
Under consideration for publication in Math. Struct. in Comp. Science

Randomized Algorithms for Isomorphisms of
Simple Types
J O S E P H (Y O S S I) G I L† and Y O A V Z I B I N

Technion—Israel Institute of Technology

Technion City, Haifa, 32000, Israel

Email: yogi | zyoav @ cs.technion.ac.il

Received June 2005; Revised October 2006

We give the first linear time (yet randomized) algorithm for the first order isomorphism problem,
i.e., the isomorphism of non-recursive types involving product- and function- type constructors,
under the axioms of commutativity and associativity of products, currying and distributivity of
functions over products. This problem can also be thought of as the problem of formal
equality-testing of multi-variate expressions involving only multiplications and exponentiation.
Previous work gave a deterministic O(n log2 n) time and O(n) space algorithm for the problem (n
being the input size). Our specific contribution includes two randomized algorithms for the problem:
(i) an O(n) time Monte Carlo algorithm (i.e., with a small probability it may decide erroneously
that the two types are isomorphic), and (ii) an O(n log n) expected time and O(n) space Las Vegas
algorithm (i.e., with a small probability it may execute long). The algorithms rely on a preprocessing
stage which computes the sequence of the first n primes in O(n log n/ log log n) time and space.

1. Introduction

The problem of testing for formal equality of multi-variate polynomials attracted a lot of atten-
tion (see [Chen and Kao, 1997] for a recent survey) and its simple O(n log n) time (n being the
input size) algorithm (see e.g., [Schwartz, 1980]) has found many applications, such as in perfect
matching and in multi-set equality. Polynomials are expressions involving additions and multi-
plications over a set of formal variables. We are concerned with the problem variant in which the
input expressions involve multiplications and exponentiations (ME-expressions), e.g., testing the
formal equality

(
(ab)(ab)

)(ba)
= aabba

bbaab

. (1.1)

Despite the similarity in formulation, our variant is different from the original since the governing
rules of algebra of ME-expressions are quite distinct than those of polynomials. Also, there is
no standard normal form for presenting ME-expressions. Most importantly, subtle properties of

† Research supported in part by the generous funding of the Israel Science Foundation, grant No. 128/2002.

J. Gil and Y. Zibin 2

exponentiations in finite fields are a major hurdle in adapting to our variant the technique of
evaluating polynomials at random points.

For a long time, the problem was thought to have an exponential nature [Soloviev, 1983,Bruce
et al., 1991]. Considine [Considine, 2000] gave an O(n2 log n) time and O(n2) space algorithm
for the problem. This result was later improved [Zibin et al., 2003] to O(n log2 n) time and O(n)
space.

This paper gives a linear time Monte-Carlo algorithm (i.e., with a small probability it may
decide erroneously that the two types are isomorphic), and an O(n log n) time Las-Vegas algo-
rithm (i.e., with a small probability it may execute long). Both our algorithms employ what can
be thought of as a normal form for ME-expressions. Even though this normal form may require
quadratic size, we show that it has a more compact linear representation with a tree-like node
sharing.

Our results indicate that equality of ME-expressions is easier than that of polynomials. For
completeness, it should be mentioned that if the input expressions involve additions, multipli-
cations and exponentiation, then the problem escalates to being Tarski’s high school algebra
problem [Tarski, 1951], which has a non-polynomial algorithm [Gurevič, 1985], despite not hav-
ing a finite set of axioms.

Beyond the theoretical interest, our attention to ME-expressions was drawn by practical ap-
plications. ME-expressions conveniently encode first-order types which are used extensively
in functional programming languages: primitive types are encoded as formal variables, record
types as multiplication, and functions as exponentiation. For example, a function receiving an
integer and returning a real is encoded as the expression ri, where i is the encoding of
integer and r is the encoding of real. The equality (a×b)c = ac×bc means that a function
receiving an argument of type c and returning a pair of values of types a and b, is isomorphic to
a pair of functions, one from c to a and the other from c to b. Similarly, abc =

(
ab

)c
means that

a function taking two arguments of types b and c and returning a value of type a, is isomorphic
to a function receiving a c and returning yet another function which takes a b and returns an a.
We shall therefore refer to the problem of formal equality of ME-expressions, as the first-order
type isomorphism problem.

Algorithms for type isomorphism are useful in searching large software libraries [Rittri, 1990,
Di Cosmo, 1995], where the desired type of a function is used as a search key and functions with
isomorphic types are returned as candidates. We even note that our Las-Vegas algorithm produces
a proof of isomorphism between the input types, which can generate bridge code converting the
functions found to the desired type.

Outline Pertinent definitions are made in Section 2. Section 3 defines the function g : E 7→ N
which is a Gödel-like encoding of ME-expressions which satisfies ε1 = ε2 ⇔ g(ε1) = g(ε2).
Section 4 describes the Monte Carlo algorithm, while Section 5 transforms it into a Las Vegas
algorithm. Finally, Section 6 concludes and describes some open problems.

2. Definitions

Let X be a set of symbols, which can be thought as primitive types, or variables. Then, the set E
of ME-expressions (or for short types or expressions) over X is defined by the following abstract

Randomized Algorithms for Isomorphisms of Simple Types 3

grammar

e ::= 1 | x | e× e | ee.

Given two expressions ε1, ε2 ∈ E , the problem at the focus of our attention is the decision
whether they are “equal”. The problem size n = |ε1| + |ε2| is the sum of sizes of the two input
expressions, with the following slightly non-standard definition of expression size.

Definition 2.1 (Size of expression). The size of an expression e ∈ E , denoted |e|, is defined as

|e| =





1 + |e1|+ |e2| if e = e1 × e2

2 + |e1|+ |e2| if e = ee2
1

2 if e = x

1 if e = 1

(The reasons for picking this particular definition will become apparent in the proof of Lemma 3.4
below. Note that |e| is at most twice the number of nodes in the tree representation of e.)

We also need a precise definition of equality. Equality is obviously symmetric and transitive,
and as usual, equality is preserved by composition. In other words, the theory of equality includes
the following four inference rules:

A = B
B = A

Symmetry

A = B, C = D
A× C = B ×D

Congruence of ×

A = B, B = C
A = C

Transitivity

A = B, C = D
AC = BD Congruence of exponentiation

The following eight axioms represent simple arithmetical rules, and are also pertinent to the
definition of equality:

(A.0) A = A (Reflexivity)
(A.1) A× 1 = A

(A.2) 1A = 1
(A.3) A1 = A

(A.4) A×B = B ×A (Commutativity)
(A.5) A× (B × C) = (A×B)× C (Associativity)
(A.6) (AB)C = AB×C (Currying)
(A.7) (A×B)C = (AC)× (BC) (Distributivity)

The simplest equalities are obtained by instantiating the axioms.

Definition 2.2 (Axiom instance). An instance of an axiomA is the result of a consistent substi-
tution of all the variables in A by expressions from E .

For example, (1×ab)×c = c× (1×ab) is an instance of the Commutativity axiom, rising from
the substitution

{
A 7→ (1× ab), B 7→ c

}
.

J. Gil and Y. Zibin 4

All other equalities are obtained by the application of the inference rules in a derivation se-
quence.

Definition 2.3 (Derivation sequence). The sequence

e1 = e′1 , e2 = e′2 , . . . , em = e′m

is called a derivation sequence if for i = 1, 2, . . . , m, ei = e′i is either an instance of an axiom
or the result of applying one of the four inference rules to previous equalities.

Definition 2.4 (Equality). Let ε1, ε2 ∈ E be two expressions. Then, ε1 = ε2 (read ε1 is equal
to ε2) if and only if there exists a derivation sequence ending with ε1 = ε2.

The above axioms and inference rules were proved to be complete for the Cartesian closed
categories [Bruce et al., 1991]. Therefore, ε1 = ε2 is true if and only if the functions ε1 and ε2
represent are equal in all Cartesian closed categories. Since the category of finite sets is also
complete [Soloviev, 1983] we have that ε1 = ε2 if and only if the functions ε1 and ε2 are always
equal over the set of natural numbers N (excluding zero).

We also use the following notation: The set of prime numbers is denoted P ⊂ N. We use the
symbol ◦ to denote function composition, i.e., f ◦ g(x) ≡ f(g(x)).

3. A Gödel-Like Encoding of Expressions

In this section we shall construct a function g : E 7→ N, which encodes expressions as natural
numbers. The encoding is Gödel-like in that it uses unique primes to encode the symbols in X .
However, unlike classical Gödel encodings, the function g preserves some of the structure of E .
Moreover, we shall require that ε1 = ε2 if and only if g(ε1) = g(ε2). At this stage, we shall not
concern ourselves with the size of the encoding, nor with many of the algorithmic details of an
implementation.

If the expressions do not include an exponentiation, then an encoding of expressions which
preserves equality can be obtained by a simple assignment of prime numbers to symbols, and
defining g(e1 × e2) = g(e1) · g(e2). However, this property is no longer true when expo-
nentiation is allowed. In other words, if we encode symbolic exponents into integer exponen-
tiation, g(ee2

1) = g(e1)g(e2), then we may encode non-equal expressions as equal numbers,
i.e., ε1 = ε2 ⇒ g(ε1) = g(ε2) holds, but the reverse will not necessarily hold. Consider, for
example, the following two expressions:

ε1 = ab,

ε2 = a× a× a.

Clearly those two expressions are not equivalent, but if we assign g(a) = 2 and g(b) = 3 then
the encodings are equal. As another example, the encoding of the two expressions

ab1 × ab2 × ab3 × ab4 ,

ac1 × ac2 × ac3 × ac4 ,

will be the same if α(b1)+α(b2)+α(b3)+α(b4) = α(c1)+α(c2)+α(c3)+α(c4), where α(x)

Randomized Algorithms for Isomorphisms of Simple Types 5

assigns a unique prime to x. Thus, the encodings will be equal in the common case that the sum
of one quadruple of primes is equal to that of another such quadruple.

Instead, we bring all exponentiations to the form xe, x ∈ X . Expressions in this form are
then encoded (rather than computed) as a new unique prime. This encoding can be thought of
as a generalization of assignment: The assignment function α : X × N 7→ P, is defined so
that α(x, η), where η = g(e), returns a unique prime associated with xe. We can also write

g(xe) = α(x, g(e)) . (3.1)

The special case of assignment of a unique prime to an isolated primitive x is given by α(x, 1)
since x = x1 and 1 = g(1). We use the abbreviation α(x) = α(x, 1).

Consider, for example, the expressions ε1 = a×ca×b×db×a and ε2 = da×b×a×cb×a, which
satisfy the requirement that the base of all exponents is a primitive variable. In computing g(ε1),
function α will assign unique primes to the primitive variables a, p1 = α(a), and b, p2 =
α(b). Then, unique primes are allocated to the sub-expressions involving exponentiation p3 =
α(c, p1p2) and p4 = α(d, p1p2). Thus, g(ε1) = p1p3p4. By applying (3.1), we see that

g(ca×b) = α(c, g(a× b)) = α(c, p1p2) = α(c, p2p1)

= α(c, g(b× a)) = g(cb×a).

Similarly, g(db×a) = g(da×b). Therefore, g(ε1) = g(ε2).
It is rather straightforward to apply the axioms so that the base of all exponents is a primitive

variable. In each step, we apply one of the following transformations to simplify the base:

1e ⇒ 1,

(ee2
1)e3 ⇒ ee2×e3

1 ,

(e1 × e2)e3 ⇒ ee3
1 × ee3

2 .

The last transformation must be applied with care, since it makes a duplicate occurrence of
subexpression e3.

We shall therefore define an auxiliary function f : E × N 7→ N to force the correct evaluation
order on g. Function f will make sure that the encoding of the exponent is computed before the
encoding of the base. Specifically, we have that g(ee′) = f(e, g(e′)).

In evaluating the above, we first compute η = g(e′). Then, to evaluate f(e, η), we need to
examine e in greater detail. In doing so, we bear in mind that e is part of an encompassing
expression, ee′ , and that η was previously determined to be the encoding of the exponent e′.
There are four cases to consider:

1. The simplest case is that e = 1. In this case, f(1, η) = g(1e′) = g(1) = 1.
2. Another case in which there are no recursive calls is that e = x, x ∈ X . In this

case, f(x, η) = g(xe′). By the definition of the assignment function (3.1) we have

f(x, η) = α(x, g(e′)) = α(x, η).

3. If e = e1 × e2, then

f(e1 × e2, η) = g
(
(e1 × e2)e′

)
= g

(
ee′
1 × ee′

2

)

= g
(
ee′
1

)
· g

(
ee′
2

)
= f(e1, η) · f(e2, η).

J. Gil and Y. Zibin 6

4. Similarly, if e = ee2
1 , then

f(ee2
1 , η) = g

(
(ee2

1)e′
)

= g
(
ee2×e′
1

)
= f(e1, g(e2 × e′))

= f(e1, g(e2) · g(e′)) = f(e1, g(e2) · η).

For the formal definition of the encoding, observe that g(e) = g(e1) = f(e, g(1)) = f(e, 1)
and that function f is completely specified by the four above cases.

Definition 3.1. The Gödel encoding of an expression e is defined by g(e) = f(e, 1) where

f(e, η) =





1 if e = 1

α(x, η) if e = x

f(e1, η) · f(e2, η) if e = e1 × e2

f(e1, η · g(e2)) if e = ee2
1

(3.2)

and α(x, η) is a function returning a unique prime for each x and η.

Theorem 3.2. If ε1 = ε2, then g(ε1) = g(ε2).

PROOF. By induction on the derivation sequence. We will show that f(ε1, η) = f(ε2, η) for
all η ∈ N, from which it follows that f(ε1, 1) = f(ε2, 1), and hence that g(ε1) = g(ε2).

The proof is by induction on the length of the derivation sequence ending with ε1 = ε2. The
first step in such a derivation must be an instance of one of the axioms. Suppose (for example)
that ε1 = ε2 is an instance of the Distributivity axiom. Then, there must be expressions A, B and C

such that ε1 is in the form (A×B)C , while ε2 is in the form (AC)× (BC). It is straightforward
to apply the recursive definition of f (Definition 3.1) to f(ε1, η)

f
(
(A×B)C , η

)
= f(A×B, η · g(C))

= f(A, η · g(C)) · f(B, η · g(C)) ,

and f(ε2, η)

f
(
AC ×BC , η

)
= f(AC , η) · f(BC , η)

= f(A, η · g(C)) · f(B, η · g(C)) ,

and we see that they are equal. The cases corresponding to the other axiomsA.0–A.6 are similar.
The induction step is that ε1 = ε2 is either an axiom (a case we covered in the induction

base) or the result of applying one of the four inference rules on previous equalities. The cases
of the Symmetry and Transitivity inference rules immediately follow from equality of natural
numbers. Suppose now that ε1 = ε2 resulted from applying Congruence of exponentiation,
i.e., ε1 = AC , ε2 = BD, A = B and C = D. From the induction hypothesis we have that for
all η′ ∈ N, f(A, η′) = f(B, η′) and f(C, η′) = f(D, η′). Specifically, for η′ = 1, we have
that g(C) = g(D). Therefore,

f(ε1, η) = f(AC , η) = f(A, η · g(C)) = f(A, η · g(D))

= f(B, η · g(D)) = f(BD, η) = f(ε2, η).

The case of Congruence of × is similar.

Randomized Algorithms for Isomorphisms of Simple Types 7

We now proceed to define g−1, the inverse encoding, in such a way that ∀e ∈ E , g−1◦g(e) = e.
(Note that the equality in the above does not mean that g−1 ◦g(e) has the same structure as e, but
rather that it can be brought to the form e by a derivation sequence.) To this end, we first need
to extend the assignment function α to be a bijection. In words, for each prime p, α-1(p) returns
a pair 〈x, η〉, such that α(x, η) = p. This extension is possible since the cardinality of P is ℵ0,
which is also the cardinality of X × N.

Definition 3.3. The partial function g−1(η) is defined as follows. If η = 1, then g−1(η) = 1.
Otherwise, η has a unique prime factorization η = p1 · · · pk, pi ≤ pi+1 for i = 1, . . . , k − 1.
Let α-1(pi) = 〈xi, ηi〉, for i = 1, . . . , k. Then,

g−1(η) = x
g−1(η1)
1 × · · · × x

g−1(ηk)
k .

Lemma 3.4. For all e, e′ ∈ E , g−1 ◦ g(ee′) exists. Moreover, ee′ = g−1 ◦ g(ee′).

PROOF. By Definition 3.1, g(ee′) = f(ee′ , 1) = f(e, 1 · g(e′)) = f(e, g(e′)). It is therefore
sufficient to prove that g−1 ◦ f(e, g(e′)) exists and that

ee′ = g−1 ◦ f(e, g(e′)).

We will prove this claim by induction on |ee′ |.
To evaluate f(e, g(e′)), we must examine the structure of e according to Definition 3.1. There

are four cases to consider.

1. The inductive base is the case e = 1. In this case,

1e′ = 1 = g−1(1) = g−1 ◦ f(1, g(e′)).

2. If e = x, i.e., the input takes the form xe′ , we shall first use the inductive hypothesis
on the expression (e′)1 to show that e′ = g−1 ◦ g(e′). (This is safe to do since by
Definition 2.1 |1| = 1, |x| = 2 and hence |(e′)1| < |xe′ |.) We have

e′ = (e′)1 = g−1 ◦ f(e′, g(1)) = g−1 ◦ f(e′, 1) = g−1 ◦ g(e′).

Also, by definition f(x, g(e′)) = α(x, g(e′)). Since number α(x, g(e′)) is prime, by
Definition 3.3

xe′ = xg−1◦g(e′) = g−1 ◦ α(x, g(e′)) = g−1 ◦ f(x, g(e′)).

3. In the case that e = e1 × e2, we have that |e1|, |e2| < |e|. Therefore, we can apply the
inductive hypothesis on ee′

i , i = 1, 2, to obtain that g−1 ◦ f(ei, g(e′)) exists and that

ee′
i = g−1 ◦ f(ei, g(e′)). (3.3)

Also, Definition 3.3 implies that if both g−1(η1) and g−1(η2) exist, then g−1(η1 · η2)
exists and

g−1(η1)× g−1(η2) = g−1(η1 · η2). (3.4)

J. Gil and Y. Zibin 8

Applying (3.3) and then (3.4) we obtain

(e1 × e2)e′ = ee′
1 × ee′

2

=
[
g−1 ◦ f(e1, g(e′))

]× [
g−1 ◦ f(e2, g(e′))

]

= g−1 [f(e1, g(e′)) · f(e2, g(e′))] ,

and by Definition 3.1

= g−1 ◦ f(e1 × e2, g(e′)).

4. The remaining case is e = ee2
1 . By the Currying axiom we can rewrite the input as (ee2

1)e′ =
ee2×e′
1 . Although ee2×e′

1 has the same number of nodes as (ee2
1)e′ , it has one fewer ex-

ponentiation operator. Therefore, by Definition 2.1, |ee2×e′
1 | < |(ee2

1)e′ |, and by the
inductive hypothesis

ee2×e′
1 = g−1 ◦ f(e1, g(e2 × e′)). (3.5)

From Definition 3.1 we have that

g(e2 × e′) = f(e2 × e′, 1) = f(e2, 1) · f(e′, 1)

= g(e2) · g(e′).
(3.6)

Substituting (3.6) into (3.5)

ee2×e′
1 = g−1 ◦ f(e1, g(e2) · g(e′)).

Commuting the operands of · and applying Definition 3.1

ee2×e′
1 = g−1 ◦ f(ee2

1 , g(e′)).

The proof ends by recalling that (ee2
1)e′ = ee2×e′

1 .

Theorem 3.5. If g(ε1) = g(ε2), then ε1 = ε2.

PROOF. From Lemma 3.4, we have that, for i = 1, 2

εi = εi
1 = g−1 ◦ g

(
εi

1
)

= g−1 ◦ f
(
εi

1, 1
)

= g−1 ◦ f(εi, g(1)) = g−1 ◦ f(εi, 1) = g−1 ◦ g(εi).

Since g(ε1) = g(ε2), we have that ε1 = g−1 ◦ g(ε1) = g−1 ◦ g(ε2) = ε2.

4. Monte Carlo algorithm

Checking two expressions ε1, ε2 ∈ E , we know that they are equal precisely when g(ε1) = g(ε2).
Our concern lies with an efficient computation of the function g with respect to the problem
size n = |ε1|+ |ε2|.

Observe first that the assignment function α is invoked at most n times, and that it can be
easily implemented to return primes from the sequence of the first n primes p1 = 2, p2 = 3, p3 =
5, . . . , pn in order. This function makes use of a hash-table data structure H. The implementation
checks whether a prime is already associated with the key 〈x, η〉 in H, in which case this prime

Randomized Algorithms for Isomorphisms of Simple Types 9

is returned. Otherwise, α picks the next unselected prime, associates it with the key, and returns
this prime.

Since lookups and insertions in H can be carried out in constant time [Dietzfelbinger et al.,
1994] we have that α(x, η) requires constant time. It is also easy to see that the recursive Def-
inition 3.1 is such that there are at most n steps in computing g(ε1), g(ε2). Each of these
steps may involve at most two recursive calls, and a single integer multiplication. The bottle-
neck in our computation is therefore integer multiplication. If we represent intermediate values
as (p1)i1 · · · (pn)in , where 0 ≤ ij ≤ n, j = 1, . . . , n, then each multiplication requires O(n)
time, and the entire algorithms runs in quadratic time.

In this section we explore a hashed representation of these values, in which multiplication
requires constant time. Specifically, let q be some appropriately chosen prime, and let gq , fq be
the variants of functions g and f (Definition 3.1) obtained by using multiplication in Zq (i.e.,
modulo q). If q ∈ nO(1) then gq can be computed in linear time.

It is easy to see that g(e1) = g(e2) ⇒ gq(e1) = gq(e2). However, the reverse is not always
true because the modulo operation might cause a collision. Intuitively, we will show that for every
two expressions e1, e2, n = |e1| + |e2|, the number of “bad” primes q that causes a collision is
less than n3. Thus if we randomly choose a prime smaller than n5 then the probability that we
chose a bad prime is less than 1

n .
Algorithm 1 shows how an expression can be recursively traversed to compute the hashed

Gödel encoding. Function Vq on the right hand side will be used in the following section.
Comparing function Fq(e, r = 0) with Definition 3.1, we can easily verify that it com-

putes fq(e, ηq[r]). Moreover, F∞(e, r) = f(e,η∞[r]). We use a default notation for arguments,
so Fq(e) = Fq(e, 0) = fq(e,ηq[0]) = fq(e, 1) = gq(e). Clearly, F∞(e) = g(e).

As can easily be seen, the number of recursive calls is linear. The global index v is incremented
only in line 9, and a new entry is added to array ηq only on line 10. Therefore, at most n + 1
entries are computed and stored in array ηq . With the standard assumption that arithmetical and
comparison operations on numbers with logarithmic number of bits can be carried out in constant
time we have,

Lemma 4.1. If |e| = n and q ∈ nO(1), then the invocation Fq(e) runs in O(n) time and con-
sumes O(n) space.

Algorithm 2 presents procedure Md(ε1, ε2) for determining whether ε1 = ε2.
In the preprocessing stage (line 2), the algorithm computes the sequence of the first n primes

using, e.g., Eratosthenes sieve in

O(n log n/ log log n)

time [Pritchard, 1981]. Line 6 then chooses a prime q uniformly and at random from the primes
in the range (pn, nd+3].

This random selection can be implemented in a number of ways. For example, one can com-
pute all primes in this range in a polynomial time charged to the preprocessing stage. The algo-
rithm may also repeatedly choose a random number in the range (pn, nd+3] until a prime number
is thus selected. It follows from the prime numbers theorem that this process yields a prime in
a logarithmic number of expected iterations, while the nature of the process guarantees that the
selection is uniform. (Checking whether a number is prime can be done with standard poly-

J. Gil and Y. Zibin 10

Algorithm 1 Recursive computation of hashed forms of the Gödel encoding. The recursive func-
tions below use a global array of integers ηq[0 . . . n]. Also, a global variable v is maintained for
counting the recursive steps. Initially, v = 0, and ηq[0] = 1. Both functions take as parame-
ters an expression e and an index r ∈ [0, n], and compute the hashed encoding of ee′ , where
the encoding of e′ was computed in the rth recursive computation step. The principal function
is Fq(e, r = 0), which is used for computing gq. Function Vq(e, r = 0) whose structure is similar
to that of Fq(e, r = 0) may be invoked after the entire recursive run of Fq . It makes use of two
additional global arrays ϕq[1 . . . n] of multi-sets of primes, and ρq[1 . . . n] of indices of previous
computation steps. This function will be discussed in detail in the next section.

fun Fq(e, r = 0)
Returns fq(e,ηq[r])

1: If e = 1 then
2: return 1
3: else if e = x then
4: return α(x, ηq[r])
5: else if e = e1 × e2 then
6: return Fq(e1, r) · Fq(e2, r) mod q

7: else if e = ee1
2 then

8: let µ←Fq(e1)
9: v ← v + 1

10: ηq[v] ← ηq[r] · µ mod q

11: return Fq(e2, v)

fun Vq(e, r = 0)
Returns a multi-set ω,

s.t. Fq(e, r) =
(∏

p∈ω p
)

mod q

1: If e = 1 then
2: return ∅
3: else if e = x then
4: return {α(x, ηq[r])}
5: else if e = e1 × e2 then
6: return Vq(e1, r) ∪ Vq(e2, r)
7: else if e = ee1

2 then
8: let ψ←Vq(e1)
9: v ← v + 1

10: ρq[v] ← r; ϕq[v] ← ψ

11: return Vq(e2, v)

Algorithm 2 Md(ε1, ε2) a Monte-Carlo algorithm for deciding whether ε1 = ε2

1: global 〈p1, . . . , pn〉, v, ηq[0 . . . n]
2: (Preprocessing) 〈p1, . . . , pn〉 ← the sequence of the first n primes; ηq[0] ← 1
3: If d = ∞ then
4: let q←∞
5: else
6: let q←a random prime uniformly chosen from the primes in (pn, nd+3]
7: v ← 0; let η1←Fq(xε1); let η2←Fq(xε2)
8: If η1 6= η2 then
9: print “ε1 is provably not equal to ε2”

10: else
11: print “ε1 is (probably) equal to ε2, the error probability is O(n−d log n)”

Randomized Algorithms for Isomorphisms of Simple Types 11

logarithmic algorithms for finding pseudo-primes, or even the new results for primality testing in
poly-logarithmic time [Agrawal et al., 2002].)

The algorithm then computes Fq(xε1) and Fq(xε2) (line 7) using the sequence p1, . . . , pn for
the hash-table implementation of the assignment function α. It then determines (line 8) whether
the inputs are equal by comparing the values the two invocations returned.

It is easy to see that Fq(xε1) = Fq(xε2) ⇔ Fq(ε1) = Fq(ε2). We make the calls Fq(xε1)
and Fq(xε2) instead of Fq(ε1) and Fq(ε2) to make sure that the values returned by Fq(ε1)
and Fq(ε2) are stored in the array ηq .

The canonical run of Md and Fq is a hypothetical execution with d = q = ∞. This run
may generate very large numbers, and require quadratic time. However, as it is easy to see,
the invocation M∞(ε1, ε2) computes g(xε1) and g(xε2) precisely and therefore cannot err in
determining whether the two inputs are equal. We say that the hypothetical canonical run leaves
a trace η∞ while invoking F∞. For brevity, we omit the ∞ symbol when it occurs in subscripts
and write M , F and η instead of M∞, F∞ and η∞.

Our main concern lies with the case of a fixed d > 0, which we will analyze by comparing it
to the canonical run.

Theorem 4.2. For all fixed d > 0, Md(ε1, ε2) determines (after a pre-processing stage, depend-
ing solely on n) whether ε1 = ε2 in time O(n). The algorithm may only err in determining that
the two input expressions are equal when they are not, an event which may occur with probabil-
ity O(n−d log n).

The remainder of this section is dedicated to the proof. The time complexity follows from
Lemma 4.1. For correctness, we first argue that if Algorithm 2 reaches line 9 then the input
expressions cannot be equal.

Lemma 4.3. For all q ≥ 2, if ε1 = ε2 then Fq(ε1) = Fq(ε2).

PROOF. The proof is identical to the proof of Theorem 3.2, except that all multiplications
are carried out mod q. All we rely on is the commutative and associative nature of multiplica-
tion.

Lemma 4.3 is not useful on its own, since the hashed encoding may be the same for many
unequal expressions. An extreme case in point is q = 2, in which gq partitions E into two
equivalence classes. Henceforth we assume that ε1 6= ε2, (and hence g(ε1) 6= g(ε2)), and try to
characterize those q for which Fq(ε1) 6= Fq(ε2).

The run of Mq(ε1, ε2) left a trace in the array ηq , and moreover

Fq(ε1) = ηq[v1],

Fq(ε2) = ηq[v2],

for some v1 and v2. We can bound the error probability by comparing this trace ηq with the trace
of the canonical run η.

Definition 4.4. Prime q is collision-free (with respect to ε1 and ε2) if for all η[r1] 6= η[r2] it also
holds that (η[r1] 6= η[r2]) mod q. Otherwise q is colliding.

J. Gil and Y. Zibin 12

Lemma 4.5. Let q > pn be a collision-free prime. Then, for all 0 ≤ r ≤ n, ηq[r] = η[r] mod q.

For the proof we need the notion of a stack log of an algorithmic statement, which is the log of
all invocation and return commands which execute when this statement is executed. Invocation
commands include the name of the invoked routine (function or procedure), and its arguments.
A return command does not include the return value.

PROOF. Observe first that the stack log of a statement v ← 0; Fq(e) is the same as that of a
statement v ← 0; F (e), except that calls to Fq are replaced by calls to F . We show by induction
that in this log Fq(e, r) = F (e, r) mod q.

As usual, there are four cases to consider

1. If e = 1, then obviously both functions return 1.
2. If e = x, then Fq returns α(x, ηq[r]) while F returns α(x, η[r]). From the inductive

hypothesis we have that ηq[r] = η[r] mod q. Moreover, since q is collision free, it
follows that H (the hash table of F) is isomorphic to Hq (the hash table of Fq) in
the sense that key 〈x′, η[r′]〉 occurs in H and is mapped by it to prime p, if and only
if 〈x′, η[r′] mod q〉 occurs in Hq and is mapped by it to p. Thus, if 〈x, η[r]〉 ∈ H, then
obviously α(x, η[r]) = α(x, η[r] mod q). If on the other hand 〈x, η[r]〉 6∈ H, we rely
on α(x, η[r]) deterministically returning the next prime and on q ≥ pn to make the
inductive step.

3. If e = e1 × e2, then from the inductive hypothesis we have that

Fq(e1, r) = F (e1, r) mod q,

Fq(e2, r) = F (e2, r) mod q.

Thus,

Fq(e1 × e2, r) = Fq(e1, r) · Fq(e2, r) mod q

= (F (e1, r) mod q) · (F (e2, r) mod q) mod q

= F (e1, r) · F (e2, r) mod q

= F (e1 × e2, r) mod q.

4. If e = ee1
2 , then from the inductive hypothesis we have that Fq(e1) = F (e1) mod q,

and ηq[r] = η[r] mod q. Now Fq and F compute and store ηq[v] and η[v],

ηq[v] = ηq[r] · Fq(e1) mod q = η[r] · F (e1) mod q

= η[v] mod q.

Thus,

Fq(ee1
2 , r) = Fq(e2, v) = F (e2, v) mod q

= F (ee1
2 , v) mod q.

Corollary 4.6. Let q > pn be a collision-free prime. Then, η[r1] 6= η[r2] ⇒ ηq[r1] 6= ηq[r2].

Lemma 4.7. Let q > pn be a collision-free prime. Then ε1 6= ε2 ⇒ Fq(ε1) 6= Fq(ε2).

Randomized Algorithms for Isomorphisms of Simple Types 13

PROOF. Recall that η[v1] = F (ε1) 6= F (ε2) = η[v2]. From Corollary 4.6, we have that ηq[v1] 6=
ηq[v2]. The lemma follows from noting that Fq(ε1) = ηq[v1] and Fq(ε2) = ηq[v2].

Let Q ⊂ P be the set of colliding primes greater than pn.

Lemma 4.8. Let q be a prime number chosen uniformly and at random from all primes in the
range (pn, nd+3]. Then, the probability that q ∈ Q is O(n−d log n).

PROOF. For each colliding prime q ∈ Q, there exists a pair η[r1] and η[r2], such that η[r1] >

η[r2] but (η[r1] = η[r2]) mod q, i.e., q is a divisor of η[r1] − η[r2] > 0. Since the evaluation
of F involves at most n multiplications, η[r1], η[r2] ≤ (pn)n. Hence, η[r1]−η[r2] ≤ (pn)n and
it can have at most n prime divisors greater than pn. Noting that there are at most n2 such pairs
we obtain that |Q| ≤ n3.

The lemma follows by noting that from the prime numbers theorem, the number of primes in
the range (pn, nd+3] is O(nd+3/ log n).

5. Las Vegas algorithm

In the case of an unfortunate selection of q (i.e., q ∈ Q), if Algorithm 2 finds that Fq(xε1) =
Fq(xε2) then it may erroneously conclude that ε1 = ε2. This section describes an algorithm
which uses the trace ηq of the two invocations Fq(xε1) and Fq(xε2), to determine in O(n log n)
time whether q ∈ Q.

Each number in the trace ηq[1 . . . n] is computed from a multiplication modulo q. In the Las
Vegas algorithm we need to prove that no collisions occurred. (If a collision did occur then
we simply randomly pick another prime, and repeat until we find a collision-free prime.) To
prove that no collisions occurred we invoke another function Vq that re-iterates the steps of
the function Fq and stores multi-sets of primes into an array φq(1 . . . n). The multiplication of
elements in the multi-set φq(i) is equal modulo q to ηq[i], thus φq(i) = φq(j) ⇒ ηq[i] = ηq[j].
To verify that q is indeed collision-free we need to check that we had no collisions due to the
modulo operation, i.e., φq(i) 6= φq(j) ⇒ ηq[i] 6= ηq[j].

The catch is that the sum of multi-sets sizes is O(n2). Luckily the multi-sets have many el-
ements in common and we can represent them in linear space. Specifically, instead of storing
directly the array φq(i) we represent it using a tree structure: ϕq[1 . . . n] stores a multi-set for
each tree node, and ρq[1 . . . n] stores the index of the parent of the node. More precisely,

Definition 5.1. For a node u, the expanded multi-set of primes associated with this node, φq(u),
is defined recursively as follows:

φq(u) =

{
∅ if u = 0

ϕq[u] ∪ φq(ρq[u]) otherwise.

Also, let πq(u) be the product of all members of φq(u), i.e., πq(u) =
∏

p∈φq(u) p.

We will prove that (i) this compact representation as a tree requires only linear space (Lemma 5.2),
(ii) πq(u) mod q = ηq[u] (Lemma 5.4), and (iii) prime q is colliding if two nodes i, j exist such
that φq(i) 6= φq(j) but ηq[i] = ηq[j] (Lemma 5.5). Determining if q is colliding can be done
in O(n log n) time while the space is O(n) [Zibin et al., 2003, Section 5].

J. Gil and Y. Zibin 14

Algorithm 3 presents our randomized Las-Vegas algorithm for determining whether ε1 = ε2.
The algorithm starts with the same preprocessing stage as in Algorithm 2. Also, in the main loop
(which is expected to iterate 1+ o(1) times) the algorithm makes a similar invocation of Fq(xε1)
and Fq(xε2).

As before, if the values these invocations return are distinct, then the two input expressions are
provably not equal (lines 6–8). Otherwise, i.e., in the case that Fq(xε1) = Fq(xε2), the algorithm
must verify that q is indeed collision free, i.e., q 6∈ Q. To do so, the algorithm invokes function Vq

twice at line 9 to reiterate the steps of the invocations of Fq in line 5, collecting a more detailed
trace of the computation. This information is then used by the loop condition (line 10) to check
whether q ∈ Q.

If the algorithm discovers at this point that q ∈ Q, then another iteration must be made in
which a new random q is selected. Otherwise, it concludes that q is collision free, and hence the
inputs must be equal (line 11).

Algorithm 3 L(ε1, ε2) a Las-Vegas algorithm for deciding whether ε1 = ε2

1: global 〈p1, . . . , pn〉, v, ηq[0 . . . n], ϕq[1 . . . n], ρq[1 . . . n]
2: (Preprocessing) 〈p1, . . . , pn〉 ← the sequence of the first n primes; ηq[0] ← 1
3: repeat
4: let q←a random prime uniformly chosen from the primes in (pn, n4]
5: v ← 0; let η1←Fq(xε1); let η2←Fq(xε2)
6: If η1 6= η2 then
7: print “ε1 is provably not equal to ε2”
8: return
9: v ← 0; call Vq(xε1); call Vq(xε2)

10: until For all i, j ∈ [1, n], φq(i) 6= φq(j) ⇒ ηq[i] 6= ηq[j] // loop until we have
no collisions, i.e., q 6∈ Q

11: print “ε1 is provably equal to ε2”

We now describe in greater detail function Vq , then the information it gathers, and finally how
this information can be used to test whether q ∈ Q.

Algorithm 1 depicts functions Vq and Fq side-by-side, showing that they share the same control
flow structure and the same recursive call patterns. We also see that both functions use the global
variable v in exactly the same fashion. Observe that the calls in Algorithm 3 to Fq (line 5) and
to Vq (line 9) have identical parameters, and start with the same initial value of v. Therefore, the
stack log of line 5 is the same as the stack log of line 9 in substituting Fq for Vq .

Function Vq manipulates multi-set of values (specifically, primes). We represent these as bi-
directional linked-lists in memory. Therefore, assignment requires constant time. In line 6, the
function computes the union of two such multi-sets. The constant time implementation is by a
destructive concatenation of the lists returned by the two previous recursive calls. We therefore
have,

Lemma 5.2. If |e| = n and q ∈ nO(1), then the invocation Vq(e) runs in O(n) time and con-
sumes O(n) space.

Randomized Algorithms for Isomorphisms of Simple Types 15

We argue that the value returned by Fq is the product modulo q of the multi-set of values
returned by Vq . More precisely,

Lemma 5.3. Suppose that Fq returned an integer µ in step i of the stack log of line 5, and that Vq

returned a multi-set ψ in step i of the stack log of line 9. Then, µ =
(∏

p∈ψ p
)

mod q.

PROOF. Trivial by induction on i and a side-by-side comparison of the two functions.

An important difference between the two functions lies in line 10. The trace ηq recorded by
function Fq is significantly enhanced here by Vq . In fact, the invocation Vq(e) generates what we
call the Gödel tree which is the standard symbolic expression representation of gq(e).

To understand better how this tree is related to the input expression, consider the following
expression and its expansion.

((
ua1a2a2a3

1 ub1b2
2

)c1c2

u(xy)d

3

)e1e2(
uf

4ug1g2
5

)h
=

ua1a2a2a3c1c2e1e2
1 ub1b2c1c2e1e2

2 uxdyde1e2
3 ufh

4 ug1g2h
5

(5.1)

The exponents of u1, . . . , u5 are long products. Figure 5.1 shows that these can be represented
more compactly as leaves of a tree. A moment pondering should convince the reader that a similar
tree is induced by expanding any expression involving exponentiation and products.

Fig. 5.1. A tree representation of the exponents of u1, . . . , u5 in the left-hand side of (5.1).

The Gödel tree is similar in principle to the tree of Figure 5.1, except that the members of the
multi-set are not primitive variables or compound expressions as in the figure, but rather primes
returned by the assignment function. Specifically, a primitive variable x is stored as α(x), while a
compound expression is e expanded and brought to the form e = xe1

1 × · · ·×xek

k (where each ei

is expanded recursively in the same fashion). The multi-set of e stores all α(xi, gq(ei)), i =
1, . . . , k. In the example, the node labelled (xy)d is stored as {α(x, α(d)), α(y, α(d))}.

Nodes in the Gödel tree are represented by indices into two global arrays, denoted ρq[1 . . . n]
and ϕq[1 . . . n]. The tree root is 0, and the parent of any other node v is ρq[v]. In ϕq[v] we store
a multi-set of primes associated with v.

Figure 5.2 shows the Gödel tree representation of the expression
((

ua1a2a2a3
1 ub1b2

2

)c1c2

u(xy)d

3

)e1e2(
uf

4ug1g2
5

)h
(5.2)

This tree was obtained by invoking Fq and later Vq on (5.2). The first invocation computed

J. Gil and Y. Zibin 16

Fig. 5.2. The Gödel tree representation of (5.2).

and stored the global array ηq:

ηq[1] = 1 · gq(e1e2)

ηq[2] = ηq[1] · gq(c1c2)

ηq[3] = ηq[2] · gq(a1a2a2a3)

ηq[4] = ηq[2] · gq(b1b2)

ηq[5] = 1 · gq(d)

ηq[6] = ηq[1] · gq((xy)d)

ηq[7] = 1 · gq(h)

ηq[8] = ηq[7] · gq(f)

ηq[9] = ηq[7] · gq(g1g2)

The second invocation computed and stored the tree representation in the global arrays ρq ,
and ϕq:

ρq[1]=0 ϕq[1]={α(e1), α(e2)}
ρq[2]=1 ϕq[2]={α(c1), α(c2)}
ρq[3]=2 ϕq[3]={α(a1), α(a2), α(a2), α(a3)}
ρq[4]=2 ϕq[4]={α(b1), α(b2)}
ρq[5]=0 ϕq[5]={α(d)}
ρq[6]=1 ϕq[6]={α(x,ηq[5]), α(y, ηq[5])}
ρq[7]=0 ϕq[7]={α(h)}
ρq[8]=7 ϕq[8]={α(f)}
ρq[9]=7 ϕq[9]={α(g1), α(g2)}

In general, the invocation Vq(e, r) generates the Gödel tree of expression ee′ , where r is the
root of the Gödel sub-tree of e′, which must have been computed previously. If e is a product of
several sub-expressions, i.e., e = e1× · · ·× ek, parenthesized arbitrarily, then the recursive calls
to Vq will follow this parenthesization pattern, but will not generate any nodes for it. Instead, Vq

will accumulate the multi-set of primes returned by the recursive call on all ei, i = 1, . . . , k.
A Gödel tree node is created only when the recursive run encounters an exponentiation oper-

ator. Line 9 creates the node, and line 10 fills its data.
The Gödel tree can be thought of as an extended trace of the run of Fq , in the sense that for

Randomized Algorithms for Isomorphisms of Simple Types 17

each node u, integer ηq[u] is the product modulo q of primes stored in ϕq[u] and in all of its
ancestors (See Definition 5.1).

Lemma 5.4. After line 9 of Algorithm 3, ηq[u] = πq(u) mod q for every node u = 1, . . . , v.

PROOF. Trivial by induction on u. (The inductive step compares line 10 in functions Fq and Vq

using the similarity of the stack logs of lines 5 and 9 in Algorithm 3.)

As a result of the uniqueness of the factorization of integers into primes, integer πq(u) uniquely
encodes the entire multi-set φq(u). We would therefore expect that the temporary values

η[0], η[1], . . .

computed by the non-hashed Gödel encoding, will be precisely

πq(0), πq(1), . . .

of the multi-sets

φq(0),φq(1), . . .

as computed by Vq . In the same fashion, one may try to rely on the fact Vq accumulates the primes
generated by the encoding, rather than multiplying these modulo q, to infer that the Gödel tree it
generates will not depend at all on q.

These conclusions are indeed true, but only when q is collision free. To understand why, recall
that function Vq searches the hash-table, and that these searches use as keys the values in the
array ηq[0, . . . , n] as generated by Fq . Function Fq , in turn makes an extensive use of q. If q is
colliding, then two distinct temporary values ηq[u1] and ηq[u2] become equal by the modulo q

operation in function Fq .
Thus, we have that the multi-sets φq(u) do not depend on q as long as it is collision free. In

this case, two such multi-sets are equal precisely when the expressions they represent are equal.
The next lemma gives us a test for checking whether q is colliding.

Lemma 5.5. If q is colliding, then there exist nodes u1 and u2 such that the following two
conditions holds

φq(u1) 6= φq(u2),

ηq[u1] = ηq[u2].

PROOF. Examine the first point in the course of calculation in which a hash collision occurs.
Specifically, for all colliding pairs η[u1] 6= η[u2] pick the one with minimal u2. Since this is
the first collision, we have that η[u1] = πq(u1) is distinct from η[u2] = πq(u2), thus φq(u1) 6=
φq(u2). However, from Lemma 4.5, it follows that

ηq[u1] = η[u1] mod q,

ηq[u2] = η[u2] mod q,

thus ηq[u1] = ηq[u2].

Therefore the condition in line 10 assures us that q is collision-free when we exit the loop.
This condition can be checked in O(n log n) time and O(n) space [Zibin et al., 2003, Section 5].

J. Gil and Y. Zibin 18

In the unlikely event that q is colliding then Algorithm 3 reiterates the main loop to select a
new prime q. Since the probability of this event is O(log n/n) (Lemma 4.8), the expected number
of iterations is 1 + o(1). We therefore have:

Theorem 5.6. Algorithm 3 determines (after a pre-processing stage, depending solely on n)
whether ε1 = ε2 in O(n) space and O(n log n) expected time.

6. Conclusions and Open Problems

In testing formal equality of ME-expressions, we substitute non-random values, specifically
primes, for input variables, and rely on unique prime factorization to show equality of prod-
ucts. We circumvent the problem of raising an expression to a non-constant power by using
an assignment function, which chooses a new prime for each base and exponent pair. This is
possible using an implicit normal form, in which all bases are primitive variables. Although a
detailed description of this normal form and a linear tree-structured representation of it appear
elsewhere [Zibin et al., 2003], the reader may gain some intuition by examining (5.1) together
with Figure 5.1.

The Monte-Carlo algorithm implicitly follows the normal form to compute the hashed Gödel
encoding of the inputs, where the hashing is by computing products modulo a polynomially
large prime. The Las-Vegas algorithm is in essence a reiteration of the Monte-Carlo algorithm,
in which the Gödel tree (structured much like the normal form) is computed. Checking whether
no collisions occurred during the hashing can be done in O(n log n) time using this tree, but the
details are described elsewhere [Zibin et al., 2003, Section 5].

An interesting open problem is to improve the non-polynomial algorithm [Gurevič, 1985]
for determining equality of expressions involving additions, multiplications and exponentiation.
This paper showed how to efficiently determine equality of ME-expressions (involving multipli-
cation and exponentiation), while equality of polynomials (involving additions and multiplica-
tions) has a well known O(n log n) time randomized algorithm (e.g., see [Chen and Kao, 1997]).
Another interesting open problem is to find other applications of the technique of replacing ex-
ponentiation by hashing.

References

Agrawal, M., Kayal, N., and Saxena, N. (2002). PRIMES is in P. Technical report, Indian Institute of
Technology, Kanpur.

Bruce, K. B., Di Cosmo, R., and Longo, G. (1991). Provable isomorphisms of types. Math. Structures in
Comp. Sci., 1:1–20.

Chen, Z.-Z. and Kao, M.-Y. (1997). Reducing randomness via irrational numbers. In Proceedings of the
29th annual ACM symposium on Theory of computing, pages 200–209. ACM Press.

Considine, J. (2000). Deciding isomorphisms of simple types in polynomial time. Technical report, Com-
puter Sciences Department, Boston University.

Di Cosmo, R. (1995). Isomorphisms of types: from λ-calculus to information retrieval and language design.
Birkhauser. ISBN-0-8176-3763-X.

Dietzfelbinger, M., Karlin, A. R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., and Tarjan, R. E.
(1994). Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on Computing, 23(4):738–
761.

Randomized Algorithms for Isomorphisms of Simple Types 19

Gurevič, R. (1985). Equational theory of positive numbers with exponentiation. American Mathmatical
Society, 94(1):135–141.

Pritchard, P. (1981). A sublinear additive sieve for finding prime number. Communications of the ACM,
24(1):18–23.

Rittri, M. (1990). Retrieving library identifiers via equational matching of types. In Stickel, M. E., editor,
Proc. of the 10th International Conference on Automated Deduction (CADE’90), volume 449 of Lecture
Notes in Computer Science, pages 603–617, Kaiserslautern, Germany. Springer Verlag.

Schwartz, J. (1980). Fast probabilistic algorithms for verification of polynomial identities. JACM,
27(4):701–717.

Soloviev, S. V. (1983). The category of finite sets and cartesian closed categories. Journal of Soviet
Mathematics, 22(3):1387–1400.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometry. University of California
Press, Berkeley, CA, 2nd edition.

Zibin, Y., Gil, J., and Considine, J. (2003). Efficient algorithms for isomorphisms of simple types. In Proc.
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’03),
pages 160–171, New Orleans, Louisiana, USA. ACM Press, New York, NY, USA.

