Zibin 14

3. Reduction of Linear Isomorphism to Product Isomorphism

In this section we show a linear time and space reduction of linear isomorphism to product iso-
morphism. The inputs are two typesandr’ conforming to the no-unit grammar. The algorithm
outputs are two types, ¢’ such that

Linear” -7 =17 < Product” o =¢’.

Noting thatLinear™ adds toProduct™ the currying axiom 4.6), the algorithm converts the
inputsT and7’ into a normal form in which all curried functions are brought into an equivalent
un-curried representation. This is achieved by recursively applying the anti-curryirig.fiide r
andr’. The result then conforms to the un-curried grammar, in which the pattemn(B — C)
is not allowed.
Un-curried Grammar

Tu=x | 1oz | T (rxT) | TXT

Algorithmically, the normal form is computed using functiofy.

T if r==x
nf.(7) = < nfe(7,) % nfe(m) if =7, X7 (3.1)

Rs(nfe(7a),nfe(mp)) fr =74 — 7

If a node represents a function-type, then functi®g checks whether the return type of this
function is another function type, and if so, applies the anti-currying rule.
(0o X 01) = 09 (fop =01 — 09 Il apply ruleR.6

. (3.2)
Ogq — Op otherwise

Re(0q,00) = {

Lemma 3.1. Let 7 be a type conforming to the no-unit grammar, andslet nf. (7). Then, (i)
the callnf.(7) executes irO(|7|) time; (ii) Linear™ - 7 = o; (iii) |o| = |7|; and(iv) type o
conforms to the un-curried grammar.

PrRoOF Parts(i), (ii), and(iii) are proved by structural induction, following the outline of the
proof of Lemma 2.1.

In proving (iv) we note that there are two restrictions in the un-curried grammar. The first is
that there are no occurrences®Bf This follows from the assumption thatconforms to the
no-unit grammar.

The second restriction is that the return type of all function-types is not a function-type. We
show thatnf,(7) conforms to this restriction by induction on the depth of the recursive calls
of nf.. The inductive base is the first case of (3.1) and is trivial. In the inductive step we must
show that the return type of a function cannot be a function itself. A node corresponding to a
function-type can be generated i only in the third case of (3.1). This node itself is generated
by the invocationRg(c,, 03). Examining (3.2) we see that the return type of this node,is
precisely whery, is not a function-type. If however, is a function-type, i.e.g, = 01 — 09,
then recall that, was computed by a recursive applicationndf. Therefore, by the inductive
hypothesisgs, the return type of the current node is not a function-typg.

It follows from Lemma 3.4i) that if the normal formsif. (7) andnf.(7’) are isomorphic by

Efficient Algorithms for Isomorphisms of Simple Types 15

applications of the commutative and associative axioms, thend 7’ are also isomorphic by
application of the commutative, associative and currying axioms, i.e.,

Product™ - nf.(7) = nf.(7') = Linear™ -7 =171". (3.3)

The remainder of this section is dedicated to proving the converse, i.e., that after the types where
brought to their un-curried normal form, all that is required in deciding isomorphism is to apply
the commutative and associative axioms. The proof is similar in spirit to that of Andreev and
Soloviev (1997).

Lemma 3.2. Linear™ F 7 = 7’ = Product™ F nf.(7) = nf.(7').

PROOF The proof is by induction on the length of the derivation sequendénebr— - 7 =
7/, and follows the same outline as the proof of Lemma 2.3.

The induction base is that= 7' is an instance of an axion.0, .. ., .A.6. This cannot be one
of the unit axiomsA.1, . .., A.3 since by assumptiol’ does not occur in the input. In the case
that the reflexive axiomA4.0) was applied, it is trivial to see that.(7) = nf.(7').

In the case that this axiom was the commutative axiotnt), thent = 7, x 7, and7’ =
Tp X Tq. It is easy to see thatf.(7) = nf.(7,) x nf.(7) andnf.(7') = nf.(m) x nf.(7,).
Therefore Product™ F nf.(7) = nf.(7’). Similar consideration apply when this axiom was the
associative axiomA.5).

The last axiom to consider is the currying axiom6. In this caser = (7, x 1) — p
andr’ = 1, — (1, — p). There are two cases to consider:

1. Typep is not a function-typeExamining the definitions (3.1) and (3.2), we find that
nfe(r) = nfo(r') = [nfe(ra) X nfe(m)] — nfe(p).
2. Typep is a function-typeln this case we find the maximalsuch thafp can be written
as
p=p1— (p2 = (o1 = pr)+).
Note that, by definitionpy, is not a function-type. Let

0 = nfc(p1) x (ch(,Oz) x -+ x (nfe(pp—2) x nf(pr—1)) -)

Itis then easy to check that
nf.(7) = [(nfC(Ta) X nfc(n,)) X Q] — nf.(pr),
IlfC(T/) = [nfC(Ta) X (HfC(Tb) X Q)} — nfc(pk)_

In both cases we have thRtoduct™ F nf.(7) = nf.(7').

To prove the induction step we examine the last step of the derivation sequence. If this step
is an axiom instance, then the same considerations as in the induction base apply. Otherwise
one of the following inference rules was applied: symmetry, transitivity, congruenee of
congruence of-. The only difficulty is with the congruence rule ef. Consider an instance of
this inference rule:

Ta = Ty Te — T4d

Ta — Te = Tp — Td

J. Giland Y. Zibin 16

By the inductive hypothesis, we have thtRbduct™ + nf.(r,) = nf.(7,) andProduct™ F
nf.(7.) = nf.(74). We would like to prove tharoduct™ + nf.(7, — 7.) = nf. (7, — 74).

Note that sinceProduct™ F nf.(7.) = nf.(74), their root nodes have the same type, i.e.,
both nf.(7.) andnf.(74) are product-types, function-types, or primitive-types. There are two
cases to consider:

1. Typesuaf.(7.) andnf.(7;) are both not function-type¥Ve find that

nfe (74 — 7e) = nfe(7,) — nfe(7e),

nf. (1, — 74) = nf.(75) — nf.(74).

2. Typesaf.(7.) andnf.(74) are both function-typesd.et nf.(7.) = ¢ — p andnf.(7y4) =
o — p'. SinceProduct™ + nf.(r.) = nf.(74) we have thaProduct™ + o = ¢
andProduct™ p = p'. Itis then easy to check that

nfe(ra = 7o) = [nfe(ra) x o] — nfe(p),
nf. (1, — 7q) = {nfc(ﬂ,) X g'} — nf.(p).

In both cases we have thatoduct™ F nf.(7, — 7.) = nf.(7, — 74). O

4. Multi-set Partitioning Algorithms

For the purpose of processing product-nodes in which the terms are unsorted, we need a linear
time procedure for comparing multi-sets. More generally, we develop in this section an algo-
rithm for partitioning a collection of multi-sets of integers into equivalence classes. This algo-
rithm runs inO(n) time, wheren is the size of the input representation, while using temporary
(uninitialized) storage whose size is the maximal input value. Cai and Paige (1995) review other
linear-time algorithms for partitioning multi-sets.

Definition 4.1 (Compact integer partitioning).

Given integers, . .., a,, Wherea; € [1,n] fori = 1,...,n, thecompact integer partitioning
problemis to partition the input into its equivalence classes, i.e., all equal integers will be in the
same partition (and only them).

The output partitioning is presented with respect to the input: Each equivalence class is pro-
duced as a list of indices,, . . . , i,,, such that,, = --- = a;,, . The partitioning into equivalence
classes is thus represented as a list of lists of indices.

Lemma 4.2. Compact integer partitioning can be solvedif) time andO(n) space.

PROOEF A standard bucket sort algorithm usingouckets achieves these bounds]

More general than compact integer partitioning is the case that the input range is not restricted
to the rangdl, n].

Definition 4.3 (Broad integer partitioning).
Given integersiy, . .., a,, wherea; € [1,U] fori = 1,...,n, thebroad integer partitioning
problemis to partition the input into its equivalence classes.

Efficient Algorithms for Isomorphisms of Simple Types 17

To deal with this problem, we first reduce the input range.

Definition 4.4 (Renaming). Let U be an arbitrary domain and I& C U, |T'| = n. Then a
partial functior : U — [1,n] is arenamingof T if 2 is defined orT" and for anya,b € T,

a#b= Qa) # Qb).

Algorithm 2 finds a renaming function for a sequence of integers drawn from the farige
The algorithm uses the standard trick of inverse pointers to maii&ln access time into a
sparse uninitialized array of arbitrary size. Note that main loop invardter processing index
thenQ[a;] = t andU[t] = a;, for somet € [1, ¢].

Algorithm 2 Renamgay, ..., a,)
Given the sequence, ..., a,, wherea; € [1,U], i = 1,...,n, return(i) ¢ =
{ai1,...,a,}| and (ii) a renaming function represented as an afgy,...,U],
such thaf[a;] is a unique integer in the randke ¢]. The values of the other entries
of Q are arbitrary.

1. Q < new int[U] // An uninitialized array of siz&’

2. U « new int[n] // The inverse mapping d

3. £ «— 0/l ¢ is the current number of distinct values in the input

4: Fori=1,...,ndo/l Compute|a;]

5: t«— Qla;] I/ t may be arbitrary if the value af; is new
6: If 1<t<<(¢andalso U[t] =a;then
7 next i // No new mapping sincg; = a; for somej < ¢
8: else/l Create a new mapping entry
9: ¢ — ¢+ 1/l Anew distinct input value

10: Qla;] < ¢ /I Store the mapping entry

11: U[¢] < a; Il Record the inverse pointer

12: i

13: od

Renaming makes it possible to generalize Lemma 4.2.
Lemma 4.5. Broad integer partitioning can be solved@rin) time andO(U + n) space.

PROOF After applying Algorithm 2, we apply eenaming process.e., the replacement, «—
Q(a;) fori =1,...,n. The problem is then reduced to compact integer partitioniag.

A more general partitioning problem is when the input consists of ordered pairs.
Definition 4.6 (Pair partitioning). Given a collectiorl* of n pairs of integers

<a1,b1>, ey <an,bn>,

wherea;,b; € [1,U] fori = 1,...,n, thepair partitioning problemis to partitionT into its
equivalence classes.

Lemma 4.7. The pair partitioning problem can be solvediin) time andO(U + n) space.

J. Giland Y. Zibin 18

PROOF Apply broad integer partitioning first oa, .. ., a, to obtain an initial partitioning
of I". Each of the resulting equivalence classes is then refined by broad integer partitioning with
respect to theé;’s. OO

Renaming with pair partitioning is also easy. Each pair is replaced by the index of its equiva-
lence class. In fact, every partitioning algorithm gives rise to a corresponding renaming.
Lemma 4.7 can be generalized further.

Lemma 4.8 (Tuple partitioning). Given a collection” of n tuples ofk integers each, where
each integer is drawn from the ranfe U], it is possible to partitiol” into its equivalence
classes, i (nk) time andO(U + n) extra space.

PrROOF Similar to Lemma 4.7, however, instead of two passes we now haasses. The
input to the first pass is the entire collectibpand the output is a partitioning dfaccording to
the first element of each tuple.

The output of passis a partitioning ofl” satisfying the following invariantll elements in the
same partition have an equalprefix, i.e., the same firgtintegers in their tuplesPassi refines
each partition by applying broad integer partitioning according ta'thelement of each tuple.
Since broad integer partitioning is performed in linear time, the running time of a pass is linear
in the sum of partition sizes, which is exactly= |T'|. Thus the total running time 9 (nk).

At the end of thek™ pass the tuple partitioning problem is solved. Broad integer partitioning
requires (reusable) (U + n) space. In addition, onlY)(n) space is required for storing the
current partitioning of” in the form of indices to the input array(]

Notice that the time requirement in the above is linear in the size of the input, not the number
of tuples. Also, observe that the algorithm for the tuple partitioning problem is imfa&mental
in the sense that in th pass we only examine thi# integer in each tuple.

Corollary 4.9 (Incremental tuple partitioning).

Let I" be a collection ofn tuples of k integers each, where each integer is drawn from the
range[l, U]. Then, it is possible to incrementally partitidhin & passes where th&' com-
ponent of each tuple is specified in thepass, inO(n) time for each pass and(U + n) extra
space.

A more challenging situation occurs in the case that the input consists of unordered tuples,
rather than tuples. Next we will show that multi-set partitioning can also be solved in time linear
in the size of the input.

Definition 4.10 (Multi-set partitioning). Given a collection” of multi-sets of integers drawn
from the rangdl, U], the multi-set partitioning problemis to partitionT" into its equivalence
classes.

Lemma 4.11. Multi-set partitioning can be solved ifi(n) time andO(U + n) space, where
is the sum of sizes of all multi-sets.

PROOE First, Algorithm 2 is invoked to rename all integers in the input to fit the rdhge].
The next step is to sort the multi-sets. However, if each of these is sorted independently the

Efficient Algorithms for Isomorphisms of Simple Types 19

running time would not be linear. Instead, we concatenate the sets together, prefixing each in-
put integer with the identifier of its multi-set. All the multi-sets can then be sorted by a single
application of a radix sort.

We stress that we sort thenamedintegers, not the initial multi-sets. This process is known
asweak sort(Paige, 1994). Weak sort is possible in linear time since the renaming process is not
order preserving.

Next, the ordered multi-sets are partitioned according to size. Each such partition is a collec-
tion of ordered multi-sets of equal size; in other words, each patrtition is a collection of tuples
of equal size. All that is left is to solve the tuple partitioning problem, employing Lemma 4.8 in
each partition. O

5. An Algorithm for the Product Isomorphism Problem

After units are eliminated, product isomorphism theory has only the commutative and associative
axioms. These axioms allow products to be reordered until the two types match. Thus product
isomorphism is in essence a series of multi-set partitioning problems. In this section we use the
algorithms described in the previous section for these problems in developigarime and
space algorithm for product isomorphism. This algorithm receives two typasdr’, conform-
ing to the no-unit grammar, and determines whegtveduct™ + 7 = 7.

The algorithm begins bffattening all productsn the input, so that it conforms to the following
product grammar.

Product Grammar

Note that we have extended thEconvention (1.2) to include products with a single term. Thus,
in this grammar

H(m) =z (5.1)

Recall that by assumption the input cannot be isomorphiE, toence the start symbpldenotes
products of at least one term. Each of these terms is either a primitive-type or a function-type.
Consider, for example, the following type, which will serve as a running example,

(@axb)—c)— ((dx(exf)) x (g—>(h><i))). (5.2)

Figure 5.1 shows the expression tree of this type before and after flattening.

Algorithmically, the flattening process is carried out by computing the normal form defined
by the functionnf,. This function receives a type conforming to the no-unit grammar, and
exhaustively applies the associative riRe5. The output is a type conforming to the product

J. Giland Y. Zibin 20

Fig. 5.1. An abstract syntax tree of type (5.2) before (a) and after (b) flattening

grammar.
[(x) ifr=ux
nfy(7) = ¢ [[(nfa(7a) — nfa(m)) fr=7,— 7 (5.3)
nf, (7,) > nf, (73) if =7, %x7 Il apply ruleR.5

The operatiom< denotes the concatenation of the terms of two products, i.e.,

K k k
[T 1] =-1In
i=1

i=k'+1 i=1
Lemma 5.1. Let 7 be a type conforming to the no-unit grammar, anddet nf,(7). Then,
(i) the callnf, (1) executes irO(|7]) time; (ii) |o| < 2|7[; (iii) type o conforms to the products
grammar; andiv) Product™ -7 =o¢

PROOE Trivial by structural induction. Pafiv) is proved by interpreting | nodes with con-
ventions (1.2) and (5.1) and noting that only the associativeRulevas applied in the definition
of nf, (7). O

The flattened representation makes it easier to decide product isomorphism. The following
lemma shows how this decision might be carried out.

Lemma 5.2. Let 7 and7’ be two types conforming to the product grammar. Theraduct™
7 = 7' if and only if one of the following three statements holds:

1. Typesr andr’ are equal to the same primitive-type

2. Typesr andr’ are function-types, i.er, = p1 — p2 andr’ = p| — ph, andProduct™
p1 = p} andProduct™ - pa = ph.

3. Typest and7’ are product-types with the same number of terms, .e5 Hle o
andr’ = Hle o}, and there exists a bijection: [1, k] — [1, k], such thaProduct™ +
o = a;(i) foralls,1 <i<k.

PROOF Direction< is trivial. Direction=- is done by induction on the length of the derivation
sequence ofroduct™ -7 =17'. O

Efficient Algorithms for Isomorphisms of Simple Types 21

The product grammar produces abstract syntax trees in which function- and product-types
occur alternately on the path from the root to any leaf. We can thus define a height for each tree
node, so that product (function) types are always represented by nodes of odd (even) height.

Definition 5.3 (Height). Let T be a type conforming to the product grammar. Thenhigight
of a type, denotedl(r), is the length of the longest path fromto any leaf, i.e.,

0 ifr=x
h(r) = 1+maxt_ h(oy) ifr =], 0 (5.4)
1+ max?_; h(p;) ifT=p1— p2

Edges in Figure 5.1b were stretched so that nodes of the same height are drawn at the same
level. Observe that product-types always have odd heights and function-types always have even
heights. This can be easily proved by induction on the product grammar.

Lemma 5.4. Let 7, 7’/ be two types conforming to the product grammar. Then,
Product™ 7 = 7" = h(1) = h(7').

PROOE Trivial by structural induction o and7’ using Lemma 5.2.
Theorem 5.5. Product isomorphism can be decidedi) time and space.

PrROOF Consider the types represented by all of the nodes of the tree representations of
andr’. We will label each of these types with an identifier drawn from the ranfien], such
that two types are isomorphic if and only if they have the same identifier.

Since two types cannot be equivalent unless their heights are the same, identifiers may be
assigned in ascending order of heights. Tebe the set of all types of height The setlj is
the set of primitive-types. The algorithm starts by passipdo the broad integer partitioning
algorithm. A renaming process then yields unique identifiers for all primitive-types.

The processing df,, « > 1 depends on whetheris even or odd. If is even, then types i@,
correspond t@r symbols in the grammar of the normal form, i.e., function-types. Equivalence
among these are discovered using pair partitioning algorithm.

If however. is odd, then the types ifi, are products, i.ep symbols. We apply the multi-set
partitioning algorithm to find all equivalence classes among these.

In both even and odd levels, we apply a renaming process that assigns identifiers to types in
the current level, starting at the first unused identifier.

Each node is passed to a partitioning algorithm at most twice, first in the partitioning of nodes
in its height, and then as component of its parent. Therefore the total input size in all invocations
of partitioning algorithms is linear, and hence the total runtime of our algorithm is lingar.

The above algorithm is applicable also in the case that types use a DAG rather than a tree
representation. The runtime in this case is linear in the number of r@ddeshe number of
edgef the graph.

J. Giland Y. Zibin 22

6. TheP/F-graph

To generalize the linear isomorphism algorithm to deal with the first order isomorphism problem,
we now introduce the normal formfy in which thedistributive rule R.7 is not applicable.

As noted in Section 1.3, an exhaustive application of this rule may lead to a representation of
exponential size. ThP /F-graph, described in this section, is a linear size representation of the
normal formnfy.

Let 7 and7’ be two arbitrary types conforming to the product grammar. The problem is to
determine whetheFirst™ + 7 = 7’. (The assumption that the inputs conform to the product
grammar is safe since the normalizing functiefy can be applied in linear time to flatten all
products.)

Repeated applications of rul@6 andR.7 will bring each of the inputs to the normal form
defined by thdirst order grammar

First order Grammar
k
0= (k> 1)
=1
cu=zx | o—uw

Comparing the first order grammar and the product grammar we see that the dervation
p — pisreplaced by ::= ¢ — z, i.e., all functions must return a primitive-type.

Algorithmically, this normal form can be generated by applying the normalizing funafign
defined by

[1(x) if =2
nfq(7) = <) nfy(o;) if 7= Hle oi (6.1)

Re7(nfa(pr), p2) if 7=p1 — po

whereRs 7 is an auxiliary function, mutually recursive wittfy, which handles function types:

[I(e —) if r=2x
Re7(0,7) = { ™Iy Rer(0, 0i) if 7= Hle o; I apply ruleR.7 (6.2)
Ro7((oanta(pr).p2) 17 =p1—p2 I applyruleR.6

Functionsafy and Rg 7 musteagerlyevaluate their arguments to ensure that the distributive rule
is applied in outer-first order (Remark 1.9). In other words, given a function pype> po,

rule R.7 is first applied tgp; and only then tg,. This is the reason that the call &; - in (6.1)
cannot commence beford, (p;) finishes.

We shall see that the definition &% 7 gives rise to a multiple-terms version of the distributive
transformation (1.8). In this version, an input nade-]_[ff:1 o; is converted t(ﬂf:l(a — 0y)
whereq is represented as a pointer to the node corresponding to the prwoduct

We now examine definitions (6.1) and (6.2) more formally. First, we show that the value re-
turned by these functions is isomorphic to their input. L&k an arbitrary type.

Efficient Algorithms for Isomorphisms of Simple Types 23

Lemma 6.1.
First = 7 = nf4(7),
Firstk 0 — 7 = Rg.7(0, 7).

PrROOF We first note that since conforms to the product grammar, then exactly one of the
three cases in the definition of eithefy (6.1) or Rg 7 (6.2) must apply. The lemma is then
proved bysimultaneousstructural induction orn. The induction base is the first case in both
definitions. By examining the second and third cases of (6.1) we see that it immediately follows
from the (simultaneous) inductive hypothesis that functiinreturns a type isomorphic to.

The distributive (currying) axiom and the same inductive hypothesis showRihatreturns a
type isomorphic t@ — 7 in the second (third) case of its definition (6.2).]

Lemma 6.2. Typenfy(7) conforms to the first order grammar. Furthep #lso conforms to this
grammar, then so do€%; 7 (o, 7).

PROOF Note that all types conforming to this grammar are products whose terms are either
primitive or function types. The proof is again carried out by simultaneous induction on the
structure ofr. Again, the induction base is trivially given by the first case of (6.1) and (6.2).
The induction step is also easy: in the second case of both definition the returned value is simply
a product of terms covered by the inductive hypothesis. In the third case of these definitions
the returned value is of a recursive c&l 7(-, p2) where|ps| < |7|. The proof is completed
by checking that the first argument in both of these recursive calls conforms to the first order
grammar as required for satisfying the inductive hypothesis.

We stress thatfy(7) may be of sizeé)(n?), as indeed happens in example (1.10). The reason
for this blowup is in the third case dts 7: the concatenatiop i nfy(p;) creates a new prod-
uct node whose list of terms are the concatenation of two lists of terms: theamd nfy(p;).

Note that the terms themselves are not duplicated, but a new list of terms must be created. The
reason that we cannot reuse the two existing lists of terms isgtbah be shared among in-
dependent recursive calls due to the second cade; ¢f we havek independent calls of the

form Rs 7(0,0).

In order to give the linear space and time bounds for the normalization process, we describe
asharedrepresentation of types in the first order grammar. Instead of the usual expression tree,
we shall use a special rooted acyclic graph. We use theRefRrgraph since the nodes in it are
eitherP-nodes (representing product-typeskanodes (representing function-types).

A P-nodew has a fieldp(v) storing the non-empty set of pointers to term nodes. Terms are
eitherF-nodes or primitive-types, which are encoded simply by identifiers in the rfangg In
addition,v has a fieldparent (v) pointing to anotheP-node, from whichv inherits additional
terms.

An F-nodeu has a fieldarg (u), which is a pointer to th&-node storing the function argu-
ment type, and a fieltet (u), which is a primitive-type specifying the function return type.

P/F-graphs are further restricted by the demand gaent edges define a tree over the
P-nodes called thg@roduct tree and denoted/'. The tree7 is rooted at a dummyP-node,
denotedP ;, which has no terms, i.ep(P,) = . P-nodes are therefore initialized with
theirparent field pointing atP | .

J. Giland Y. Zibin 24

Definition 6.3 (Expanded terms). The expanded terms ofR-nodewv, denotedp(v), are the
union of terms of its ancestors in the product tree, i.e.,

@ if v = PL
$(v) = :
p(v) U ¢(parent (v)) otherwise.

Consider, for example, Figure 6.1a which shows type (5.2) in the product grammatr. Figure 6.1b
shows the result of applying algorithNormalizeProduct (described later) on this type.

Fig. 6.1. (a) Type (5.2) in the product grammar, and (bPif¥ -graph representation. Tiparent
edges are depicted in bold.

TheP-nodes in Figure 6.1b are:

P, - I
P.— P, = [[(ab)
P,= P3 = [[(9)

P10 = PL > H(F5;F67F77F87F9)

We see that each term offxnode is either a primitive type (e.@) or anF-node (e.g.F2). In
addition to the set of terms, eaghnode (excepP |) inherits additional terms via thearent
edge. For exampl@arent (P,) = Pj3, i.e.,P, inherits the terms oP; which recursively in-
herits the terms dP | . Therefore, the extended termsk®f are the union of the terms &f,, P53,
andP | :

¢(P4) = o(P4) Up(P3) Up(PL).
Algorithms 3 and 4 present two mutually recursive routines, namdelynalizeProduct

Efficient Algorithms for Isomorphisms of Simple Types 25

and FunctionintoProduct . These routines are storage-minded variants of functidps

and Rg 7, respectively. Together, the two describe a single pass traversal of an abstract syntax
tree of a type conforming to the product grammar. The output is a linear BiZBegraph of an
isomorphic type in the first order grammar.

Algorithm 3 NormalizeProduct (1)
Given a typer conforming to the product grammar, returlPenodev of an isomor-
phic type in the first order grammar.
1: v < new P-node //Initially parent (v) =P, ¢(v) =0
2: If 7 is a primitive-typer then
p(v) — {z}
4: else ifr is a product-typehen
5. Letkando;,i=1,...,k, besuchthat = Hle o;
6. Fori=1,...,kdo// Normalize all terms in the product
.
8

w

u; < NormalizeProduct (o;)
p(v) <« @(v) U p(u;) Il Collect terms ofy;
9 od
10: else// 7 is a function-type
11: Letp; andps be such that = p; — po
12. u < NormalizeProduct (p;1)
13: v <« FunctionintoProduct (u, p2)
14 fi
15: Return v

Lines 2—3 of Algorithm 3 correspond to the first case of functiép lines 4-9 to the second
case, and lines 10-14 to the third. The union operation in line 8 correspond to the concatenation
operationx in the second case af.

Algorithm 4 follows the same outline as functidty 7: lines 2-5 correspond to the first case
of Rg 7, lines 6-11 to the second, and lines 12—-17 to the third. Again, the union operation in
line 10 correspond to the concatenation operatian the second case & 7. However, the con-
catenation operatiart in the third case oRs 7 was translated into an assignment topheent
field of w in line 15. This line is the crux of the two routines, making the linear space represen-
tation possible.

Let us examine lines 12-17 and the third casé@f. Nodewu represents type, and nodev
represents the produet<t nfg(p;). In line 14, we assigMNormalizeProduct (p;) to w.

Then, instead of adding the termswfo w (i.e., o(w) — ¢(w) U ¢(u)) we point theparent
field of w tow in line 15. Therefore the expanded termswdre equal to those of the product«
nfq(p1).

The next lemma proves that algorithms 3 and 4 ru@{n) time and space.

Lemma 6.4. Let 7 be a type conforming to the product grammar, andudie aP-node.
Then, the function calldormalizeProduct (r) andNormalizeProduct (u,7) execute
in O(|7|) time and space.

J. Giland Y. Zibin 26

Algorithm 4 FunctionintoProduct (u,)
Given aP-nodeu and a typer (which is a product-type) return, a newP-node
describing a type isomorphic to the function-type- , wherep is the type repre-
sented by th&-nodeu.

1: v < new P-node //Initially parent (v) =P, o(v) =0

2: If 7is a primitive-typex then

3w « newF-node

4. arg (w) «— u; ret (w) < z // wrepresents the type — «
5 p(v) — {w}

6: else ifr is a product-typeéhen

7. Letkando;,i=1,...,k, be suchthat = Hle oi

8 Fori=1,...,kdo// Normalize all terms in the product
9: u; < FunctionintoProduct (u, ;)

10: p(v) «— @(v) Up(u;) Il Collect terms ofy;

11: od

12: elsel/ T is a function-type

13: Letp; andps be such that = p; — po

14. w < NormalizeProduct (p;)

15. parent (w) < u// Share the common argument
16: v < FunctionintoProduct (w, p2)

17: fi

18: Return v

PROOF Proved by mutually-recursive structural-inductionrormhe induction base is when
is a primitive type. It is mundane to check that lines 2—3 of Algorithm 3 and lines 2-5 of Al-
gorithm 4 execute in constant time and space. In the induction stispeither a function or a
product. The amount of time and space invested in addition to the recursive calls is either con-
stantifr = p; — p2orO(k) if 7 = Hle o;. Note that the union in line 8 of Algorithm 3 and
line 10 of Algorithm 4 can be computed in constant time since the termsafe not shared (in

contrast to the terms of which are shared among other calls].]

The following lemma shows that first order isomorphism of two types can be decided by
bringing each of these types into th#iy F representation, and then traversing the two graphs in
tandem, comparing at each stage the expanded terms of the current nodes.

Lemma 6.5. Two nodesu, v in a P/F-graph represent isomorphic types if and only if one of
the following three statements holds:

1. Nodesu andv represent the same primitive-type

2. Nodesu andwv are bothF-nodesyret (u) = ret (v) andarg (u) andarg (v) (recur-
sively) represent isomorphic types.

3. Nodesu andw are bothP-nodes, and there exists a bijectiofirom ¢(u) to ¢(v), such
that every’ € ¢(u) (recursively) represents a type isomorphierfo’).

PROOF Let 7 and 7’ be the types: andv represent, respectively. Then, batrandr’ con-
form to the first order grammar. Rittri (1990) proved that, in such a case (i.e., when none of the

Efficient Algorithms for Isomorphisms of Simple Types 27

rulesR.1-R.7 can be applied), we have that
First 7 =7' < Product” -7 =1".

Deciding the latter can be done using Lemma 52.

If the terms inP-nodes are expanded, then the size of the representation may incré&sé to
(as in (1.10)). With this expansion, the problem becomes an instance of product isomorphisms,
which, as explained in the previous section, can be solved in linear time. We can thus obtain a
simpleO(n?) time and space algorithm for the first order isomorphism problem, thereby improv-
ing upon theO(n? log n) best previous result. To obtain a more efficient algorithm, we develop
in the next two sections the machinery for comparing unexpanded products.

7. Tree Partitioning

We need to further develop our partitioning algorithms to deal withribie-expandedepre-

sentation of products in the tree Bf-nodes rooted aP, . The partitioning of these nodes is

tantamount to finding the type isomorphism relationships betd®andes: Twd-nodes are in

the same equivalence class of the partitioning wheregpandederms of the respective nodes

are the same, which happens if and only if the types these two nodes represent are isomorphic.
To understand this need better, consider again our running example type (5.2)

((axb)ec)ﬂ((dx(exf))x(gﬂ(hxi)))

Algorithm NormalizeProduct generated th® /F-graph representation of this type. This
representation is depicted again in Figure 7.1a below.

By definition, removing allF-nodes and the edges incident on them froid /& -graph will
result in a tree. Figure 7.1b shows the tree thus obtained from Figure 7.1a. As explained above,
the extended terms of eadhnode are computed by inheriting the extended terms of its parent
(see Definition 6.3). For example, tree nd@gin the figure inherits the terms of tree noBg.

Let us ignore thé'-nodes for now, and concentrate on a variant of the multi-set partitioning
problem in which the multi-sets are defined by an inheritance tree. We will first develop an
algorithm for this variant. Still, we note that this algorithm does not completely solve the general
problem of sorting the nodes of R/F-graph into equivalence classes. The reason is that the
terms in the product-tree are not always known in advance. In Figure 7.1b we see for example
that the tern¥F' in Py is not available upfront. We need to process nbdebefore we can be
certain that this term is not isomorphic to, for example, t&gnwhich in turn depend upoR;,.

The next section will take care of this subtlety by developing an incremental algorithm for the
problem.

In this section, our concern lies with the simpler, non-incremental, setting, described as fol-
lows: Given is a tre€ of n nodes such that a multi-sg{v) of integers is associated with each
nodev € 7. Theexpanded multi-seif a nodev is the union of multi-sets of the ancestorsuof
ie.,

J. Giland Y. Zibin 28

{F5!F6!F7!F8!F9} @

Fig. 7.1. (a)P/F-graph representation in Figure 6.1b, and (b) its product-tree with the multi-set of
terms of each product.

These expanded multi-sets will be in our applications the expanded terms (Definition 6.3) of
P-nodes.

Definition 7.1 (Tree partitioning). Given a tre€l , thetree partitioningis the partitioning de-
fined by the multi-set partitioning of the expanded multi-4et&) | v € T'}.

Let M denote the total number of elements in multi-set€ofe., M = 3" _|¢o(v)|. We can
assume that the integers in the input to the problem are condensed k# thap(v) = [1,m].
(This condition can be ensured by a simple application of a renaming process.)

Figure 7.2a shows an example of a tree with= 8 nodes with their associated multi-sets
(only four of which are non-empty). In the exampie,= 4 distinct integers take part in these
multi-sets. The total number of elements in these multi-seig is 9.

We have for nodeE andF, for instance,

¢(E) =10

e(F) ={1,3,4}

o(E) ={1,2,3,4}

o(F) = {1,2,3,4,1,3,4}

Figure 7.2b depicts the solution of the tree partitioning problem for the multi-set tree of Fig-
ure 7.2a. We see that there are 5 partitions:

{A}, {H},{B,C},{D,E, G}, {F}. (7.1)

Efficient Algorithms for Isomorphisms of Simple Types 29

{1234} | {1,2,3,4,1,34}

Fig. 7.2. A small multi-set tree (a) and its tree partitioning (b)

The callout attached to each partition shows the expanded multi-set of all nodes in this partition.
For example{1, 2, 3,4} is the expanded multi-set of the partiti¢p, E, G}.

The naive solutionto the tree partitioning problem is by directly computing the expanded
multi-sets¢(v). In order to do so, we represent an expanded multiéej as an integer ar-
ray Count,[1,...,m].

Definition 7.2. Given an expanded multi-sefv), its array-representationdenotedCount,,, is
an array over the indicgs, . . ., m], such thaCount, [i] = k if integeri occursk times ing(v).

Array Count, can be easily computed from(v) and Count,,, wherew is v's parent. Af-
ter having obtained the arragsount,,, the tree partitioning problem becomes the partitioning
problem of these arrays, viewed assized tuples. The total size of thoserrays isnm cells,
while the time required for computing them@§nm + M) time since we also examined all the
termsp(v). To conclude, the runtime of the'ive solution isO(nm + M) while usingO(nm)
space.

We now present an algorithm for finding the tree partitioning whose runtiro¥ id log m)
usingO (M) space. This algorithm relies on tdeal representation in which, instead of associ-
ating a multi-set of integers with each node, a multi-set of nodes is associated with each integer.
(To simplify the complexity analysis we assume thatl M. This assumption is true in our
application sincd-nodes have a non-empty set of terms, |g(u)| > 1.)

Definition 7.3. A family F;, i = 1,...,m, is a multi-set of nodes such thatiibccursk times
in p(v), thenv occursk times in F;.

J. Giland Y. Zibin 30

In our example, four such families are defined:

I = {BvFvHaH}a

= {8}7 (7 2)
Fy = {B,F}, '
F, = {D,F}.

Note thaty " || Fi| = M.

Given atreeZ and a multi-sef’ of its nodes, it is easy to define a partitioning of the nodes of
where the classification criterion is the number of occurrences of a nddeWe shall however
be interested in a more sophisticated such partitioning, dendfedn which the classification
criterion is the number of times a node “inherits” membership'itMore precisely,

Definition 7.4. Letu, v be two nodes of’, and letancestors(u) (respectivelyancestors(v)) be
the set of ancestors af Then,u andv are in the same partition & F' if and only if

|ancestors(u) N F| = |ancestors(v) N F.
In our example, the four family partitionings induced by the families of (7.2) are:
VF, = {{A},{F,H},{B,C,D,E,G}},
VF, = {{A,H},{B,C,D,E,F,G}},
VF; = {{AH}, {F},{B,C,D,E,G}},
VF, = {{A,B,C,H},{F},{D,E,G}}.

Note that all the nodes in a certain partition 6f;, 1 < i < 4, have the same number of
occurrences of. For example Count,[1] = County[1] = 2. In fact, it is easy to prove the
following:

(7.3)

Lemma 7.5. Let F; be a family, and) be a node of7, then
|ancestors(v) N F;| = Count,,[i].

The performance gain of the dual representation is due to the fact that the multi-set of nodes
in which a value participates is often a subtreq ofor example, the partitiofB, C,D,E,F,G}
of VI3 is a subtree rooted &t

Next we define théntersectionof two partitioningsP; and P, written asP; x P, and show
thatVF; x --- x VF,, is in fact the tree partitioning.

Definition 7.6. Let P, and P, be two partitionings. Then, theimtersectiondenotedP; x P, is
defined by

Py x Po={p1Np2|p1 € P1,p2 € Po}.

In other wordsP; x P; is obtained by intersecting each partition Bf with each partition
of P,. For example, the intersection ®fF; andV F; is

VFEF, x VFy = {{A}, {F, H}, {B,C, D, E,G}} X {{A, H}, {B,C7 D,E, F,G}}
= {{A}, {H}7 {F}v {87 C,D,E, G}}

It is mundane to see that is commutative and associative.

Efficient Algorithms for Isomorphisms of Simple Types 31

Lemma 7.7. The partitioningV Fy x --- x VF,, is the tree partitioning.

PROOF Let P be the tree partitioning. Let,v € 7 be arbitrary. For a partitioning’, we
write v = v mod X to denote that;, v belong to the same partition &f. Then we need to prove
thatu = v mod P if and only if

u=vmod VF| x --- xVF,,.

Suppose first that
u = v mod P. (7.4)
Then, from the definition of the tree partitioning (Definition 7.1) we have that
$(u) = (). (7.5)
It follows by the definition of the array-representati@ount[1, ..., m] (Definition 7.2) that
V1 < i < m e Count,[i] = Count,|[i]. (7.6)

If Count, [i]] = Count, [i] then, by Lemma 7.5ancestors(u) N F;| = |ancestors(v) N F}|, SO
we may write
V1 < i < m e |ancestors(u) N F;| = |ancestors(v) N F;|. (7.7)
From the definition of th&/ operator (Definition 7.4) we have that
Vi<i<meu=vmodVF,. (7.8)
Finally, from the definition of the intersection of two partitionings (Definition 7.6)
u=vmod VF] X -+ X VF,. (7.9)

To show that (7.4) follows from (7.9) we trivially follow the above reasoning chain in the
reverse direction. (]

We now devise an efficient representation of family partitionings and a way to compute their
intersection. To this end, we describe below gegmented-arrayepresentation of a family
partitioning VF which requiresO(|F'|) space. We also show how to intersect two segmented-
arraysA; and As, which results in another segmented-ardaywhich represents; x A; where

|Az| < A1] + [As].

The trick is to consider a pre-order traversal of the tree, in which subtrees can be simply
encoded as intervals. Therefore, members of a fafitlefine intervals, which in turn break the
pre-order into segments. Thus, the partitionWig' can be encoded as an array mapping those
segments to their containing partition.

In our example, let the pre-order traversal be

7 = (A,B,C,D,E,F,G,H).
As can be seen in Figure 7.3, the descendants of any given node form an interval. This figure
highlights the intervals of the descendants of ndglesndF:

descendants(B) = {B,C,D,E,F,G} = [B, G|,

descendants(F) = {F} = [F, F].

J. Giland Y. Zibin 32
A[BICIDIE[F[G]H
® 6 @
© ©
® @

Fig. 7.3. The intervals and segments defined by family= {B, F}

Consider now the family¥; defined by these two nodeB; = {B,F}. In Figure 7.3 we see
that the two intervals of,

Intervals(F3) = {[B, G], [F,F|},
breaksr into five segments
Segments(F3) = {[A, A, [B, E], [F,F], [G, G], [H,H]}.

Consider any arbitrary such segment definedfhyand letv range over the nodes of this seg-
ment. Then, the multiplicity of the valugkin ¢(v) is the same, e.g., the multiplicity of the valsie

in the segmen(B, E] is 1. The segmented-arrayepresentation associates a multiplicity to each
segment. This multiplicity is called treegment descriptoi he segmented-array of family; is
therefore

SegmentedArray (F3) = ([A,A] — 0, [B,E] — 1,[F,F] — 2,[G, G| — 1, [H,H] — 0),
and its family partitioning is
VF; = {{A H}, {F},{B,C,D,E,G}}.

Observe that each segment is contained in some partitiGn/f and that two segments with
the same descriptor belong to the same partition. For example, both sedmé&itand[G, G|
are contained in the partitiofB, C, D, E, G} of VF;. In fact, the union of those two segments is
exactly this partition. It is easy to check that this is no coincidence, i.e., the union of segments
with the same descriptor is equal to some partitioWif;, and vice versa.

More formally,

Definition 7.8. Let P be a partitioning of the nodes @f, and letr be a pre-order traversal
of 7. Then, asegmented-arrayepresentation oP is an array of segment records, each record
containing the segment starting and ending indices and a descriptor such that:
1. The segments are distinct and cowei.e., the segments are a partitioningrof
2. Each segment is contained in some partitiorPofn other words, the segmented array
represents a finer-grained partitioning thian

Efficient Algorithms for Isomorphisms of Simple Types 33

3. Two segments have the same descriptor if and only if they are contained in the same
partition of P.
4. The segments are sorted in an increasing order.

We will sometimes refer to a family partitionifg £’ as a segmented-array. No confusion will
arise.

A segmented-array representation of a family partitiorWhg can be created i®(|F|) time
and space since the number of segments is linedf inMore precisely, a family#" defines at
most|F'| distinct intervals inr, one for each distinct node if. These intervals break into at
most2|F| + 1 segments.

Figure 7.4 depicts the segmented-array representations of the family partitionings of (7.3).

ABICDEFGH
VF,| 0 1 2]1

w0 1 o]
VF,[0 1 2]1]o0
ARG 1 ?10

Fig. 7.4. The segmented-arrays of the families of Figure 7.2a

The intersectionof two segmented-arrayB; and P,, whose sizes are; ands,, is carried
out by merging their arrays i@(s; + s2) time into a single array of size at mast + s». The
descriptors of the segments iy x P, are therenamedpairs of descriptors of the originating
segments fronP; and P, (using Lemma 4.7).

Figure 7.5 depicts the intersection of the segmented-arraydofandV F; from (7.2).

A BCDETFGH

VEo 0] 1 |2]1]2]
VE, [0] 1 0]
. 3
Intermed1qte I | 11 |2,1 | 11 |2,0|
representation s -
renaming
VFIXVF2|O| 1 |2|1|3|

Fig. 7.5. Computing the intersection of the two segmented-aiVaysandV F; defined by
Figure 7.2a.

The third row in the figure shows the intermediate stage in which the segments in the intersec-

J. Giland Y. Zibin 34

tion still use pairs of integers as descriptors. For exaniplé,) is the descriptor of the segment
containing nodes, C, D, andE. This descriptor was renamed to 1. Note that the other segment
(singleton withG) with the pair descriptof1, 1) was also renamed to 1.

We are now ready to state the principal result of this section describing the (non-incremental)
tree partitioning algorithm and its performance.

Theorem 7.9. There is arD(M logm) time andO (M) space algorithm solving the tree parti-
tioning problem.

PROOF Using Lemma 7.7, we wish to compuier; x --- x VF,,. We therefore build a bal-
anced binary tree whose leaves are the segmented-ar#ys . . , VF,,. In each internal node
we compute the intersection of the two segmented-arrays of its two children. The segmented-
array at the root of this tree represents the tree partitioning.

Consider the first level of this tree which contains the segmented-aNfays. .., VF,,. Re-
call that the size of the segmented-arfay; is 2|F;| + 1. Therefore, the size of the entire first
level is

> @IF|+1) = O(M).
1=1

In calculating the second level of the tree, we intersect pairs of segmented-&tfays
VF;+1, for odd values ofi. Recall also that the time (and space) for crealing; x VF;
is O(|F;| + |F;+1|)- Thus, the time (and space) for creating the second level is ayfdin).

In general, since all the segmented-arrays propagate to the root, we have that the total size of all
segmented-arrays at each tree level, and thus the work to generate the next{@{zl,)isSince
the number of levels iflog, m]+ 1, we have that the total time for computiRgFy x - - - x VF,,
isO(Mlogm). O

For an example, refer to Figure 7.6 which depicts the balanced binary tree of the families
of (7.2). We see in the figure that the segmented-array at the root of this binary trééfi,ex,
VF, x VF3 x VF,, partitions the ordering into 6 segments. The segment of tymeandE
hasid = 2. This is also thed of the segment of. Together, these two segments represent the
partition{D, E, G}. We have thus obtained the desired partitioning (7.1) of the tree in Figure 7.2a.

A B .CDEF GH

0 1 2|1
0 1
0 1 2|1

Fig. 7.6. The balanced binary tree of the families of Figure 7.2

Efficient Algorithms for Isomorphisms of Simple Types 35

8. Incremental Tree Partitioning

The tree partitioning problem (Definition 7.1) solved in the previous section does not capture
in full the intricacies of the bottom up classification into isomorphism classes of the nodes of
aP/F-graph. The difficulty is that the terms B-nodes in any given height afenodes. These
F-nodes must be classified prior to the classification oRh&odes in this height. The algorithm
behind Theorem 7.9 however assumes that all multi-sets members are directly comparable. It is
applicable only in the case when all terms are primitive-types.

In this section, we develop the algorithm which after having classified alPtmedes up to
height., will use this information to classify thE-nodes in height + 1. The identifier found in
the classification of thede-nodes must take part in the classification ofEh@odes at height+
2.

To this end, this section deals with a more general variant of the tree partitioning problem, in
which the multi-sets are supplied inpgecemeal fashiann this variant, the different possible
values of the multi-sets in the tree nodes are exposed in iterations. The algorithm for this variant
will add another logarithmic factor to the time complexity.

The requirements from a data structure for ith@emental tree partitioning problemre best
defined in terms of the dual representation.

Definition 8.1. Given a tree7, anincremental tree partitioning data structuraust support two
kinds of operations, which might be interleaved:

1. Operationinsert (Fj;), whereF; is a family, i.e., a multi-set of nodes af.

2. Queryclassify (Tk), whereT}, is a subset of the nodes @f. This query returns
the tree partitioning off}, according to the families inserted so far. More formally,
let{F},..., F;} be the set of families inserted so far. Then, the query returns the restric-
tion of VF; x - - - x VF} to the sefl,. This restriction is defined in the obvious manner,
i.e., it is the partitioning obtained by intersecting each partitiovéf; x --- x VE}
with T}, and ignoring all thusly obtained empty partitions.

To make the complexity analysis easier, we assume that thg§gtare disjoint, that J, 7}, =
7 and that the data structure is never required to classify a node before its parent.

These assumptions hold in our application: the set of n@@as exactly the set oP-nodes
whose height i24, and a familyF; is inserted after having discovered that a certain collection
of F-nodes belong in the isomorphism class whose identifigr(iBhese identifiers are allocated
consecutively.)

Our main objective is to minimize the resources for processing the entire interleaved sequence
of data structure operations. The next theorem states the performance characteristics of our in-
cremental tree partitioning algorithm.

Theorem 8.2. Incremental tree partitioning can be solveddQM log m + nlognlogm) time
andO(M) space.

PROOF We use a lazy representation of an infinite complete binary tree, similar to the binary
tree of Theorem 7.9, The leaves of this tree are given by the infinite sequeEncé/ Fs, . . .

Figure 8.1 shows (part of) this tree, after famillé$, . .., VF; have been inserted.

This infinite tree is used to guide the computation of the intersection of the partitioning which

J. Giland Y. Zibin 36

VF xVF xVF xVF,

Fig. 8.1. An embedding of seven families into an infinite balanced binary tree

were inserted so far: we delay the intersection of partitionings in an internal nodéaothtits
children exist. Atemporary rootis a node in which the partitioning was computed, but not in its
parent.

In the figure the nodes at which partitionings were intersected are drawn with thicker lines.
Specifically, at this stage we have computés; x VFy, VE3 x VFy, VF xVFy xVE3 x VFy,
andV F5 x VFg. There are three temporary roots in figure, which are the nodes corresponding
toVF, x VI, x VF3 x VF,, VE5 x VFg andVF7.

Assume that a new familyy is inserted. We first calculate its segmented-aivays, and
proceed to compute the following three intersections:

P1 = VFg X VF7,
PQ = Pl X (VF5 X VF'(;)7
P3 = P2 X (VFl X VFQ X VF3 X VF4)

After this insertion we will have a single temporary root.

The total time for all insert operations, i.ensert (Fy),...,insert (F,,), is the same as
in the non-incremental tree partitioning problem, i@(M log m) time usingO(M) space.

The algorithm is lazy in the sense that we do not compute the intersection of the temporary
roots Py, ..., P.. Instead, the classification of a sEt, i.e.,classify (7)) query, is carried
out by consulting the segmented-arrays at those temporary roots. Recdl} teatepresented
as a sorted array of segment-identifier pairs (see Definition 7.8). Since the size of this array is
bounded by, we can support searchesifin O(log n) time. For eachv € T}, we search for
the descriptor of the segment which containg P, fori =1,...,r.

After obtaining anr-tuple of descriptors for att € T}, we apply a tuple partitioning algorithm
to classifyT}. In order to keep the space linear, we cannot actually $fqietuples of lengthr-.
Therefore, we will use theacremental tuple partitioning algorithnSpecifically, we will uséTy|
memory cells to find the first elements of the tuples, pass them to the tuple partitioning algorithm,
and proceed to find the second elements of the tuples, etc.

Efficient Algorithms for Isomorphisms of Simple Types 37

Note that after; families were inserted, there are at mfktg, j] temporary roots, so we
always have that < [log, m]. Thus, the total time for computing thetuple isO(rlogn) C
O(logmlogn). The total time for theclassify (T%) query is therefore (|| log m logn),
while usingO (M) space. Since every nodec 7 can take part in a classification query at most
once, the total time for all classifications(gn log n log m).

The total time for all insertions and classificationg)g\ log m + nlognlogm), while the
total space used ©(M). O

9. An Algorithm for the First Order Isomorphism Problem

Having developed the algorithms for generating the linearBiZE representation, and for effi-
ciently comparing the multi-sets without actually creating them, we are ready to describe the
main result described in this chapter: an efficient algorithm for deciding first order isomorphisms.
In essence, the algorithm uses Lemma 6.5. A naive recursive application of the lemma may lead
to an exponential running time. To bound the time complexity, we instead traverse the graphs
bottom-up, classifying the nodes into their isomorphisms equivalence classes as we do so.

The bottom-up traversal is guided by height, where all nodes of the same height are processed
together. Height is defined as in Definition 5.3. Algorithm 5 shows how heights can be computed
in linear time even in the non-expand@J/F representation.

Algorithm 5 Height (v)
Given a nodev in a P/F-graph, ensure thdt(v') stores the height of’ for all
nodesv’ reachable fromv and returri(v).

1. If v was visitedthen

2: Return h(v)

3: fi

4: markv as visited

5. If vis a primitive-typeor v = P then

6: h(v) < 0; return h(v) // Recursion base
7. fi

8: If v is anF-nodethen

9: h(v) < 1+ Height (arg (v)); return h(v)
10: fi

/I v must be an ordinaryP-node
11: h(v) < Height (parent (v))
12: For all u € ¢(v) do// recurse on all (non-expanded) terms
13: h(v) < max(h(v), 1+ Height (u))
14: od
15: Return h(v)

Given a nodey, the algorithm uses a standard recursive depth first search to visit, compute
and store the height of every nodereachable from. Lines 8-9 deal with the case thats an
F-node. The recursive call in this case is onlyasg (u), sinceret (v) must be a primitive-type.

J. Giland Y. Zibin 38

Another easy case is thatis P . Since there are no terms in this product-node, its height
is 0. Lines 11-15 deal with ordinady-nodes. The height of such nodes is one more than the
maximum height of all expanded terms. The reason why in line 11 we do not addeight
(parent (v)) is that the expanded terms include the tetffysarent (v)), and notparent (v)
as aterm.

Once the height of all nodes i/F-graph is computed, Algorithm 6 can be invoked to par-
tition these nodes into equivalence classes. We assume that unique identifiers, drawn from the
range[1, n|, are given to all primitive-types. To process non-primitive-types, the algorithm relies
on the fact that nodes cannot represent isomorphic types unless they are of the same kind and the
same height. Accordingly, the nodes@®@fare processed by height.

Algorithm 6 NodesPartitioning (@)

Given aP /F-graphG representing a type in the first order grammatr, return a parti-
tioning A of all the nodes of7 into equivalence classes, such that two nodes are in
the same class if and only if they represent isomorphic types.

1: Let Y be an incremental tree partitioning data-structure for the trd@-nbdes
of G

2. j « 0/l The identifier of current isomorphism class

3: Letr be the root of7

4. | — Height (r)

5. For.=1,...,l do// Process the nodes by height

6: LetT, —{veG|h() =1}

;

8

9

If «is oddthen// T, is a collection ofP-nodes
A — AuUTY.classify (T,)
else// T, is a collection of F-nodes

10: PartitionT, using pair partitioning
11: Let the resulting partition b&, = C, U --- U Cy,
12 A—AU{Cy,...,CL}
/I UpdateY
13: Fori=1,...,kdo// Inserting a new family
14 j < 7+ 1// Process a new isomorphism class
15: Let F; be the multi-set oP-nodes with a term id;
16: T.insert (F})
17: od
18: fi
19: od
20: Return A

The main data-structure used by the algorithm is incremental tree partitioning (see Theo-
rem 8.2). Nodes at odd height aRenodes. The classification of these nodes is carried out by
querying this data-structure.

Lines 10-17 in the algorithm take carel®fnodes. Classification of these nodes is carried out
by a simple pair partitioning algorithm. We then generate identifiers for each of the isomorphism

Efficient Algorithms for Isomorphisms of Simple Types 39

classes. AlIF-nodes take parts as termsfnodes. We must make sure that tBtenodes in the
same isomorphism class are regarded as equal when comiaringes in the next iteration.
Line 15 defines the multi-sét; of P-nodes in which isomorphiE-nodes are terms. Note thajf
is a multi-set since #-node may have several terms belonging’toln line 16 the incremental
tree partitioning data structure is updated.

Lemma 9.1. If G hasn nodes and)(n) edges then, Algorithm 6 runs ifi(n log® n) time and
while consuming)(n) space.

PROOF. We first note that computing the height as in Algorithm 5 requires linear time, since
every node and every edge is visited at most once.

The algorithm uses linear space, since the two main procedures it invokes: incremental tree
partitioning algorithm (lines 8 and 16) and pair partitioning (line 10) use linear space.

The running time of all the applications of pair partitioninglén) (see Lemma 4.7).

The total number of families inserted @¢(n). Moreover, the total size of those families is
alsoO(n), and all the sets of classified nodes are disjoint. Therefore, using Theorem 8.2, the
total time of all the operations performed this

O(M log m + x log x log m)

while usingO (M) space, where: is the number of nodes in the product-tree (which is the
number ofP-nodes)yn is the number of families, antll is the total size of those families. Since
all the above parameters apén), the total runtime i€ (n log? n) usingO(n) space. [J

The bottom-up node classification of Algorithm 6 can be used to solve the first order isomor-
phism problem. To do so, we first create IA¢F-graphs of the two input types, and then merge
these graphs, by e.g., making their roots descendants of &@neede. (TheP ; nodes of the
respective graphs must be unified.) Algorithm 6 is then invoked on the merged graph. The inputs
are isomorphic if and only if these two roots are placed in the same equivalence class.

Theorem 9.2. First order isomorphism can be decided(¥in log® n) time andO(n) space,
wheren is the size of the input.

PROOF. As noted above th@® /F-graph representation uses linear space. Moreover, bring-
ing the input to this representation requires linear time. The complexity of comparing inputs in
the P /F-graph representation is given by Lemma 9.1]

10. Open Problems

The only lower bound for the first order type isomorphism problem is the trivial information
theoretic linear time. An important research direction is to bridge this gap by edthecing the
time complexityf our main algorithm even further, or obtaining bettarer bounds

For exampledynamic fractional cascadin@Melhorn and Niher, 1990) might be used to de-
crease the running time frod(n log® n) to O(n log nloglog n). Recall that in the incremental
tree partitioning algorithm (Section 8)cdassify query was implemented by conductiimg
dependentogarithmic time searches ifi(log n) temporary roots. The fractional cascading data
structure makes it possible to use the result of each search in expediting the subsequent search,

J. Giland Y. Zibin 40

bringing down the runtime aflassify (T}) to O(|Tx|log nlog log n). Unfortunately, this rep-
resentation makes it difficult to use the incremental tuple partitioning algorithm, and increases
the space t@®(nlogn).

Time complexity might be improved also by taking the perspective in which primitive types
are thought of as variables, while compound types are considered expressions over these. Then,
it follows from the fact that axiomsl.1-A4.7 are complete (Bruce et al., 1991) that the first order
isomorphism problem is reduced to function identity. This identity might in turn be checked by
an appropriate random assignment to the variables, possibly leading to a more time efficient, yet
randomizedalgorithm for the problem. For example, if infinite precision arithmetic is allowed,
then, it might be possible to extend the type isomorphism heuristics of Katzenelson, Pinter and
Schenfeld (1992), and check identity by assigning into the variables values drawn at random
from, say, the rangf, 1]. We note however that such a randomized algorithm does not yield the
isomorphism proofis does our deterministic algorithm.

Another interesting direction comes from the generalization in which type expression trees
may share nodes, i.e., the inputlisected acyclic graphmather than a tree. This situation occurs
naturally in programming languages in which non-primitive types can be named, and where these
names can be used in the definition of more complex types.

Perhaps the most important problem which this paper leaves open is efficient algorithms for
subtyping(of products, functions, or both) which include the distributive and the currying ax-
ioms.

References

Andreev, A. and Soloviev, S. (1997). A deciding algorithm for linear isomorphism of types with complexity
O(nlog?(n)). Category Theory and Computer Scient290:197-209.

Auerbach, J., Barton, C., and Raghavachary, M. (1998). Type isomorphisms with recursive types. Technical
Report RC 21247, IBM Research Division, Yorktown Heights, New York.

Auerbach, J. and Chu-Carroll, M. C. (1997). The mockingbird system: A compiler-based approach to
maximally interoperable distributed programming. Technical Report RC 20178, IBM Research Division,
Yorktown Heights, New York.

Barthe, G. and Pons, O. (2001). Type isomorphisms and proof reuse in dependent type themg.
FOSSACS'0lvolume 2030, pages 57—71.

Basin, D. A. (1990). Equality of terms containing associative-commutative functions and commutative
binding operators is isomorphism complete 10" International Conference on Automated Deduction
pages 251-260. Springer-Verlag New York, Inc.

Bruce, K. B., Di Cosmo, R., and Longo, G. (1991). Provable isomorphisms of tipethematical Struc-
tures in Computer Scienc#:1-20.

Bruce, K. B. and Longo, G. (1985). Provable isomorphisms and domain equations in models of typed
languages. IProc. of the ¥' annual ACM symposium on Theory of computipgges 263-272. ACM
Press.

Cai, J. and Paige, R. (1995). Using multiset discrimination to solve language processing problems without
hashing.Theoretical Computer Science45(1-2):189—-228.

Considine, J. (2000). Deciding isomorphisms of simple types in polynomial time. Technical report, CS
Department, Boston University.

Cousot, P. and Cousot, R. (1992). Abstract interpretation and application to logic progsaorsal of
Logic Programming13(2-3):103-179.

Efficient Algorithms for Isomorphisms of Simple Types 41

Di Cosmo, R. (1992). Type isomorphisms in a type-assignment frameworleraa of the 1§ ACM
SIGPLAN-SIGACT symposium on Principles of programming langy@gess 200-210. ACM Press.

Di Cosmo, R. (1995)lsomorphisms of types: fromcalculus to information retrieval and language design
Birkhauser. ISBN-0-8176-3763-X.

Fiore, M., Di Cosmo, R., and Balat, V. (2002). Remarks on isomorphisms in typed lambda calculi with
empty and sum types. IRroc. of the 1" Annual IEEE Symposium on Logic in Computer Science
(LICS'02).

Gil, J. Y. (2001). Subtyping arithmetical types. 21" Symposium on Principles of Programming Lan-
guages, POPL'0lpages 276—289, London, England. ACM SIGPLAN — SIGACT, ACM Press.

Gurevi, R. (1985). Equational theory of positive numbers with exponentiatiimerican Mathmatical
Society 94(1):135-141.

Howard, W. A. (1980). The formulaes-as-types notion of construction. In Hindley, J. R. and Seldin, J. P.,
editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formapiages 479—

490. Academic Press.

Jha, S., Palsberg, J., and Zhao, T. (2002a). Efficient type matchingrom of the & Foundations of
Software Science and Computation Structures

Jha, S., Palsberg, J., Zhao, T., and Henglein, F. (2002b). Efficient type matching. TOPPS technical report,
DIKU, University of Copenhagen, Universitetsparken 1. Submitted to Special issue of Higher-Order
Symbolic Computation in memoriam Robert Paige.

Katzenelson, J., Pinter, S. S., and Schenfeld, E. (1992). Type matching, type-graphs, and the schanuel
conjecture ACM Trans. Prog. Lang. Sysfl4(4):574-588.

Melhorn, K. and Naher, S. (1990). Dynamic fractional cascadidgorithmica 5:215-241.

Paige, R. (1994). Efficient translation of external input in a dynamically typed language. In Pehrson, B. and
Simon, |., editorsTechnology and Foundations—Information Processing/®ume 1, pages 603—608.
North-Holland.

Palsberg, J. and Zhao, T. (2000). Efficient and flexible matching of recursive types. Manuscript.

Rittri, M. (1990). Retrieving library identifiers via equational matching of types.10 International
Conference on Automated Deductioumber 449 in Lecture Notes in Computer Science, pages 603—
617. Springer Verlag.

Rittri, M. (1991). Using types as search keys in function libraridsurnal of Functional Programming
1:71-89.

Soloviev, S. V. (1983). The category of finite sets and cartesian closed categddamal of Soviet
Mathematics22(3):1387-1400.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometdniversity of California
Press, Berkeley, CA," edition.

Zibin, Y., Gil, J. Y., and Considine, J. (2003). Efficient algorithms for isomorphisms of simple types. In
Proceedings of the 30 ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL'03), pages 160-171. ACM Press.

