Object and Reference Immutability using Java Generics

Yoav Zibin, Alex Potaninf, Mahmood Ali, Shay Artzi, Adam Kiezun, Michael D. Ernst

MIT Computer Science & Artificial Intelligence Lab
{zyoav|mali|artzi|akiezun|mernst}@csail.mit.edu

Abstract

A compiler-checked immutability guarantee provides ukdticu-
mentation, facilitates reasoning, and enables optintgnati This
paper presentsnmutability Generic JavélGJ), a novel language
extension that expresses immutability without changing'asyn-
tax by building upon Java’s generics and annotation meshai
In1GJ, each class has one additional type parameter thiatdsi e,

I mut abl e, Of ReadOnl y. 1GJ guarantees botieference immutabil-
ity (only mutable references can mutate an object) @jéct im-
mutability (an immutable reference points to an immutable object).
IGJ is the first proposal for enforcing object immutabilitythin
Java’s syntax and type system, and its reference immutaksli
more expressive than previous work. IGJ also permits camari
changes of type parameters in a type-safe manner, e.gdeniga
list of integers is a subtype of a readonly list of numbersJ &3-
tends Java’s type system with a few simple rules. We forradlis
type system and prove it sound. Our IGJ compiler works by-type
erasure and generates byte-code that can be executed ovlny J
without runtime penalty.

Categories and Subject Descriptors:D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.1 [SoftwargiBeer-
ing]: Requirements / Specifications[Languages]; D.3.3Pam-
ming Languages]Language Constructs and Features

General Terms: Design, Languages, Theory

Keywords: const, Generic, IGJ, Immutability, Java, Readonly

1. Introduction

Immutability information is useful in many software engéne
ing tasks, such as modeling [7], verification [30], compdad run-
time optimizations [9, 25, 28], refactoring [17], test inmenera-
tion [1], regression oracle creation [24,32], invariantead¢ion [14],
specification mining [10], and program comprehension [IBfee
varieties of immutability guarantee are:

Class immutability No instance of anmmutable classnay be
changed; examples in Java includei ng and most subclasses
of Nunber such as nt eger andBi gDeci nal .

Object immutability An immutable objectan not be modified,

f Victoria University of Wellington
alex@mcs.vuw.ac.nz

objectsare used as map keys. The behavior of a map is not spec-
ified if the value of an object is changed in a manner that effec
equals comparisons while the object is a key in the map.”
Reference immutability A readonly referenc2, 5,12, 22, 25, 29,
31] (or aconstpointer in C++) cannot be used to modify its
referent. However, the referent might be modified using an
aliasing mutable reference. Reference immutability isiireqgl
to specify interfaces, such as that a procedure may not gnodif
its arguments (even if the caller retains the right to do so) o
a client may not modify values returned from a module. Past
work does not guarantee object immutability, unless refeze
immutability is combined with an alias/escape analysisuarg
antee that no mutable aliases to an object exist [2, 3].

This paper presentsnmutability Generic JavlGJ), a language
that supports class, object, and reference immutabilighEbject
is either mutable or immutable, and each referenaenist abl e,
Mit abl e, OFr ReadOnl y. Inspired by work that combines ownership
and generics [27], the distinctions are expressed withieaihging
Java’s syntax by adding one new type parameter (at the baginn
of the list of type parameters):

1: // An immutable reference to an immutable date; mutating the
/I referent is prohibited, via this or any other reference.
Dat e<| mut abl e> i mmut D = new Dat e<| nmut abl e>() ;
2: /l A mutable reference to a mutable date; mutating the referent
/I is permitted, via this or any other mutable reference.
Dat e<Mut abl e> nmut D = new Dat e<Mut abl e>();
3: /] A readonly reference to any date; mutating the referent is
I prohibited via this reference, but the referent may be cleang
/I via an aliasing mutable reference.
Dat e<ReadOnly> roD = ... ? imutD : nutD;
Statement 1 shows object immutability in IGJ, and staterBent
shows reference immutability. Fig. 4 shows a larger IGJ extam
Java’s type arguments are no-variant, to avoid a type Idegdbp
20], so statement 3 is illegal in Java. Statement 3 is legbih
because IGJ allows covariant changes in the immutabilitgrpa-
ter. IGJ even allows covariant changes in other type paensét
mutation is disallowed, e.g.j st <Readnl y, I nt eger > iS @ subtype
of Li st <ReadOnl y, Nunber >.

even if other instances of the same class can be. For example, GJ satisfies the following design principles:

some instances af st in a given program may be immutable,
whereas others can be modified. Object immutability can be
used for pointer analysis and optimizations, such as sharin
between threads without synchronization, and to help pteve
hard-to-detect bugs, e.g., the documentation ofmieinter-
face in Java states that “Great care must be exercisedtédble

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC/FSE’07September 3-7, 2007, Cavat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

Transitivity 1GJ provides transitive (deep) immutability that pro-
tects the entire abstract state of an object. For examplin-an
mutable graph contains an immutable set of immutable edges.
C++ does not support such transitivity becausedist -guarantee
does not traverse pointers, i.e., a pointer ivast object can
mutate its referent.

IGJ also permits excluding a field from the abstract state. Fo
example, fields used for caching can be mutated even in an im-
mutable object.

Static 1GJ has no runtime representation for immutability, such
as an “immutability bit” that is checked before assignments
or method calls. Testing at runtime whether an object is im-
mutable [29] hampers program understanding.

ReadOnly

Figure 1. The hierarchy of immutability parameters, whicvéa
special meaning when used as the first type argument, as in
Li st<Mut abl e, T>. (See also Fig. 6 in Sec. 2.4.)

The IGJ compiler works by type-erasure, without any runetim
representation of reference or object immutability, what
ables executing the resulting code on any JVM without run-
time penalty. A similar approach was taken by Generic Java
(GJ) [6] that extended Java 1.4. As with GJ, libraries must
either be retrofitted with IGJ types, or fully converted taJIG
before clients can be compiled. IGJ is backward compatible:
every legal Java program is a legal IGJ program.

Polymorphism 1GJ abstracts over immutability without code du-
plication by using generics and a flexible subtype relatfeor.
instance, all the collection classes in C++'s STL have twerov
loaded versions dfterator, operator[], etc. The underlying
problem is the inability to return a reference whose immiltab
ity depends on the immutability ofi s:

const Foo& get Fi el dFoo() const;
Foo& get Fi el dFoo();

Simplicity 1GJ does not change Java’s syntax. A small number of
additional typing rules make 1GJ more restrictive than J&m
the other hand, 1GJ’s subtyping rules are more relaxedwallo
ing covariant changes in a type-safe manner.

The contributions of this paper are: (i) a novel and simpkigie
that naturally fits into Java’s generics framework, (ii) explemen-
tation of an IGJ compiler, proving feasibility of the desiggnd
(i) a formalization of IGJ with a proof of type soundness.urO
ideas, though demonstrated using Java, are applicabley tstaii-
cally typed language with generics, such as C++, C#, an@lEiff

Outline. The remainder of this paper is organized as follows.
Sec. 2 describes the IGJ language, which is compared toopievi
work in Sec. 3. Sec. 4 discusses case studies of our IGJ inaplem
tation, and Sec. 5 formalizes IGJ and gives a proof of sows®ine
Sec. 6 concludes.

2. 1GJlanguage

The first type parameter of a class/interface in 1IGJ is calhed
immutability parameterThe first type argument of a type in IGJ is
called themmutability argumentand it can beut abl e, | mut abl e,
or ReadOnl y.

2.1 Type hierarchy

Fig. 1 depicts the type hierarchy of immutability parametdthe
subtyping relation is denoted by, e.g.,Muit abl e < ReadOnl y. The
classeswit abl e, I mut abl e, andReadonl y may not be extended,
they have no subtype relation with any other types, and theybe
used only as the first type argument or as a type bound.

The root of the 1GJ type hierarchy (excludirgadonl y and its
descendants) isj ect <Readnl y>. Fig. 2 depicts the subtype rela-
tion for the classesbj ect andpat e.

In Java, all type parameters are no-varigeixcept when using
wildcards, see Sec. 3.2). The subtyping rules for IGJ arenm®r
laxed. 1GJ permits covariant changes in the immutabilitsapa
eter, e.g.Dat e<Mut abl e> =< Dat e<ReadOnl y>. This satisfies the
polymorphism design principle, because a programmer cée wr

1We use “no-variant” rather than “invariant” to avoid corifwswith other
meanings of the latter term.

Object<ReadOnly>
Object<Immutable> Object<Mutable>

Date<ReadOnly>
Date<Immutable> Date<Mutable>

Figure 2: The subtype hierarchy fosj ect andbate. The classes
(in bold) still have an underlying tree structure.

a single method that accepts a reference of any immutakfdty
examplevoi d print (Dat e<ReadOnl y> d).

IGJ also permits covariant changes in other type paraméters
the immutability argument ireadonl y Or | mut abl e, €.g.,

Li st <ReadOnl y, | nt eger > = Li st <ReadOnl y, Nunber >

Covariant changes are safe only when the object is readoriy-o
mutable because it cannot be mutated in a way which is not type
safe. Therefore, the following pair is not in the subtypatieh:

Li st <Mut abl e, | nt eger > A Li st <Mut abl e, Number >

To illustrate why covariant changes are prohibited in Jagasider

a method that accepts st <mut abl e, Nunber > as one of its argu-
ments. IfLi st <Mt abl e, I nt eger > is allowed to be passed into the
method, then inside the method an element in the list could be
changed to som&unber that is not an nteger. This will break

the guarantee that a list of the typest <mut abl e, I nt eger > only
contains instances oht eger .

A type parametex in classc can be annotatédvith @oVvari ant
to prevent covariant changes, in which case we sayxhiatno-
variant and writeNoVariantx, c). Otherwise we say thatis covari-
ant and writeCoVariantx, C). Sections 2.3 and 2.5 discuss when a
type parameter should be no-variant, e.g., the type paeamét
the interfaceconpar abl e<l , X> iS no-variant:

interface Conparabl e<I extends ReadOnly, @\oVariant X>

{ @eadOnly int conpareTo(X 0); }
For instanceConpar abl e<Readnl y, | nt eger > iS Not a subtype of
Conpar abl e<ReadOnl y, Nunber >.

IGJ’s subtype definition for two types of the same class ismgiv
in Def. 2.1. The full subtype definition (formally given indzi12
of Sec. 5) includes all of Java’s subtyping rules, therel@é's
subtype relation is a superset of Java’s subtype relation.

DEFINITION 2.1. Letc<l, X1,...,X,> be a class. Then, type
S=C<J,S1,...,S,>isasubtype off = c<3’, 71, ..., Tp>, Written
ass < T, iff 3 < 3" and for+ 1,...,n, eithers; = 1, or
(mutabl e < 3’ ands; =< T; and CoVarian{(X;, C)).

Example. Fig. 3 presents the subtype hierarchyifost <obj ect >.
The types <M o<M>>, L<M O<I M>>, andL<M O<R>> have a common
mutablesupertypa.<M ? extends O<? extends R>>, but the only
value that can be inserted in such a listis! . (See Sec. 3.2 for a
discussion of Java’s wildcards.)

2.2 Reference immutability

This section gives the three key type rules of IGJ that eefoeé&
erence immutability: that is, only it abl e reference can modify
its referent. To support reference immutability it is suéfitt to use
ReadOnl y andmut abl e references; Sec. 2.4 adds object immutabil-
ity by usingl mut abl e references as well.

2Annotating type parameters is planned for Java 7 [15]. la Sawa class or
interface annotation would have to specify which positiaresno-variant.

Figure 3: The subtype hierarchy foirst <obj ect >, abbreviated as
L<0>. The typeReadnl y, Mit abl e, andi mmut abl e are abbreviated
asRr, M andi M respectively. The crossed-out arrows emphasize
pairs that areot subtypes.

We usel(...) to denote a function that takes a type or a refer-
ence, and returns its immutability argument. For exampilenga
referencewt D of typeDat e<mut abl e>, I (mut D) = Mt abl e, and we
say that themmutability of mut Dis Mut abl e.

A field can be assigned only by a mutable reference:

FIELD -ASSIGNMENT RULE!:

o.soneField = ... islegaliff I(o) = Mt abl e.

Thus, you cannot assign to fields of a readonly reference, e.g

Enpl oyee<ReadOnl y> roE = ... ;

roE. address = ...; // lllegal!

The immutability oft hi s depends on the context, i.e., the method
in whicht hi s appears:

THIs RULE: I(this) = I(m), in @ methodn
Since there is no obvious syntactic way to denote the imnilityab
of t hi s, IGJ uses method annotatiom@eadonl y, @ut abl e, etc®

For example, below we hav&t his) = I(m) = Mitabl e:

@utable void () { ... this ... }

The default method annotation in IGJaat abl e, but for clarity of
presentation, this paper explicitly annotates all methods

The third type rule of IGJ states when a method call is legal:

METHOD-INVOCATION RULE: o.n(...) islegal iff I(o) =< I(m).
IGJ requires thaf (o) < I(m), and not simply/(o) = I(m), to
allow a mutable reference to call readonly methods, e.qg.,

Enpl oyee<Mutable> o = .. .;

o.setAddress(...); // OK: I(o) < I(set Address) = Mitabl e

0. get Address(); Il OK: I(0) < I(get Address) = ReadOnly

((Enpl oyee<Readnl y>) o) .setAddress(...); // lllegal!

Example. Fig. 4 presents two IGJ classezige andG aph. The
immutability parameter is declared in lines 1 and 10; by conven-
tion we always denote it by. If the extends clause is missing
from a class declaration, then we assume it extengsct <1 >. We
can use any subtype eéadonl y in place ofi, e.g.,ReadOnl y (On
line 9), mut abl e (on line 14), or another parameter suchi g®n
line 11) orx (on line 17).

We will now demonstrate the type-checking rules by example.
The assignmenthis.id = idonline 5 is legal because according
to THis RUuLE we have thatl (this) = I(setld) = Mitabl e, and
according toFIELD-ASSIGNMENTRULE @ mutable reference can as-
sign to a field. That assignment would be illegal if it was nbve
to line 6, becauseni s is readonly in the context of methaedt | d.
The method invocationhi s. set1d(...) on line 3 is legal accord-
ing to METHOD-INVOCATION RULE becausel (this) = I(setld).
That method invocation would be illegal on line 6.

Observe on line 9 that the static methed nt does not have
an annotation because it does not have an associatebject.
According to Def. 2.1 of the subtype relation, an edge of any i
mutability can be passed poi nt .

3The paper uses the annotati@Readonl y whereas the 1GJ compiler uses

cl ass Edge<l extends ReadOnly> {
private long id;
@Assi gnsFi el ds Edge(long id) { this.setld(id); }
@Assi gnsFi el ds synchroni zed void setld(long id) {

this.id =id; }

@eadOnly synchroni zed long getld() { returnid; }
@mut abl e ong getldlimutable() { returnid; }
@ReadOnl y Edge<]l> copy() { return new Edge<l>(id); }

1:
2
3
4:
5:
6:
7
8
9
0

: static void print(Edge<ReadOnly>e) { ... } }
10: cl ass Graph<l extends ReadOnly> {
11: List<l, Edge<l >> edges;
12: @rssignsFi el ds G aph(List<l, Edge<| >> edges) {

13: this.edges = edges; }

14: @wtabl e void addEdge(Edge<Mut abl e> e) {
15: this.edges. add(e); }

16: static <X extends ReadOnly> Edge<x>

17: findEdge(G aph<x> g, long id) { ... } }

Figure 4: 1GJ classemige<! > andG aph, with the immutability
parameters and annotations underlined. Erasing the intifityta
parameters and annotations yields a legal Java programthéth
same semantics. The annotati@snut abl e and@ssi gnsFi el ds
are explained in Sec. 2.4; for now assume aiwt abl e is the
same agReadOnl y, and@ssi gnsFi el ds iS the same ag@wt abl e.

Recall that theTransitivity design principle states that the de-
sigh must support transitive (deep) immutability. In ouaeple,
in a mutablea aph the fieldedges on line 11 will contain a muta-
ble list of mutable edges. We call such a fietd s-mutable[31]
because its immutability depends on the immutability iafs: in
a mutable object this field is mutable and in a readonly ohject
is readonly. C++ has similar behavior for fields without theyk
wordsconst or nut abl e. The advantage of IGJ syntax is that the
concept of hi s-mutableis made explicit in the syntax: a class can
reuse its immutability parameter in its fields, and the ulyitey
generic type system propagates the immutability inforamatiith-
out the need for special type rules. Using generics simplifigh
the design and the implementation.

Moreover, C++ has nohi s-mutable local variables, return types,
method parameters, or type arguments, whereas 1GJ treags
a regular type parameter. For example, the following tauies-
mutable: the return type on line 8, the type argungige<i > on
line 11, and the method parameteges on line 12.

2.3 Method overriding

IGJ respects the Java class hierarchy. An overriding metaod
not weaken the specification of the overridden method:

METHOD-OVERRIDING RULE:

If methodni overridesm thenZ(m) < I(m).

For example, overriding can change a mutable method to anéad
method, but not vice versa.

The erased signaturef a method is obtained by replacing type
parameters with their bounds. When the erased signatureaies-
riding method changes, the normalac inserts abridge method
to cast the arguments to the correct type [6]. 1GJ requiratttie
erased signaturef an overriding method remains the same if that
method is either readonly or immutable:

ERASED-SIGNATURE RULE: If methodni overrides methoshand

I mut abl e < I(m), then the erased signaturesfandm exclud-

ing no-variant type parameters, must be identical.

Fig. 5 demonstrates why tHERASED-SIGNATURE RULE prohibits
method overriding if the erased signature changes. As anett
ample, ifx was annotated a@oVvari ant in line 1, then the over-

@eadnl yThi s, because an annotation and a class cannot have the samefiding in line 5 would be legal, and covariantly changixdine 7)

qualified name. The same applies for the other annotations.

would be illegal.

class MyVector<l extends ReadOnly, X> { ...

}

A

@eadOnly void isin(X o) {...} } // The erased signature isI n(bj ect)

class Myl ntVector<l extends ReadOnly> extends MyVector<l,Integer> { ...
/I Overridingi si n is illegal due toERASED-SIGNATURE RULE: the erased signaturesi n(I nt eger) is different fromi si n(obj ect)
@eadOnly void isln(Integer o) {...} //Would belegalif x was annotated witl@oVari ant

© MyVect or <ReadOnl y, Obj ect > v = new Ml nt Vect or <ReadOnl y>() ; // Would beillegal if x was annotated witlaoVvari ant
v.isln(new Object()); //If overriding were legal, the bridge method iofI n(1 nt eger) would cast arbj ect to ani nt eger

Figure 5: An example of illegal method-overriding due to ErSED-SIGNATURE RULE.

ReadOnly

AssignsFields

Immutable

Figure 6: The full type hierarchy of immutability parameser

Out of 82,262 methods in Java SDK 1.5, 30,169 methods over-

ride other methods, out of which only 51 have a different edas
signature, and only the methednpar eTo(X) is readonly (the rest
are mutableadd, put, of fer, creat e, andset Val ue). Because is
no-variant in theconpar abl e interface, we conclude th&rasep-
SIGNATURE RULE imposes no restrictions on the Java SDK.

2.4 Object immutability

One advantage afbjectimmutability is enabling safe sharing
between different threads without the cost of synchroionatCon-
sider lines 6-7 in Fig. 4. Aong read/write is not atomic in Java;
synchronization is necessary. Only an immutakige can use
get | dl mmut abl e() to avoid the cost of synchronization.

The referent of a readonly reference (Sec. 2.2) is not imbheita
it could be changed via another pointer. A separate anatygsis
indicate some cases when such changes are impossible (811, b
is preferable for the type system to guarantee that theeefaf
immutable references cannot change.

The 1GJ type system makes such a guarantee:

A mutable reference points to a mutable object, and
: i - . c(tl)
an immutable reference points to an immutable object.
In order to enforce this property, no immutable referencg bea
aliased by a mutable one; equivalently, no mutable referemay
point to an immutable object.

2.4.1 Constructors and the annotati@si gnsFi el ds

The rules given so far are sufficient to guarantee object itahild
ity for IGJ with the exception of constructors. A construdiwat is
making an immutable object must be able to set the fields afihe
ject (which becomes immutable as soon as the constructonsyt
It is not acceptable to mark the constructor of an immutabjeci
as @t abl e, which would permit arbitrary side effects, possibly
including making mutable aliasestoi s.

IGJ uses a fourth kind of reference immutabilitysi gnsFi el ds,
to permit constructors to perform limited side effects withper-
mitting modification of immutable objects. Wherea®ait abl e
method can assiggnd mutaten object’s fields, a@ssi gnsFi el ds
method can only assigm@t mutat¢ the fields ofthis. A pro-
grammer can write th@ssi gnsFi el ds method annotation but may
not write the Assi gnsFi el ds type in any other way, such &sge
<Assi gnsFi el ds>. Therefore, in anaissi gnsFi el ds constructor,
thi s can only escape agadonl y. Fig. 6 shows the full hierarchy
of immutability parameters.

Assi gnsFi el ds iS not transitive, i.e., you can assign to fields of
t hi s but not to fields of fields ofhi s. Specifically, we rela¥ieLp-

AssIGNMENTRULE by allowing a field oft hi s to be assigned in an
@ssi gnsFi el ds method:

FIELD -ASSIGNMENT RULE revised

o.soneField = ... islegal iff

I(o) = mutabl e or (I(o) = Assi gnsFi el ds ando = t hi s).
Next, we restrict thé ETHOD-INVOCATION RULE:

METHOD-INVOCATION RULE revised

o.n(...) islegal iff

I(o) < I(m and ((m) = Assi gnsFi el ds implieso = t hi s).
(Addingo = thi s ensures thatssi gnsFi el ds iS not transitive.)

Creating a mutable object is legal only when usingva abl e,
@ssi gnsFi el ds, Or @eadOnl y constructor, i.e., it is illegal to cre-
ate a mutable object using @mut abl e constructor because an
immutable alias might escape the constructor. Similatlig ille-
gal to create an immutable object usingat abl e constructor. It
is not always known at compile time whetherev operation cre-
ates a mutable or an immutable object, e.g., see line 8 ofiFig
such cases, IGJ prohibits using eithedat abl e or an@ nmut abl e
constructor.

OBJECT-CREATION RULE: new Somed ass<X,...>(...) isille-

gal iff the annotationy of the constructor satisfies:

Y = @t abl e andX # Mt abl e, OF

Y = @ mut abl e andXx # | mut abl e.

Example. The assignmenthis.id = id, on line 5 of Fig. 4,
is legal according to the reviseteLD-AssIGNMENTRULE because
methodset | d is annotated withenssi gnsFi el ds and thus the im-
mutability of t hi s is I(this) = Assi gnsFi el ds. The method call
this.setld(...) online 3islegal because

I(this) = AssignsFields < I(setld) = Assi gnsFi el ds.
The METHOD-INVOCATION RULE was revised to avoid transitivity
of Assi gnsFi el ds. E.g., adding hi s. edges. get (0) . setd(42) t0o
line 13 is legal in the oldMETHOD-INVOCATION RULE, but not in the
revised one. Note that this addition must be illegal becéusrild
mutate an immutable edge in the lksiges.

IGJ can expresenmutable cyclidata-structures, as the follow-
ing example of a bi-directional list shows:

cl ass Bi Node<l| extends ReadOnly> {

Bi Node<| > prev, next;

@Assi gnsFi el ds Bi Node(int |en, BiNode<l> p) {
next = len==0 ? null : new Bi Node<|>(|en-1,
prev =p; } }

Bi Node<I mut able> | =

this);

new Bi Node<| mut abl e>(42, nul |');

A field of an immutable object can be assigned multiple times i
the constructor or even in oth@rssi gnsFi el ds methods. This is
harmless, and the programmer can mark a field asl to ensure
that it is assigned in the constructor once and no more thee.on

Field initializers. Field initializers are expressions that are used
to initialize the object’s fields. The immutability ehi s in such
expressions is the maximal immutability among all congbrsc
For example, if all constructors are mutable, thens is mutable;

if there exists a readonly constructor, theins is readonly.

cl ass AccessOrderedSet <l extends ReadOnly,
@oVari ant X> {
private List<Mitable, X> I;
public @ReadOnly bool ean contains(X x) { ...
/I We can mutatehi s. | even thoughhi s iS ReadOnl y
this.l.addFirst(x); } }

1:
2
3:
4
5
6:
7}

Figure 7: ClassiccessOrderedSet with a mutable field . Vari-
ablex must be no-variant because it is used in a mutable field.

2.5 Mutable and assignable fields

A type system should guarantee facts about the abstraetcitat
an object, not merely its concrete representation. Thexgéotran-
sitive guarantee of immutability faall fields of an object may be
too strong. For example, fields used for caching are not fainteo
abstract state. This section discusses how to permit a digkh
to be assigned or mutated even in an immutable object, amd tha
discusses special restrictions involving such fields.

Assignable fields. An assignable field is in essence the reverse of a
final field: a final field cannot be re-assigned whereas anraaisig
field can always be assigned (even using a readonly refétence
An assignable field is denoted Il@ssi gnabl e. We reviseFIELD-
AsSSIGNMENTRULE to always allow assigning to an assignable field:
FIELD -ASSIGNMENT RULE revised again
o.soneField = ... islegal iff
I(o) = mwutableor (I(o) = Assi gnsFi el ds ando = t hi s) Or
soneFi el d iS annotated a@\ssi gnabl e.
For example, consider this code snippet:
private @\ssignable int nenoi zedHashCode = 0;
public @eadOnly int hashCode() {
if (menpi zedHashCode == 0)
menoi zedHashCode = ... ;
return nenoi zedHashCode; }
The assignmentenoi zedHashCode=. . . is legal even thoughash-
Code is readonly, due to th@ssi gnabl e annotation.

Mutable fields. A mutable fieldcan always be mutated, even us-
ing a readonly reference. No new linguistic mechanism isireq
to express a mutable field: its immutability argumenitisabl e.

For instanceaccessOr der edSet in Fig. 7 implements a set using
alisti (line 3). As an optimization, is maintained in access-order,
even during calls to readonly methods sucttas ai ns (line 4).
Because is mutated (line 6) in a readonly methods declared as
a mutable field.

Covariant and no-variant type parameters. The type parameter
xin Fig. 7 must be annotated @sovari ant (line 2) due toits use in
the mutable field . If x could change covariantly, we would have:
AccessOr der edSet <ReadOnl y, | nteger> =<
AccessOr der edSet <ReadOnl y, Nunber >
We could than add sunber to ani nt eger list using thecont ai ns
method in line 4 of Fig. 7. To avoid such type loopholes, IGJ re
quires a@boVari ant annotation on a type parameter which is used
in a mutable field. An assignable field or a mutable superclaisse
the same restriction as a mutable field:
NOVARIANT RULE: A type parameter must be no-variant if it is
used in a mutable field, an assignable field, a mutable s#ssicl
or in the position of another no-variant type parameter.e(&e
formal definition in Fig. 11 of Sec. 5.)
The immutability parameter must be allowed to change caudlyj,
or else a mutable reference could not call a readonly method:

COVARIANT RULE: CoVarian{l ,c) must hold for any class.

For example, declaring the following field is prohibited:
@ssi gnabl e Edge<I > f; //lllegal' I must be covariant.

2.6 Exceptions, immutable classes, reflection,
and arrays

In IGJ’s syntax, the immutability is an integral part of thypé. In
Javari [31] (see Sec. 3) it is syntactically possible butastinally
illegal to write this code:

class Cell<X> { readonly X x; ...}

It is semantically illegal because the immutability xfis deter-
mined in the client code, e.gcel | <readonl y Date>. In compar-
ison, 1GJ’s syntax does not even enable such a declaratids: i
syntactically and semantically illegal.

Throwable. Generics and immutability naturally combine in an-
other aspect: thesage limitations For example, it is forbidden
to throw a readonly reference because the catcher can nibgdte
reference. Similarly, Java prohibits adding type paramseteany
subclass ofrhr owabl e because the compiler cannot statically con-
nect the throwing and catching positions. 1GJ implicitlyémits
this usage limitation from the underlying generics mec$iami In
contrast, Javari explicitly prohibits throwing readonkceptions.

Manifest classes and immutable classesIGJ supportsnanifest
classeq27], which are classes without an immutability parameter.
Manifest classes can be used to expaass immutabilitye.g.,

class String extends Object<lnmmutable> ...

IGJ treats all methods ditring as if they were annotated with
@ mut abl e, and issues errors if mutable methods exist.

Reflection. Itis discouraged in IGJ to use reflection or to remove
the immutability parameter by casting to a raw type. The I@d<
piler issues avarningin both cases because they can create holes in
the type system. (IGJ does not consider thersers because they
might be necessary to call legacy code.)

Arrays. Java does not permit arrays to have type parameters.
IGJ supplies a wrapper clagsray<l extends Readnly, T> that
enables the creation of immutable arrays. 1GJ treats ay typa

T[] asArray<Mit abl e, T>, i.e., arrays are mutable by default.

2.7 Inner classes

Nested classes that asetic can be treated the same as normal
classes. Arnnner classis a nested class that is not explicitly or
implicitly declared static (see JLS 8.1.3 [18]). Inner skes have
an additionat hi s referencenut er d ass. t hi s. According toTHIs
RULE, the immutability oft hi s depends on the immutability of the
method. Because methods in IGJ have a single method aromptati
the immutability oft hi s andaut er O ass. t hi s should be the same.
Therefore, in IGJ an inner class cannot have its own immlitiabi
parameter:

INNER-CLASSRULE: An inner class inherits the immutability pa-
rameter of the outer class.

Lines 1-5 in Fig. 8 show the declaration of theer at or inter-
face, in which the only mutable methodriemove. The immutabil-
ity of an iterator is inherited from itscontainer Even though
methodnext (line 3) changes the state of titerator, it does not
change the state of tfmntainer and is thus readonly. In contrast,
methodr erove (line 4) changes the container, and is thus mutable.

Now consider the clags rayLi st anditsinnerclasaritr. The
inner classvritr lacks an explicitimmutability parameter (line 8),
because it is implicitly inherited fromr rayLi st. On line 13 both
t hi s references are mutable becauseove() is mutable. Finally,
consider the creation of a new iterator on line 7. We handk th

1: interface Iterator<l extends ReadOnly, E> {

2. @readOnly bool ean hasNext ();

3: @eadOnly E next(); /I Althoughnext changes the iterator, it is readonly because it does not gaahe container.

4. @utable void renove(); //removeis mutable because it changes the container.

5:}

6: class ArrayList<l extends ReadOnly, E> ... { ...

7. public @eadOnly Iterator<l,E>iterator() { return this.new Arritr(); } //OK:I(this) < I(Arritr) = ReadOnly

8: class Arritr inplenents Iterator<l,E> { /[Arritr has no explicitimmutability parameter: it is inherited fincthe outer class

9: private @hssignable int currPos;

10: public @eadnly Arritr() { this.currPos=0; } // OK:currPos iS@ssignable

11: public @eadOnly bool ean hasNext() { return this.currPos < ArraylList.this.size(); }

12: public @eadOnly E next() { return Arraylist.this.get(this.currPos++); } /I OK: I(this) < I(get) = ReadOnly
13: public @utable void remove() { ArrayList.this.remove(this.currPos - 1); } //OK:I(this) < I(remove) = Mitable
14:

}} Figure 8: Declaration of the interfaceer at or and the classarrayLi st with an inner clasarritr.

new operation usingETHoD-INvOCATION RULE: this method call generics directly to achieve the same goal, as demonstogtéte
is legal becauseni s is readonly and the constructor afritr is static method i ndedge on line 16 of Fig. 4. The same method in
readonly. We do not usesJEcTCREATION RULE because the inner Javari would be written as
object inherits the immutability of the outer object. romaybe Edge findEdge(romaybe Graph g, |ong id)

Anonymous inner classésve no name and no constructor. 1GJ Finally,
assumes that the immutability of the missing constructothés
same as the immutability of the method declaring the anomgmo
inner class. For instance, the code in Fig. 8 can be convertaske
an anonymous inner class:

public @ReadOnly Iterator<l,E> iterator() {

Javari usesr eadonl y which is similar to Java’s wildcards.
Consider, for instance, the class written in Javari's syntax:

class Foo { nutable List<Cbject> list; }
Then in areadonl y Foo the type ofi i st is
nmut abl e Li st<? readonly Object>

return new Iterator<l,BE>() { ... }; } which is syntactic sugar for
In the example above the immutability of the constructoreisd- nutabl e List<? extends readonly Cbject
only becauseterator () is readonly. super nutabl e Object>

Thus, it is possible to insert only mutable elementsitex, and
; retrieve only readonly elements.
3. Previous Work . . Skoglund and Wrigstad [29] propose a system with read and
We are not aware of any previous work that proposed a static \yyite references with similar semantics to C+¢dst . They also

object-oriented typing-system fobject immutabilityand not just introduce aasenbdedr construct which permits run-time checking
reference immutability. Pechtchanski and Sarkar [25] kdles@n- of reference writeability.
notations for immutability assertions, such @smut abl eFi el d, Several papers proposed a mechanisacegss rightsJAC [22]

@mt :—:1bl eParam etc., and show that such assertions enable op- g 4 compile-time access-right system with this access-ogder:
timizations that can speed up some benchmarks by 5-10%. They, ..q4not hi ng < readi mutabl e < readonly < writeable. Right

do not present any typing rules to enforce such assertions. | oa4n0thing cannot access fields ohis (only the identity for
Functional languages such as ML default all fields to being im equality), and eadi mut abl e can only access immutable state of

mutable, with mutable (%f”) fields being the exception. Such ... JAC uses additional keywords (such rast r ansf er abl e)

languages do not supparti s-mutable fields nor allow partially hat address other concerns than immutability. Capagsifér shar-

initialized objects to escape from the constructor. _ing [5] are intended to generalize various other proposaisat-
Java already includes various classes whose instancesnare i cagg rights, ownership and immutability, by giving a loveardl se-
mutable, and it supports non-transitive immutability gsinnal , mantics that can be enforced at compile- or run-time. A exfee
which prohibits field assignments after the constructosfias. can possess any combination of these 7 access rights: reigal, w
C++'sconst mechgnlgm has similar §emant|cs to IGJ: afield can identity (permitting address comparisons), exclusivedyesxclu-
be declared asonst (similar to readonly in IGJyut abl e, orby de- gjye write, exclusive identity, and ownership (giving trepability
fault ast hi s-mutable. In contrast tollGJ, C++ hasto s-mutable to assert rights). Immutability, for example, is represeriby the
parameters, return types, local variables, or type argtsn@ther ek of the write right and possession of the exclusive wight.
disadvantages are: (ipnst can be cast away at any time, making it Boyland [4] concludes that readonly does not address ohserv
more a suggestion than a binding contract,dgijst protects only jonal exposure, i.e., modifications on one side of an atttra
the state of the enclosing object and not objects it pointe.g, boundary that are observable on the other side. 1GJ's infrteuta

you cannot mutate an element insideoast node in a list, but the objects address such exposure because their state cammgech
next node is mutable, and (iii) usingnst results in code duplica- goyland’s second criticism was that thrnsitivity principle (see
tion such as two versions eper at or[] in every collection class in Sec. 1) should be selectively applied by the designer, Isecétne

the STL.)) elements in the container are not notionally part of theaioet” [4].
Most of the IGJ terminology was borrowed from Javari [31]lsuc |, IGJ, a programmer can solve this problem by using a differe

as assigngble, readonly, mutable, ands-mutable. In Javart,hi s- immutability for the container and its elements.

mutable fields are mutable as Ivalue and readonly as rvaiweri Non-null types [16] has a similar challenge that IGJ has im-co

does not support object immutability, and its reference irtahil- structing immutable objects: a partially-initialized ebf may es-

ity is more limited than that of IGJ because Javari has - cape its constructor. 1GJ us@sssi gnsFi el ds to mark a construc-

mutable parameters, return types, or local variables. rikakay- tor of immutable objects, and a partially initialized olijean es-

word r omaybe IS in essence a template over immutability. 1GJ uses

cape only ageadonl y. Non-null types uses saw annotationon
referenceghat might point to a partially-initialized object, amah
methodgo denote that the receiver canieav. A non-null field of
aRraw object has different Ivalue and rvalue: it is possible tagrss
only non-null values to such field, whereas reading from digtth

may returnnul I . Similarly to IGJ, non-null types cannot express

the staged initialization paradigm in which the constmetof an
object continues after its constructor finishes.

method signaturas in wildcards and variant parametric types. For
example, 1GJ allows callings! n(Nurber) on a reference of type

Vect or <ReadOnl y, Nunber > iff i si n is readonly.

3.3 Typestates for objects

In a typestate system, each object is in a certain state,hend t

set of applicable methods depends on the current statefyivieri
typestates statically is challenging due to the existericdiases,

Huang et al. [19] propose an extension of Java (called cl) tha j.e., a state-change in a particular object must affectsitliases.

allows methods to be provided only under some static sufdypi
condition. For instance, a cJ generic classge<l >, can define

<l extends Mitabl e>? void setDate(...)

Typestates for objects [11] uses linear types to managsiajja

Object immutability can be partially expressed using types:
by using two states (mutable and immutable) and declariag th

which will be provided only when the type provided for parame Mmutating methods are applicable only in the mutable stateadk

ter1 is a subtype ofutabl e. Designing IGJ on top of cJ would
makeMETHOD-INVOCATION RULE redundant, at the cost of replac-
ing IGJ’'s method annotations with ¢J's conditional methyctax.
Finally, IGJ uses the type system to check immutabilityicady.
Controlling immutability at runtime (for example using agsns

ditional method should mark the transition from a mutabégesto
an immutable state, and it should be called after the iftéibn of

the object has finished. It remains to be seen if systems sjdih

can handle arbitrary aliases that occur in real programs,téi s
references that escape the constructor.

or Eiffel-like contractual obligations) falls outside theope of this
paper.

3.1 Ownership types and readonly references

Ownership types [3, 23] impose a structure on the references
between objects in a program’s memory. Ownership-enalsled |
guages such as Ownership Generic Java [27] prevent aliasing
internal state of an object. While preventing exposure afeuvob-
jects, ownership does not address exposing immutable piaais
object that cannot break encapsulation.

One possible application of ownership types is the abitityea-
son about read and write effects [8] which has complimergaals
to object immutability. Universes [12] is a Java languagieesion
combiningownership and reference immutabilitylost ownership
systems enforce that all reference chains to an owned gbgesst
through the owner. Universes relaxes this demand by emfgrci
this rule only for mutable references, i.e., readonly rfiees can
be shared without restriction.

4. Case studies

Our preliminary experience suggests that IGJ is useful pmess-
ing and checking important immutability properties.

We created two Eclipse plug-ins for converting Java code int
IGJ. The first plug-in converts a class to IGJ by adding to it an
immutability parameter, and setting the immutability argnt to
Mt abl e in all clients of that class. The second plug-in generates
IGJ skeletons of libraries’ public signatures, permittgignature
annotation without the need to modify the library code.

The 1GJ compiler is a relatively small and simple extension t
Sun’s javac. The IGJ compiler uses a visitor pattern to egiry
element in the Abstract Syntax Tree (AST) before the Javibait
tion phase, checking for appropriate use of the immutatpktram-
eter. After the Java attribution phase, it uses another ASifovto
detect any violation of the typing rules. Finally, it modgfigvac’s
i ssubType according to Def. 2.1.

We performed case studies on the jolden benchmark pro§rams
the htmlparser libraf; and the SVNKit Subversion cli¢htIn all,
we converted 328 classes (106 KLOC) of code to type-corfedt |
refactoring the code only in minor ways noted below. We also a
notated the signatures of 113 JDK classes and interfaces.

Conversion to IGJ revealed representation exposure erFans
example, in thentm parser library, the “and” filter constructor
takes an array of predicates and assigns it to a private figtd w
out copying; an accessor method also returns that privddenith-
out copying. Clients of either method can mutate both thayér
length and its contents.

Conversion to 1GJ also allowed us to find and fix a conceptual
problem in several immutable classes, where the constriefio
the object in an inconsistent state. For example, consaléen’s
peri meter program, which computes the perimeter of a region in a
binary image represented by a quad-tree. All instancesaaf ant
and QuadTreeNode are immutable, so we made these classes and
their subclasses immutable. Factory methoéat eTree (Fig. 9)
creates a nev& eyNode QuadTr eeNode with no children (line 7),
then later callsset chil dren (line 10). Such a call is illegal be-
causeadTr eeNode iS an immutable class. Solving such problems
was easy: we added parameters to the constructor/factayiyeo
it access to the complete state of the new object, or moveaf all
the logic of object construction into a single method rathan dis-

3.2 Covariant subtyping

Covariant subtyping allows type arguments to covariartignge
in a type-safe manner. Variant parametric types [21] ateachri-
ance annotation to a type argument, evgct or <+Nunber > (for co-
variant typing) orvect or <- Nunber > (for contravariant typing). Its
subtype relation contains this chain:

Vect or <I nt eger > < Vect or <+ nt eger > <

= Vect or <+Number > < Vect or <+Obj ect >
The type checker prohibits callirgmemet hod(X) when the receiver
is of typeFoo<+x>. For instance, suppose there is a methaah(X)
in classvect or <x>. Then, it is prohibited to callsi n(Nunber) on
a reference of typeect or <+Nunber >.

Java’s wildcards have a similar chain in the subtype ratatio

Vect or <I nt eger > =< Vect or<? extends |nteger> <

< Vect or<? extends Number> = Vector<? extends Object>
Java’s wildcards and variant parametric types are diftaretie le-
gality of invokingi si n(? extends Nunber) on a reference of type
Vect or <? extends Nunber>. A variant parametric type system pro-
hibits such an invocation. Java permits such an invocakiohthe
only value of type? ext ends Number iSnull.

IGJ also contains a similar chain:

Vect or <Mut abl e, | nt eger > < Vect or <Readnl y, | nt eger > <

= Vect or <ReadCnl y, Nunber > = Vect or <Readnl y, Cbj ect > “http:// www al i.cs. unmass. edu/ DaCapo/ benchmar ks. ht m
The restriction on method calls in IGJ is based on user-chsse Shttp://htni par ser. sour cef or ge. net /
mantics (whether the method is readonly or not) rather than on Shttp://svnkit. cont

m=X|N
n=C<J,T>
::= ReadOnly | Mutabl e | I nmutabl e | |

5= <X<INTm(TX) { returne;}

O =« oz o

= class C<I <ReadOnly,X<aN>< C<I,T>{ TT; W

m=x|ef |enxT>(®) |newN(®) | (N) e|e.f =e|l

Type.

Non-variable type.
Immutability arguments
Class declaration.
Method declaration.
Expressions.

Figure 10: FIGJ Syntax.

C<Mitabl e, T> € subtern{c<X>) X; € TP(T;)

(mc1)

C'<T> € subtern{c<x>)

NoVarianfy;, C<¥>) x; € TP(T;)

(mc2)

NoVariant(x;, C<X>)

NoVariant(X;, C<X>)

Figure 11: Definition oNoVariant(x;, c<X>).

1: public static
2. QuadTreeNode createTree(QuadTreeNode parent,...) {

3: QuadTr eeNode node;

4: if (...) { node = new Bl ackNode(...); }

5: elseif (...) { node = new WiiteNode(...); }
6: el se {

7. node = new GreyNode(...);

8: sw = createTree(node, ...);

9: se=...; NwW=...; ne=...;

10: node. set Chi | dren(sw, se, nw, ne); }

11: return node;

12:}

Figure 9: TheQuadTr eeNode. cr eat eTr ee method of theperi net er
program. ClasguadTreeNode should be immutable, so the call to
set Chi | dren on line 10 fails to type-check.

persing it. (In the case afuadTreeNode, we could have used the
Assi gnsFi el ds immutability forset chi I dren.)

Our type system, called Featherweight 1IGJ (FIGJ), is based o
Featherweight Generic Java (FGJ) [20]. FIGJ models thenesse
of IGJ: the fact that only mutable references can assign kdsfie
and the new subtype definition. All the features of IGJ that ar
not in FIGJ do not introduce any new difficulties — merely more
tedious but conceptually similar cases — in the proof. Sintid
the way FGJ removed many features from Java (such as null val-
ues, assignment, overloading, private, etc.), we remonad fGJ
all method annotations. All methods in FIGJ are readonlys ths-
signment must be done from the “outside”, i.e., instead dinca
a setter method we must set the field from the outside (allsfield
are considered public in FGJ). We removed Ak€ gnsFi el ds im-
mutability; FIGJ has a single constructor that assignsrgsraents
to the object’s fields. Finally, we restrict each class in FtGhave
asingleimmutability parameter which extendsadonl y, i.e., FIGJ
cannot express manifest classes sucé aisng.

Sec. 5.1 describes the syntax of FIGJ. Sec. 5.2 present$®de F
subtype relation. Sec. 5.3 modifies FGJ typing and reductites.

We were able to use both immutable classes and immutable ob-sec. 5.4 proves preservation and progress.

jects. SVNKit used the latter favat e objects that represent the
beginning and expiration of file locks; the URL to the reposit
(IGJ could simplify the current design, which uses an imrblgta
SVNURL class with setter methods that return new instances), and
many Li st s andArrays of metadata. IGJ could also permit use
of immutable objects in some places where immutable clemses
currently used, increasing flexibility.

Our biggest problem in the case study was the fact that Jaa& do
not permit generic arguments to be attached to arrays. Tterjo
benchmarks had been transliterated from C and used marysarra
we expect such uses to be much rarer in good object-orientiel ¢

Most fields used the containing class’s immutability pareme
We used few mutable fields; one of the rare exceptions was-a col
lection (inSVNEr r or Code) that contains albvNEr r or CodesS ever cre-
ated. We never used tinoVvariantrule for mutable fields. We used
@ ssi gnabl e fields only 5 times — to allow the receiver of a tree
rebalancing operation, or the receiver of a method thazessa
buffer without mutating the contents, to be markecasgionl y.

Annotating existing code is an important test of IGJ, but I€J
likely to be even more effective on code that is designed with
mutability in mind. We saw many places that a different — and
better! — design would have been encouraged by 1GJ.

5. Proof of Type Soundness

Proving soundness is essential in the face of complexitiels as
the new subtype definition (Def. 2.1) and mutable fields (S6%).
This section gives the type rules of a simplified version of E&ad

proves property (1) from Sec. 2.4. We are not aware of any pre-

vious work that proved a reference immutability theoremhsas
“readonly references cannot be converted to mutable”. étp|fl)

implies such theorem, or else it would be possible to conwert
mutable to readonly, and then to mutable.

5.1 Featherweight IGJ Syntax

FIGJ adds imperative extensions to FGJ such as assignment to
fields, object locations, and a store [26]. Fig. 10 presdm@syntax
of FIGJ. It defines typesrt], non-variable typesNj, immutability
argumentsJ), class declarations), method declarations/, and
expressionse(. Expressions in FIGJ include the five expressions
in FGJ (method parameter, field access, method invocatien, n
instance creation, and cast), as well as the imperativengixies
(field update and locations). Note that an immutability angat
(3) only appears in the syntax as the first type argument. Thas, t
syntax does not allow defining a field of typeadonl y nor defining
a class with two type parameters extendRagdonl y. The root of
the class hierarchy i®j ect <X « Readnl y>.

The stores = {I — N(")} maps locations to objects. Note
that we do not need a store typing [26] because the storedglrea
contains the type of each location. For a simpler notatice use
a single symbolA to denote an environment that maps (i) method
parameters to their types, and (ii) type parameters to tminds
(which are non-variable typesk = {x : T} U {x < N}.

The field, method type, and method body lookup functions, are
based on their counterparts in FGJ, and thus omitted frosnpidei
per. We define an additional auxiliary function that retutmes im-
mutability argumenta (c<J, T>) = J, and for a type parameter re-
turns the immutability argument of its boudd (x) = Ia (A(X)).

We remove the subscrigy when it is clear from the context.

We make the same assumptions as in FGJ about the correctness
of the class declarations (e.g., that there are no circlélsersub-
class relation, that we have no method overloading, etc).al
use the same judgements as in FGJ, such as type, store stapses
method and class wellformedness, with minor differences (-
stead ofvj ect , we USED] ect <I >).

Fig. 11 defines which type parameters are no-variant. We use
two auxiliary functions: (i)TP(T) is the set of type parameters in
T, (ii) subtern{N) is the set of all subterms of typesfialdgN). (We
do not need to consider the superclass as iMnth\@arRIANT RULE
becausdieldsincludes all the fields of the superclass as well.)

After Novariantreaches a fixed point, we defi@@Variantas the
negation ofNovariant In order for the class declarations to be well-
formed, the immutability parameter must always be covai(see
COVARIANT RULE): CoVarian(x;,c<X>) for any class.

FIGJ is more strict than FGJ regarding method overridingrwhe
the signature contains covariant type parameters, i.€.] Fdquires
that theerased signaturef an overriding method (excluding no-
variant type parameters) does not change &eesED-SIGNATURE
RULE).

5.2 Subtyping

Fig. 12 shows FIGJ subtyping rules. The first four rules aee th
same as FGJ rules. Additionally, two special classesitabl e

andi mut abl e— are considered a separate class hierarchy extend-

ing Readonly. The rulesi is a formalization of Def. 2.1. We
write T < T’ as a shorthand foA - T < 1. Observe that the
subtype relation is reflexive and transitive. Note that frate s1
and theCoVARIANT RULE we have that

if 1 <17, thencr , T> < c<1/, T>.

Observe in rules1that the requirementmut abl e < T is equiv-
alent toT) # Mitabl e andT; # 1, because an immutability argu-
ment can have only four values according to the syntax rule fo
in Fig. 10.

In FGJ, ifA < B andf is a field ofB, then the type of field
in A ands is exactly the same, i.ea,f = B.f. In FIGJ, we prove
instead thak. f < B.f. For instance, consider the fieddges on
line 11 of Fig. 4, and the following two references:

Graph<Mut abl e> mut G

G aph<ReadOnl y> r oG

/I mit G edges has the typei st <Mt abl e, Edge<Mut abl e>>

Il r oG edges has the typei st <Readnl y, Edge<ReadOnl y>>

And indeed the first is a subtype of the latter.

LEMMA 5.1. LetT X T, F f € fieldS(T'). ThenF f € fields(T)
andrF < F.

PROOF It is trivial to prove that field exists infield{T). We
will prove thatF < F by induction on the derivation of < T’
Consider the last rule in the derivation sequence. The govdhe
first six rules is immediate from the definition fidldsand the fact
that subtyping is transitive.

Now consider rules1, whereT = c<0>, andT’ = c<U'>:

U = U, or
. - @
(i mmut abl e < U andy; < U; andCoVariant(X;, c<X>))
Let v denote the type of field in c<X>. Then,F = [U/X]vandF’ =
[U/X]v. We wish to prove that < F'.
We will prove by induction (on the subterm size) that for gver
subterma<ss in v,

[0/X|A<S> < [V /X|A<S>.

®)

From (3), we will be able to conclude thayx)v < [U/X]v, i.e.,F <
F’. In order to apply rules1on (3), we need to prove that for gl

[0/X]s; = [U/X]s; or (1mutable < [U/X]s; and
[0/X]s; =< [U/X]s; and CoVarian(Y;, A<Y>))

4)

Let j be fixed. If for allé, x; € TP(s;) ory; = U;, then[0/X|s; =

[V /X]s;, and we proved (4) for thig. Thus, exists for which hold

A,ske:T I(T)=Mtable
A,skef;=¢ : T
Figure 13: Typing Rules (only-Fieto-set was modified).

(T-FIELD-SET)

si]=NT) I(N)=wutable
fieldgN) =TT s’ =s[l — [I7/1;]ND)]
1f;=1"s—1",¢
Figure 14: Reduction Rules (onRtFieLp-Set was modified).

(R-FIELD-SET)

bothu; # U, and

Xi € TP(sj). (5)
From (2) andy; # U}, we have that
I mut abl e < U; andCoVariantX;, C<X>). (6)

If NoVarian{Y;, A<Y>), according to ruleac2 in Fig. 11 and (5), we
haveNoVariant(x;, c<X>), which contradicts (6). Thus,

CoVariant(Y;, A<Y>).)
We consider all 4 options for the immutability argumento prove
I mut abl e < [U/X]S1. (8)
If Si = Readnly Or S; = Inutabl e, then (8) holds. Ifs; =
Mt abl e, then according to ruleici in Fig. 11 and (5), we have
I\I_oVariam(xi,c<>‘<>), which contradicts (6). 161 = 1 = xq, then
[V /X]s1 = U, and from (6) we proved (8).
If s; is some type parametgy, then
[O/X]s; = [U/X]s;,)

because from (2) we hawg =< uj,. If s; is a non-variable type, then
from the induction hypothesis, we also have (9). Using, (&),
and (9), we proved (4) for this [

Inalegal assignmeit.i = ez, Wheree; : T, we have thal (T) =
Mt abl e. Lem. 5.2 proves that in all subtype$ < T, the fieldf
does not change covariantly.

LEMMA 5.2. LetA+T < T, F f € fieldsbounch (T')),Ff €
fieldgbounda (T)), and I (T") = mut abl e. ThenF = F'.

PROOF By induction on the derivation ok ~ T < T/, similarly
to Lemma A.2.8 in [20]. BecausET') = Mt abl e, whenever rule
s1is applied, it can never be thadt - | mutabl e < T}, thus we
need to consider the same set of subtyping rules as in FIGJ.

5.3 FIGJ Typing and Reduction Rules

Fig. 13 and Fig. 14 present FIGJ typing and reduction rulege R
T-FieLp-Ser checks at “compile-time” that only a mutable expres-
sion can set a field, whereasrieLo-set checks at “run-time” that
only fields of a mutable object can be set. Note that only abjec
have an immutability at run-time, not locations.

5.4 FIGJ Type Soundness

Type preservation states that if an expression reducesotbem
expression, then the latter is always a subtype of the former

THEOREM 5.3. (Type Preservation) If A, sk e : Tande,s —
e’ s, then3aT’ suchthatA - 7 < TandA,s' e’ : T'.

PROOF By induction on the derivation of,s — ¢’, s, simi-
larly to the proof of Theorem 3.4.1in [20], which uses Lemma.&
on page 436 for the case of a field access. Lemma A.2.8 stattes th
the type of a field does not change in a subclass, but the msofli
valid if the type of a field changes covariantly, as we have/g@mno
in Lem. 5.1. Our proof also needs to consider field assignrment
R-FELD-SET, for which we use Lem. 5.2 which showed that fields
that are assigned are no-variant.]

AFT1jT2 AFT25T3

class C<X<N> < N{ ...}

AFT XT3

A X =<A(X)

AF c<T> <X [T/XN

AFTT

VT; €T:

A F Mitabl e < ReadOnly

T, =T, or (AFImutable < Ty andA T; < T; andCoVarian{(X;, c<X>))

A I mut abl e < ReadOnly

A b c<T> < o<T'>

(s9)

Figure 12: FIGJ Subtyping Rules.

The progress theorem shows that FIGJ programs don’t get’stu
and any closed well-typed FIGJ expression can be reducexhie s
location or contains a failed downcast.

THEOREM 5.4. (Progress) Suppose is a closed well-typed ex-
pression. Then, eitheris a location, or it contains a failed down-
cast, or there is an applicable reduction rule far

PROOF Using a case by case analysis of all possible expression

types in Fig. 13. The only change from the proof in FGJ is the us
of T-FiELD-SET to prove thatl (1) = mut abl e in R-FiELD-SET, and thus
we never get stuck due to that rule[]

Thm. 5.5 is a formalization of property (1) from Sec. 2.4.

THEOREM 5.5. LetA, st e : T,ande,s—"1,s’, wheres'[|] =
N(T). ThenA + I(N) < I(T).

PrRoOr From Thm. 53A F N <X 1. ThusA F I(N) =<
I(r). O

6. Conclusion

This paper presentddhmutability Generic JavdlGJ), a design
for adding reference and object immutability on top of thistng
generic mechanism in Java. IGJ satisfies the design praipl
Sec. 1: transitivity, static, polymorphism, and simplicitGJ pro-
vides transitive immutability to protect the entire abstrstate, but
a user can exclude fields from the abstract state. 1GJ isypsiaic,
backward compatible, and the resulting code can run on aivy JV
without runtime penalty. IGJ achieves a high degree of polym
phism using generics and safe covariant subtyping. FinbBy
does not change Java’s syntax, and has a small number oftypin
rules.

Acknowledgments. This work was funded in part by DARPA
contracts FA8750-06-2-0189 and HR0011-07-1-0023.

References

[1] S. Artzi, M. D. Ernst, A. Kieun, C. Pacheco, and J. H. Perkins.
Finding the needles in the haystack: Generating legalnesits for
object-oriented programs. M-TOOS Oct. 2006.

[2] A. Birka and M. D. Ernst. A practical type system and laaga for

reference immutability. I©OPSLA pages 35-49, Oct. 2004.

C. Boyapati.SafeJava: A Unified Type System for Safe Programming

PhD thesis, MIT Dept. of EECS, Feb. 2004.

[4] J. Boyland. Why we should not adceadonl y to Java (yet). In
FTfIP, July 2005.

[5] J. Boyland, J. Noble, and W. Retert. Capabilities forrsiga A

generalisation of uniqueness and read-on\EGOOR, pages 2-27,

June 2001.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mgkhe

future safe for the past: Adding genericity to the Java m@ogning

language. IMDOPSLA pages 183-200, Oct. 1998.

L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leens,

K. R. M. Leino, and E. Poll. An overview of JML tools and

applications STTT 7(3):212-232, June 2005.

(3]

(6]

[8] D. Clarke and S. Drossopoulou. Ownership, encapsulatitd the
disjointness of type and effect. MOPSLA pages 292-310, Oct.
2002.

[9] L. R. Clausen. A Java bytecode optimizer using sideetfmalysis.
Concurrency: Practice and Experienc&(11):1031-1045, 1997.

[10] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zellelkining
object behavior with ADABU. INWODA pages 17-24, May 2006.

[11] R. DeLine and M. Fahndrich. Typestates for object£EGOOR
pages 465-490, June 2004.

[12] W. Dietl and P. Mller. Universes: Lightweight owneigtior JML.
Journal of Object Technology (JOT)(8):5-32, Oct. 2005.

[13] J.J. Dolado, M. Harman, M. C. Otero, and L. Hu. An empitic
investigation of the influence of a type of side effects orgpam
comprehensionEEE TSE 29(7):665-670, July 2003.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sopip
program evolutionlEEE TSE 27(2):99-123, Feb. 2001.

[15] M. D. Ernst and D. Coward. JSR 308: Annotations on Jagady
http://pag.csail.mt.edu/jsr308/,0ct 17, 2006.

[16] M. Fahndrich and K. R. M. Leino. Declaring and checkiranmull
types in an object-oriented language O®PSLA pages 302-312,
Nov. 2003.

[17] M. Fowler.Refactoring: Improving the Design of Existing Code
Addison-Wesley, 2000.

[18] J. Gosling, B. Joy, G. Steele, and G. Brachhe Java Language
Specification Addison Wesley, Boston, MA, third edition, 2005.

[19] S.S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhanamg With
safe type conditions. IAOSD pages 185-198, Mar. 2007.

[20] A.lgarashi, B. C. Pierce, and P. Wadler. Featherwelgiva: a
minimal core calculus for Java and GICM TOPLAS
23(3):396-450, May 2001.

[21] A.lgarashi and M. Viroli. Variant parametric types: Afible
subtyping scheme for generigsCM TOPLAS28(5):795-847, 2006.

[22] G. Kniesel and D. Theisen. JAC — access right based sutaton
for Java.Software: Practice and Experiencgl(6):555-576, 2001.

[23] Y. Lu and J. Potter. On ownership and accessibilite@OOR,
pages 99-123, July 2006.

[24] L. Mariani and M. Pezze. Behavior capture and test: Adted
analysis of component integration. IBECCS pages 292-301, June
2005.

[25] 1. Pechtchanski and V. Sarkar. Immutability specifimatand its
applications. InJava Grandepages 202—-211, Nov. 2002.

[26] B. C. PierceTypes and Programming Languag®4lT Press, 2002.

[27] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Geneximership
for generic Java. IOOPSLA pages 311-324, Oct. 2006.

[28] A. Salcianu.Pointer analysis for Java programs: Novel techniques

and applicationsPhD thesis, MIT Dept. of EECS, Sept. 2006.

M. Skoglund and T. Wrigstad. A mode system for read-only

references in Java. RTfJP, June 2001.

0. Tkachuk and M. B. Dwyer. Adapting side effects analyer

modular program model checking. EEEC/FSEpages 188-197,

Sept. 2003.

M. S. Tschantz and M. D. Ernst. Javari: Adding reference

immutability to Java. IDOPSLA pages 211-230, Oct. 2005.

T. Xie. Augmenting automatically generated unit-tesites with

regression oracle checking. ECOOR, pages 380-403, July 2006.

[29]

[30]

(31]

[32]

