
Two-Dimensional Bi-directional Object Layout

Yoav Zibin� and Joseph (Yossi) Gil

Technion—Israel Institute of Technology
{zyoav,yogi}@cs.technion.ac.il

Abstract. C++ object layout schemes rely on (sometimes numerous)
compiler generated fields. We describe a new language-independent ob-
ject layout scheme, which is space optimal, i.e., objects are contiguous,
and contain no compiler generated fields other than a single type identi-
fier. As in C++ and other multiple inheritance languages such as Cecil
and Dylan, the new scheme sometimes requires extra levels of indirection
to access some of the fields. Using a data set of 28 hierarchies, totaling
almost 50,000 types, we show that the new scheme improves field access
efficiency over standard implementations, and competes favorably with
(the non-space optimal) highly optimized C++ specific implementations.
The benchmark includes a new analytical model for computing the fre-
quency of indirections in a sequence of field access operations. Our layout
scheme relies on whole-program analysis, which requires about 10 micro-
seconds per type on a contemporary architecture (Pentium III, 900Mhz,
256MB machine), even in very large hierarchies.

1 Introduction

A common argument raised by proponents of the single inheritance program-
ming model is that multiple inheritance incurs space and time overheads and
inefficiencies on the runtime system [1, 7]. A large body of research was targeted
at reducing the multiple inheritance overhead in operations such as dynamic
message dispatch and subtyping tests (see e.g., [17, 18, 19] for recent surveys).
Another great concern in the design of runtime systems for multiple inheritance
hierarchies is efficient object layout. To this end, both general purpose [9] and
C++ language specific [5, 4] object layout schemes were previously proposed in
the literature.

The various C++ layout schemes are not space-optimal since they introduce
(sometimes many) compiler generated fields into the layout. They are also not
time-optimal since access to certain fields (in particular, those defined in virtual
bases) requires several memory dereferences. This paper revisits the object layout
problem in the general, language-independent setting. Our new object layout
scheme is space optimal, i.e., objects are contiguous, and contain no compiler
generated fields. Hence, in terms of space, it is superior to C++ layout schemes.
It is also superior in terms of field access efficiency to the space-optimal field
dispatching technique1 employed by many object oriented languages.
� Contact author.
1 In the field dispatching technique we encapsulate fields in accessor methods.

L. Cardelli (Ed.): ECOOP 2003, LNCS 2743, pp. 329–350, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

330 Yoav Zibin and Joseph (Yossi) Gil

A1

B1 B2 B3

R

A2 A3

(a)

R

A1
R A1

B1
R A1 B1

A2
RA2

B2
A2B2

A3
R A3

B3
R A3 B3

0
negative
offsets

positive
offsets

(b)

A1

B1 B2 B3

R

A2 A3

(c)

Fig. 1. A small single inheritance hierarchy (a), a possible object layout for
this hierarchy (b), and a multiple inheritance hierarchy in which there is no
contiguous layout for all objects (c)

We say that the layout is two dimensional, bi-directional since all objects can
be thought of as being laid out first in a two-dimensional matrix, whose rows
(also called layers) may span both positive and negative indices. The layout
algorithm ensures that the populated portion of each such layer is consecutive,
regardless of the object type. The particular object layout in one-dimensional
memory is a cascade of these portions.

A data set of 28 hierarchies, totaling almost 50,000 types, was used in com-
paring the field access efficiency of the new scheme with that of different C++
specific layouts. Our analytical cost model shows that in this data set, the new
scheme is superior to the standard C++ layout and to the simple inlining algo-
rithm [4]. Even though the new layout is not C++ specific, it competes favorably
in this respect with aggressive inlining [4], arguably the best C++ layout scheme.

To better understand the intricacies of object layout, consider Figure 1a,
which depicts a small single inheritance hierarchy.

A possible object layout of the types defined in this hierarchy is shown in Fig-
ure 1b. The fields of A1 are laid out just after R. The layout of B1 adds its own
fields in increasing offsets. All types inheriting from A1 and B1 will have positive
directionality. Types A2 and B2 are laid out in negative offsets. This should also
be the directionality of any of their descendants. Types A3 and B3 and all of
their descendants have positive directionality.

Figure 1b demonstrates a degenerate case of the two-dimensional bi-
directional layout scheme, in which there is only one layer. This layer is populated
either in negative or positive offsets. In the general case, there are multiples lay-
ers, which may use for the same object type both positive and negative offsets,
or even be empty.

Two-Dimensional Bi-directional Object Layout 331

Consider now the multiple inheritance hierarchy of Figure 1, obtained by
adding multiple inheritance edges from B2 to A1 and A3. Here and henceforth,
inheritance is assumed to be shared (virtual in the C++ jargon). Thus, in the
figure, type B2 has a single R sub-object. We believe that repeated inheritance,
i.e., where type B2 has two R sub-objects, is a rarity, or as one wrote: “repeated
inheritance is an abomination”.2

With the addition of multiple inheritance, a layout for B2 becomes difficult,
since at the same positive offsets immediately following R we expect to find both
the fields of A1 and the fields of A3. This difficulty is no coincidence, and is in
fact a result of the strong conformance requirement (or fixed offsets [9]) which
we implicitly made:

The Strong Conformance Requirement: Every type must be laid
out in the same offset in all of its descendants.

If the layout of A1, A2 and A3 is required to be contiguous, then the fields of each
of these types must be laid out adjacent to R. Since the layout of R in memory
has only two sides, then it must be that at least two of A1, A2 and A3 are laid out
at the same side of R. This is not a problem as long as these two types are never
laid out together, as is the case in single inheritance. The difficulty is raised in
multiple inheritance, specifically, when there is a common descendant of these
two types.

Thus, we see that it is sometimes impossible to maintain the strong confor-
mance requirement and contiguous object layout. Our new scheme resolves the
conflict by sacrificing the strong conformance requirement. In particular, each
object is laid out in one or more layers, where each layer uses a bidirectional
layout. The above difficulty is removed by placing (say) type A3 in a different
layer.

We note that separate compilation discovers too late that two base types
compete for the same memory location, i.e., after the layout of these base types
was determined. For this reason, our layout scheme, just as all other optimizing
layouts, relies on whole program analysis.

Outline Pertinent definitions are given in Section 2, which also lists some of
the standard simplifications of the object layout problem. Section 3 describes
the criteria used in evaluating object layout schemes, using these to place our
result in the context of previous work. The actual layout, which comes in three
versions is described in Section 4. Section 5 presents the algorithm for comput-
ing the actual layout. Section 6 describes the data-set used in the benchmark,
while Section 7 gives the experimental results. Finally, conclusions and directions
for future research are given in Section 8.

Epilog We have recently learnt that similar results were independently obtained
by Pugh and Weddell and described in a 1993 technical report [10]. Their work
suggests a similar layout algorithm, using fields instead of types, and includes
several theoretical bounds on complexity. Our work takes a more empirical slant.
2 Words of an anonymous reviewer to [5].

332 Yoav Zibin and Joseph (Yossi) Gil

2 Definitions

Leading to a more exact specification of the problem, this section makes precise
notions such as a hierarchy, incomparable types, and introduced and accessible
fields in a type.

A hierarchy is specified by a set of types T , n = |T |, and a partial or-
der, �, called the subtype relation which must be reflexive, transitive and anti-
symmetric. Let a, b ∈ T be arbitrary. Then, if a � b holds we say that a is
a subtype of b and that b is a supertype of a. If neither a � b nor a � b holds,
we say that the types are incomparable. Also, if there does not exist c such that
a � c � b and c �= a, c �= b, then we say that a is a child of b and that b is
a parent of a.

A hierarchy is single inheritance if each a ∈ T has at most one parent, and
multiple inheritance otherwise.

The set of ancestors of a type a ∈ T is ancestors(a) ≡ {b ∈ T | a � b}. We
denote the number of ancestors of a by θa. Note that a ∈ ancestors(a).

Types in a hierarchy may introduce fields, which can be thought of as unique
names or selectors. We assume that there is no field overriding, i.e., that the
same field name can only be used once in each type. Although C++ (and other
languages) allow a derived class to reuse the name of a private field defined in
a base class, our assumption is trivially satisfied by simple renaming.

Stated differently, our demand is that no run time dispatching process is re-
quired to select the particular “implementation” of a field name. This is precisely
the case in statically typed languages, where the field name and the static object
type uniquely determine the introducing class.

The problem of object layout in dynamically typed languages is not very
interesting and excluded from the domain of discourse. In languages such as
Smalltalk, fields access is restricted to the methods of the defining object.
With this restriction, the strong conformance requirement does not need to be
satisfied3: The object layout problem then becomes trivial, even with the face
of multiple inheritance. If however a dynamically typed language supports non-
private fields, then there must be a runtime check that the accessed field is
defined in the object. Such checks are related to subtyping tests and even to
a more general dispatching problem which received extensive coverage in the
literature [17, 18, 19].

For simplicity, we assume that all fields are of the same size. For a type t ∈ T ,
let |t| denote the number of fields introduced in t. The accessible fields of a type
include all fields introduced in it and in any of its proper supertypes.

Given a type hierarchy, the object layout problem is to design a layout scheme
for the objects of each of the types in the hierarchy, and a method for accessing
at runtime the accessible fields of each type. Specifically, given a field f and an
object address o of type t, the runtime system should be able to compute the
3 In fact, even the weak conformance requirement (defined later in Section 3) is not

satisfied.)

Two-Dimensional Bi-directional Object Layout 333

address of o.f. The selector f is a compile time constant, while o is supplied
only at runtime.

3 The Object Layout Problem

A layout scheme is evaluated by the following criteria.

1. Dynamic memory overhead. This is extra memory allocated for objects, i.e.,
memory beyond what is required for representing the object’s own fields.
Ideally, this overhead is zero. However, holes in a noncontiguous object lay-
out contribute to this overhead. Another overhead of this kind are compiler
generated fields, e.g., virtual function table pointers (VPTRs) in C++.
Note that the semantics of most object oriented languages dictates that
the layout of each object must include at least one type identifier. This
identifier is used at runtime to identify the object type, for purposes such
as dynamic message dispatch and subtyping tests. This identifier can be
conveniently thought of as a field defined in a common root type (e.g., type R

in Figure 1), and therefore is not counted as part of the dynamic memory
overhead. However, if a scheme allocates multiple type identifiers, as is the
case with the C++ standard layout, then all but the first identifier contribute
to this overhead.

2. Field access efficiency. This is the time required to realize the field access
operation o.f. Ideally, fields can be accessed in a single machine instruction,
which relies on a fixed offset (from the object base) addressing mode. Lay-
out schemes often rely on several levels of indirection for computing a field
location in memory.
It is common that all fields introduced in a certain type are laid out con-
secutively. Since f is supplied at compile time, the type t′ in which f was
introduced can be precomputed. The main duty of the runtime system is to
find the location in memory in which the fields of t′ are laid out in t, the
type of o.

3. Static memory overhead. These are the tables and other data-structures
used by the layout which are shared between all objects of a certain type.
This overhead is usually less significant than the dynamic memory overhead,
and therefore it seems worthwhile to maximize sharing. On the other hand,
retrieving the shared information comes at the cost of extra indirections, and
may reduce field access efficiency.

4. Time for computing the layout. This is the time required for computing the
layout, which could be exponential in some schemes.

Object layout in a single inheritance hierarchy can simultaneously optimize
all the above metrics. As can be seen in Figure 1b, both static and dynamic mem-
ory overheads are zero. Field access efficiency is optimal with no dereferencing.
Also, the computation of the layout is as straightforward as it can be.

A trivial layout scheme for multiple inheritance which maintains the strong
conformance requirement is that the layout of each type reserves memory for

334 Yoav Zibin and Joseph (Yossi) Gil

all fields defined in the hierarchy. Static memory overhead, time for computing
the layout, and field access efficiency are optimized. However, dynamic memory
overhead is huge since each object uses memory of size

∑
t∈T |t|, regardless of its

actual type, which usually has far fewer accessible fields.
Pugh and Weddell [9] investigated more efficient layout schemes which still

fulfill the strong conformance requirement. The dynamic memory overhead of
their main bidirectional object layout scheme is in one case study only 6%,
compared to 47% in a unidirectional object layout. The authors also showed
that the problem of determining whether an optimal bidirectional layout exists
is NP-complete.

At the other extreme stands what may be called field dispatching layout
scheme, which is employed by many dynamically typed programming languages
including Cecil [2] and Dylan [12]. In this scheme, the layout of type t is obtained
by iterating (in some arbitrary order) over the set ancestors(t), laying out their
fields in order. Since the strong conformance property is broken, we encapsulate
fields in accessor methods. If a field position changes in a subtype, we override
its accessor. The dynamic memory overhead in this scheme is zero.

Dispatching on accessor methods can be implemented by an n × n field dis-
patch matrix which gives the base offset of a type in the layout of any of its
descendants. This static memory overhead can be reduced if the matrix is com-
pressed by e.g., techniques used for method dispatching (see e.g., [18] for a recent
survey). A different implementation is found in the SmallEiffel compiler [16], in
which a static branch code over the dynamic type of the object finds the required
base offset.

The main drawback of field dispatching is in reduced field access efficiency.
In the matrix implementation, field access requires at least three indirections in
the simplest version, and potentially more with a compressed representation of
the matrix.

An interesting tradeoff between the two extremes is offered by the mem-
ory model of C++ [6]. C++ distinguishes between virtual and non-virtual
bases.4 For non-virtual bases, C++ uses a relaxed conformance requirement.
Let t1, t2, t3 ∈ T be such that t1 is a non-virtual base of t2, and t3 is an
arbitrary subtype of t2.

The Weak Conformance Requirement: The offset of t1 with respect
to t2 is fixed in all occurrences of t2 within t3 � t2.

In other words, although the offset of t1 is not the same in all of its descendants,
it is fixed with respect to any specific descendant t2, regardless of where that
descendant is found. Consequently, to find the location of t1 within t3 it is
sufficient to find the address of t2 within t3.

The weak conformance requirement can be maintained together with object
contiguity in many multiple-inheritance hierarchies, specifically those with no
4 We are not so interested in the textbook [14] difference between the two. Instead,

we say that a type is a virtual base if two or more of its children have a common
descendant.

Two-Dimensional Bi-directional Object Layout 335

virtual-bases. However, since a type is not always located at the same offset, it
is necessary to apply a process called this -adjustment [13] in order to access
a field introduced in a supertype. For example, a method of t2 cannot be invoked
on an object of type t3, without first correcting the pointer to the object, coercing
it to type t2.

The this -adjustment model incurs many penalties other than the time re-
quired for the addition. For example, the runtime system must apply null checks
before a pointer can be corrected. Also, a conversion from an array of subtypes
to an array of supertypes cannot be done constant time. Moreover, an object
may contain multiple type-identifiers, (VPTRs in the C++ jargon) contributing
to dynamic memory overhead. Also, the pointers to the same object may have
different values which is a serious hurdle for garbage collectors (and for efficient
identity testing).

In hierarchies with virtual bases, even the weak conformance requirement
cannot be satisfied together with object contiguity. In these cases, C++ uses
virtual base pointers (VBPTRs) to tie memory segments of the same object.
Gil and Sweeney [5] give a detailed description of VBPTRs. We only mention
that VBPTR can be stored directly in the objects, as in the “standard” C++
implementation, contributing to dynamic memory overhead, or moved to the
static memory, at the cost of increasing field access time. Also, in order to be
able to access fields at constant time, an implementation must store (a poten-
tially quadratic number of) inessential VBPTRs. We note that referencing fields
through VBPTRs also requires this -adjustment, and that a virtual base does
have a VPTR.

Gil and Sweeney [5] proposed several optimizations of the standard C++
layout, which were then empirically evaluated by Eckel and Gil [4], whose main
yardstick was dynamic and static memory overhead. The main optimization
which contributes to field access efficiency is simple-inline which tries to reduce
the number of virtual bases by conforming transformations of the hierarchy.
Aggressive-inline does the same, using a maximal-independent set heuristic as
procedure for finding a close to optimal set of transformations. The bidirectional
object layout optimization reduces dynamic memory overhead but does not con-
tribute to field access efficiency.

For the purpose of illustration, Figure 2 depicts a type hierarchy and its
aggressive-inline C++ layout. The same hierarchy will be used below in Sec-
tion 5 for demonstrating the new two-dimensional bi-directional layout. A C++
programmer is allowed to denote some of the inheritance edges as virtual. In
the figure, inheritance edges 〈B, A〉 and 〈C, A〉 are virtual so that F has a single A

sub-object. The virtual edges that were inlined in the aggressive-inline layout
are marked in bold, while the other non-inlined virtual edges are dashed. The
cells with a dot in Figure 2b represent VPTRs (VBPTRs were not drawn since
they can be stored either in a class or in all of its instances).

The new scheme incurs no dynamic memory overhead. In this respect it
is at least as good as any other layout scheme, and strictly better than all
C++ implementations (which may include more than one VPTR). The most

336 Yoav Zibin and Joseph (Yossi) Gil

A

B C D E

G H I J

K L M

N

A:

B:

A.
BA.

C:

D:

E:

G:

H:

K:

I:

J:

L:

M:

N:

. D

.

.

. G

.

.

.

(a) (b)

A

C . A

E . A

C A

H . C A

K

I. D . EA

. J . D . EA

J AM

GC A. H

. H I. D . E . CL

I. D . E

. H I. D . E L . J M . CA N

A

F

F: BA. . C F

.
.

.

Layer

Fields of type T

Type-id (VPTR)

T

.

Non-virtual edge

Non-inlined virtual edge

Inlined virtual edge

Fig. 2. A type hierarchy (a) with its aggressive-inline C++ layout (b)

interesting criterion for comparison with C++ and field dispatching is therefore
field access efficiency. We shall see that the new scheme competes favorably even
with the highly optimized and language specific aggressive-inline layout scheme.

Our results indicate that the time for computing the new layout is small—
about 10 µSec per type (see Section 7). We also find that the static memory
overhead is small compared both to field dispatching and various C++ tech-
niques.

The new layout is uniform, in the sense that (unlike C++) the runtime
system does not need any information on the static type of an object pointer in
order to access any of its fields. Consider an object o and a field f. Then, the
sequence of machine instructions for the field access operation o.f depends only
on the selector f, and is the same regardless of the type of o. This is in contrast
to languages such as C++ in which, depending on the static type of o, access
to field f is either direct, or through indirection.

4 Two-Dimensional Bi-directional Object Layout

In the two-dimensional bi-directional object layout strategy each field defined in
the type hierarchy has a two-dimensional address 〈	, ∆〉. Coordinate 	, 1 ≤ 	 ≤ L,
is the field’s layer, where L is the number of layers used by the type hierarchy.
(The assignment of types into layers is the subject of Section 5.) Coordinate ∆ is
an integral offset of the field in its layer. We say that the layout is bidirectional
since this offset may be either positive or negative.

Two-Dimensional Bi-directional Object Layout 337

p

L3 L4L1

+12
+13

-6 -5 -4 -3 -2 -1 +1 +2 +3 -6 -5 -4 -3 -2 -1 0-8 -7 +30 +1 +2 +4

p

L3 L4L1

-6 -5 -4 -3 -2 -1 0 +1 +2 -6 -5 -4 -3 -2 -1 0-8 -7 +30 +1 +2 +4

(a) (b)

Fig. 3. The canonical (a) and the compact (b) two-dimensional bi-directional
layout of an object from a 5-layer hierarchy. Layers L2 and L5 are empty in the
depicted object

All fields introduced in the same type t are laid out consecutively: Their layer
is the same as 	t, the type’s layer, while their offset is fixed with respect to ∆t,
the offset of the type. This section describes the actual object layout, which
has three versions: the simple and not so efficient canonical layout, which is
included for purpose of illustration, the general purpose compact layout, which
we expect to be used in most cases, and the highly-optimized inlined layout
which is applicable in some special cases.

In the canonical layout each object is represented as a pointer to a Layers
Dispatch Table (LDT) of size L. Entry i, i = 1, . . . , L, of the LDT points to
the ith layer of the object.

The canonical layout is demonstrated in Figure 3(a) for the case L = 5. The
object depicted in the figure represented by a pointer p to its LDT, which stores
pointers to layers L1, L3, and L4. The type of the object is such that it has no
fields from the second and the fifth layers. Hence the corresponding entries of
the LDT are null.

In general, layers are two directional, and may store fields with both neg-
ative and positive offsets. Such is layer L1 in the figure, with offsets in the
range −6, . . . , +2. However, the type of the object depicted has no fields with
positive offsets in layer L3. Similarly, layer L4 has no fields with negative offsets.

We can see in the figure that each of the layers is contiguous. More precisely,
if an object has a field at a certain layer in offset ∆ > 0, then it also has fields
in all offsets 0, . . . , ∆− 1. By placing the layers and the LDT next to each other
we obtain a contiguous object layout. The pointers from the LDT to the layers
can then be stored as relative offsets.

A compiler algorithm for producing the runtime access code in the canonical
layout is presented in 5canonical. Take note that the type t, the layer 	t, and the
offsets ∆t and ∆f are computed at compile time. A single memory dereference
is required to compute the field address.

It is important to notice that the occupied entries in each layer depend only
on the object type. Therefore, an offset-based LDT is identical in all objects of the
same type and can be shared. The compact version of object layout is obtained

338 Yoav Zibin and Joseph (Yossi) Gil

Algorithm 1 An algorithm for generating field access code in the canonical
layout

Given f, a name of a field of type int, and a pointer p to an object which uses
the canonical layout, generate the code sequence (using pseudo-C++ notation) for
accessing field f in p.

1: Let t be the type in which f was defined
2: Let �t be the unique layer of t // �t is a positive integer
3: Let integer ∆t be the offset of t
4: Let ∆f be the offset of f within its type // ∆f is a non-negative integer
5: Output

int *layer ptr = ((int **)p)[�t − 1];
int &r = layer ptr[∆t + ∆f];

by employing this sharing and by letting the object pointers reference the first
layer directly, which tends to be the largest in our algorithm for assigning fields
to layers.

Figure 3b gives an example of the compact layout of the same object of Fig-
ure 3a. In the figure we see the same three non-empty layers: L1, L3 and L4.
However, the object pointer p now points to offset 0 in layer L1. At this offset
we find the object type identifier, which is a pointer to the shared LDT. Notice
that the size of layer L1 was increased by one to accommodate the object type
identifier. Also, there are now only four entries in the LDT, which correspond
to layers L2, . . . , L5.

Algorithm 2 An algorithm for generating field access code in the compact
layout

Given f, a name of a field of type int, and a pointer p to an object which uses the
compact layout, generate the code sequence (using pseudo-C++ notation) for accessing
field f in p.

1: Let t be the type in which f was defined
2: Let �t be the unique layer of t // �t is a positive integer
3: Let integer ∆t be the offset of t
4: Let ∆f be the offset of f within its type // ∆f is a non-negative integer
5: If �t = 1 then
6: Output

int &r = ((int *)p)[∆t + ∆f];

7: else
8: Output

int *p1 = *((int **)p);

int layer offset = p1[�t − 2];
int &r = p[layer offset + ∆t + ∆f];

Two-Dimensional Bi-directional Object Layout 339

Algorithm 2 is run by the compiler to generate the code sequence for accessing
a field in the compact layout. If the compiler determines that the field is in the
first layer, then the field can be accessed directly—no memory dereferences are
required for computing its address. If the field however falls in any other layer,
then memory must be dererenced once to find the LDT, and then again to find
the layer offset. Also, in this case, the addressing mode for the final field access
is slightly more complicated since it must add compile- and runtime- offsets.

The LDT in the example of Figure 3 includes only four entries, all of which are
byte-size integers (assuming of course that the object size is less than 256 bytes).
The entire LDT can be represented as a single 32 bit words. The inlined layout
is obtained from the compact layout by inlining the LDT into the object’s first
layer. At the cost of increasing object space, inlining saves a level of indirection in
fetching LDT entries. Note that even if the LDT is stored inside the object, each
object must include at least one type identifier for purposes such as subtyping
tests and dispatching. Therefore, even in this simple example, the inlined layout
uses more space than the compact layout.

5 Computing Type Addresses

This section is dedicated to the algorithm for assigning field addresses. The main
constraint to maintain is that all layers are contiguous in all types. It is always
possible to find such an assignment, since each field can be allocated its own
layer (as done in field dispatching).

Our objective is an assignment which minimizes L, the number of layers. One
reason for doing so, is that the memory required for LDTs is L × n. LDTs are
source for static memory overhead in the compact layout, and dynamic memory
overhead in the inlined layout.

However, our most important motivation is reducing the likelihood of LDT
fetches, or in other words, inefficiency of field access. If the number of layers
is one, then all fields can be retrieved without any dereferences. We note that
if the number of layers is small, then an optimizing compiler might be able to
pre-fetch and reuse layer addresses to accelerate field access.

Note first that each layer has a positive and a negative semi-layer, and that
these semi-layers are independent for the purpose of allocation. To understand
the constraints of allocation better, consider Figure 4a which gives the object
layout for our running example.

We see in the figure that the hierarchy uses a total of two layers and three
semi-layers. The first layer has at offset 0 the object type identifier and a positive
and negative semi-layers. The second layer uses only the positive semi-layer. The
arrows in the figure indicate the place where the semi-layer may continue.

Figure 4b shows the allocation of types to semi-layers which generates this
layout: Seven types A, C, F, H, K, L, and N are in semi-layer 1 (positive side of
the first layer). Semi-layer 2 (negative side of the first layer) includes five types:
B, E, G, J, and M. Only D and I are in semi-layer 3 (positive side of the second

340 Yoav Zibin and Joseph (Yossi) Gil

A:

B:

C:

D:

E:

G:

H:

K:

I:

J:

L:

M:

N:

D

F:

D I

D I

D I

HA. C

A.
B A.

A. C

A.
A.E

A.B C F

A.G C

A.EJ

KHA.G C

HA. C L

A.EJM

NHA.JM C LE

A.E D I

D

SL 2 SL 1

SL 3

SL 3

SL 3

SL 3

SL 3
SL 3

E

(a)

1

2 1

1

1 1

1

3

3

2

22

2

1

A

B C D E

G H I J

K L M

N

F

(b)

A

B C D E

G H I J

K L M

N

F

(c)

Fig. 4. The two-dimensional bi-directional object layout of the running example
(a), the allocation of types in it to semi-layers (b), and the conflict graph with
its coloring (c)

layer). The layout of type N for example, makes use of all three semi-layers, while
the layout of D uses just semi-layers 1 and 3.

Notice the following points: (i) Semi-layers 1 and 2 comprising the first layer
are in a fixed offset. Semi-layer 3 occurs at different offsets in different types.
(ii) Each type is always placed in the same location in its layer. For example, E is
located in the first location in semi-layer 2 in the layouts of all of its descendants:
E, I, J, L, M, and N. (iii) The same location in the same semi-layer can be used
for different types. For example, the first location of semi-layer 1 stores also the
fields of B in the layout of F, and the fields of G in the layout of K. (iv) Types
are allocated to semi-layers in descending subtyping order. For example, we see
that types A, C, H, L and N are placed in this order in semi-layer 1 in the layout
of N and that A � C � H � L � N.

The general question is whether two arbitrary types a, b ∈ T can be allocated
to the same semi-layer, and what should their relative ordering in that semi-layer
should be. Suppose first, without loss of generality, that a � b. Then, whenever a
appears, so does b. Therefore, with the absence of other constraints, we can
allocate a and b into the same semi-layer, and a must be placed after b in this
semi-layer. If however a and b are incomparable, then they could be allocated
to the same semi-layer, and even to the same location in the level, as long as
they do not occur together in the layout of any third type c. In other words, the
allocation is allowed as long as a and b have no common descendants.

Figure 4c shows the conflict graph of our running example, where two types
are connected by an edge if they are incomparable, yet have a common descen-
dant. We see in the figure that no edges are incident on A. This is because A

Two-Dimensional Bi-directional Object Layout 341

is the root, and as such is comparable with all types in the hierarchy. Also, no
edges are incident on the leaves F, K and N. The edge between C and E , for
example, is due to their common descendant L.

A node coloring of the conflict graph provides a legal allocation. We of course
seek a minimal coloring of this graph. Figure 4c gives a coloring of the conflict
graph of the running example. A total of three colors are used: White nodes are
allocated to semi-layer 1, grey to semi-layer 2, and black to semi-layer 3.

Algorithm 3 shows the general procedure for address allocation. Using a graph
coloring heuristic, the algorithm computes the number of layers for the layout.
Also, for each type t in the input hierarchy the algorithm returns 	t, its layer
and ∆t, the base offset in the layer at which its fields are allocated. If ∆t ≥ 0,
then fields are allocated in ascending addresses. Otherwise, t is in the negative
semi-layer, and field are placed in the addresses below ∆t.

Algorithm 3 Produce the compact two-dimensional bi-directional layout
of a hierarchy

Given a hierarchy T and �, return the number of layers L, and compute �t and ∆t for
each type t ∈ T
1: Let E ← ∅ // E is the set of edges in the undirected conflict graph
2: For all t ∈ T do // Consider all possible common descendants
3: For all p1, p2 ∈ ancestors(t) do // p1 and p2 have a common descendant t
4: If p1 	� p2 and p1 	
 p2 then // p1 and p2 are incomparable
5: If {p1, p2} 	∈ E then // A new conflict edge found
6: E ← E ∪

{
{p1, p2}

}
7: Let G← 〈T , E〉 // G is the graph of conflicts between types
8: Let T �→ [1, . . . , s] be a coloring of the nodes of G

9: For all t ∈ T do // Compute the offset and the semi-layer of t
10: ∆t ← 0 // Compute the total size of proper ancestors in the same semi-layer

as t
11: For all p ∈ ancestors(t), p 	= t do
12: If p) = t) then // Ancestor p is in the same semi-layer as t
13: ∆t ← ∆t + |p|
14: �t ← �t)/2� // Layer l hosts colors 2l − 1 and 2l
15: If t) mod 2 = 0 then // Even colored objects are laid out in negative semi-layers
16: ∆t ← −∆t − 1 // Offsets of negative semi-layers start at −1
17: else if t) = 1 then
18: ∆t ← ∆t + 1 // Offset 0 in layer 1 is reserved for the type-identifier

19: Return �s/2�

Lines 3–3 compute the edges in the conflict graph. In the main loop, we
consider the ancestors of each candidate. There is a conflict between any two
of its ancestors if they are incomparable. The runtime of the inner loop should

342 Yoav Zibin and Joseph (Yossi) Gil

(empirically) be close to linear, since the average number of ancestors in our
hierarchies is small.

Next (lines 3–3) we compute the conflict graph and a coloring of it. We
use a simple, greedy heuristic for finding this coloring. A favorable property of
this heuristic is that the color groups tend to come out in descending order,
i.e., |−1(i)| ≥ |−1(i + 1)| for i = 1, . . . , s − 1. Since fields in the first layer can
be accessed in a single indirection, the first layer should be as large as possible.

The next command block computes the layer of each type t, and its (positive
or negative) offset within this layer. Lines 3–3 compute the total size of types
which precede t in its semi-layer. After computing the layer number (line 3) we
turn to making the necessary corrections to the offset. In general, positive semi-
layers use offsets 0, +1, +2, . . ., while negative semi-layers use offsets −1,−2, . . .
(lines 3–3). However, layer 1 is special since it contains the type identifier at
offset 0 (lines 3–3).

6 Data Set

For the purpose of evaluating the multi-layer object layout scheme, we used
an ensemble of 28 type hierarchies, drawn from eight different programming
languages, and spanning almost 50,000 types. The first 27 hierarchies5 were used
in our previous benchmarks. A detailed description of their origin, respective
programming language, and many of their statistical and topological properties
can be found elsewhere [17, 18]. (Even though multiple-inheritance of fields is
not possible in Java, the Java hierarchies are still useful in characterizing how
programmers tend to use multiple inheritance.) To these we added Flavors, a 67-
type hierarchy representing the multi-inheritance core of the Flavors language [8]
benchmark used by Pugh and Weddell [9, Fig. 5].

Together, the hierarchies span a range of sizes, from 67 types (in IDL and
Flavors) up to 8,793 types in MI: IBM SF, the median being 930 types. The
hierarchies are relatively shallow, with heights between 9 and 17. Most types
have just one parent, and the overall average number of parents is 1.2. In these
and other respects, the hierarchies are not very different from balanced binary
trees [4]

The number of ancestors is typically small, averaging less than 10 in most
hierarchies. Exceptions are the Geode and the Self hierarchies, which make an
extensive use of multiple inheritance. In Geode, there are 14 ancestors in average
to each type, and there exists a type with as many as 50 ancestors. Self has 31
ancestors in average per type. The topology of Self is quite unique in that almost
all types in it inherit from a type with 23 ancestors. Table 1 below gives (among
other information), the number of types in each hierarchy, and the maximal and
average number of ancestors.
5 IDL, MI: IBM XML, JDK 1.1, Laure, Ed, LOV, Cecil2, Cecil-, Unidraw, Harlequin,

MI: Orbacus Test, MI: HotJava, Dylan, Cecil, Geode, MI: Orbacus, Vor3, MI: Corba,
JDK 1.18, Self, Vortex3, Eiffel4, MI: Orbix, JDK 1.22, JDK 1.30, MI: JDK 1.3.1,
and MI: IBM SF.

Two-Dimensional Bi-directional Object Layout 343

Table 1. Statistics on the input hierarchies, including the number of colors and
layers found by 5TD compared with the maximal anti-chain lower bound

Hierarchy 〈T ,�〉 n = |T | ω 6 s 7 	ω/2
 	s/2
 max(θt)
8 avg(Lt)

9 avg(θt)
10

Flavors 67 3 4 2 2 13 1.6 4.9
IDL 67 2 2 1 1 9 1.0 4.8
MI: IBM XML 145 5 5 3 3 14 1.5 4.4
JDK 1.1 226 2 2 1 1 8 1.0 4.2
Laure 295 3 3 2 2 16 1.1 8.1
Ed 434 12 13 6 7 23 3.2 8.0
LOV 436 13 14 7 7 24 3.5 8.5
Cecil2 472 8 8 4 4 29 2.0 7.4
Cecil- 473 8 8 4 4 29 2.0 7.4
Unidraw 614 3 3 2 2 10 1.0 4.0
Harlequin 666 14 14 7 7 31 1.9 6.7
MI: Orbacus Test 689 3 4 2 2 12 1.3 3.9
MI: HotJava 736 14 15 7 8 23 2.0 5.1
Dylan 925 3 3 2 2 13 1.1 5.5
Cecil 932 6 6 3 3 23 1.7 6.5
Geode 1,318 21 22 11 11 50 5.1 14.0
MI: Orbacus 1,379 11 11 6 6 19 1.6 4.5
Vor3 1,660 6 6 3 3 27 1.6 7.5
MI: Corba 1,699 6 7 3 4 18 1.3 3.9
JDK 1.18 1,704 12 12 6 6 16 1.2 4.3
Self 1,802 24 24 12 12 41 10.7 30.9
Vortex3 1,954 8 8 4 4 30 1.7 7.2
Eiffel4 1,999 15 15 8 8 39 2.2 8.8
MI: Orbix 2,716 6 6 3 3 13 1.1 2.8
JDK 1.22 4,339 14 14 7 7 17 1.5 4.4
JDK 1.30 5,438 15 15 8 8 19 1.5 4.4
MI: JDK 1.3.1 7,401 21 21 11 11 24 1.5 4.4
MI: IBM SF 8,793 13 13 7 7 30 2.3 9.2

7 Experimental Results

This section presents the results of running 5TD on our data set. Since this
algorithm depends on a graph-coloring heuristic (Line 3), we would like first
to be assured by the output quality. We remind the reader that if a graph has
a clique of size k, then it cannot be colored by fewer than k colors. Although
it is not easy to find cliques in general graphs, some cliques can be efficiently
found in conflict graphs. Consider a type t and its set of ancestors ancestors(t).
Let Pt ⊆ ancestors(t) be a set of types which are pair-wise incomparable. Then
any t1, t2 ∈ Pt are in conflict, and the set Pt is a clique in the conflict graph.
Finding a maximal set of incomparable nodes in a hierarchy is a standard pro-
cedure of finding a maximal anti-chain in a partial order [15].

Table 1 compares the number of colors and layers with the predictions of the
lower bound thus found.

Let ωt = max{|Pt| | Pt ⊆ ancestors(t) is a set of pair-wise incomparable
types}, i.e., ωt is the size of the maximal anti-chain among the ancestors of t.
Then, ω = maxt∈T {ωt} is a lower bound on the number of colors (or semi-
layers), and �ω/2� is a lower bound on the number of layers L. We see in the
table that s > ω only in seven hierarchies: Flavors, Ed, LOV, MI: Orbacus Test,
MI: HotJava, Geode and MI: Corba. In these seven cases, s = ω +1, so the num-
ber of colors was off by at most one from the lower bound. Further, as the next

344 Yoav Zibin and Joseph (Yossi) Gil

two columns indicate, the situation that the number of layers is greater than the
prediction of the lower bound, occurs in only three hierarchies: Ed, MI: HotJava
and MI: Corba.

It is also interesting to compare the number of colors and the number of layers
with the maximal number of ancestors, denoted α = max(θt). As expected, the
number of colors is never greater than the maximal number of ancestors, and
is typically much smaller than it. The number of entries in the LDT is even
smaller, since every two colors are mapped to a single layer.

The maximal number of layers in the field dispatching technique is exactly α,
since each layer is a singleton. The field dispatch matrix can be compressed using
method dispatching techniques, such as selector coloring [3, 11]. A lower bound
on the space requirement of selector coloring is n × α. We therefore have that
the static memory of our layout scheme n × L is superior to that of the field
dispatch matrix compressed using selector coloring.

The next two columns of Table 1 give another comparison of hash-table im-
plementation of the LDT with a hash table implementation of the field dispatch
matrix. We see that the number of layers which each object uses is typically
small. No more than 3.5 in all but the Self and Geode hierarchies. In all hier-
archies, we see that the average number of ancestors is much greater than the
average number layers. This shows that the (i) Algorithm 3 is successful in com-
pressing multiple types into layers, and consequently that (ii) the LDT places
weaker demands than the field dispatch matrix on static memory.

The theoretical complexity of Algorithm 3 is O(n3), since lines 3–3 may it-
erate in certain hierarchies over a fixed fraction of all possible type triplets. The
runtime of the simple greedy graph-coloring heuristic is O(n2). In practice how-
ever, the algorithm runs much faster. By applying some rather straightforward
algorithmic optimizations, e.g., considering in line 3 only types which have more
than one parent, the run times were reduced even further.

On a Pentium III, 900Mhz machine, equipped with 256MB internal memory
and running a Windows 2000 operating system, Algorithm 3 required less than 10
mSec in 19 hierarchies. Seven hierarchies required between 10 mSec and 50 mSec.
The worst hierarchy was MI: IBM SF which took 400 mSec. The total runtime
for all hierarchies was 650 mSec, which gives on average 13µSec of CPU time per
type. The runtime of C++ aggressive-inline procedure on the same hardware is
much slower. For example, aggressive inline of MI: IBM SF took 3,586 mSec,
i.e., about 9 times slower. Simple inline of MI: IBM SF took 2,294 mSec, which
is still much slower.

The most important criterion for evaluating a layout scheme is field access
efficiency.

Since the hierarchies were drawn from different languages and were not as-
sociated with any application programs, we were unable to directly measure the
actual cost of field access in the various layout schemes. We can however derive
other metrics to compare the costs of the new layout technique with that of prior
art.

Two-Dimensional Bi-directional Object Layout 345

F
la

vo
rs

ID
L.

ty
pe

s

M
I-

IB
M

-X
M

L

JA
V

.ty
pe

s

LA
U

.ty
pe

s

E
D

.ty
pe

s

lo
v-

ob
je

ct
-e

di
to

r

ce
ci

l2

ce
ci

l-

un
id

ra
w

-in
te

rv
ie

w
s

ha
rle

qu
in

M
I-

O
rb

ac
us

-t
es

t

M
I-

H
ot

Ja
va

dy
la

n

ce
ci

l

ge
od

e

M
I-

O
rb

ac
us

vo
r3

M
I-

C
or

ba

ja
va

1.
18

.ty
pe

s

se
lf-

sy
st

em

vo
rt

ex
3

E
IF

.ty
pe

s

M
I-

O
rb

ix

ja
va

.1
.2

2.
ty

pe
s

ja
va

.1
.3

0.
ty

pe
s

M
I-

jd
k1

.3
.1

M
I-

IB
M

-S
F

-s
am

pl
es

0.0

2.0

4.0

6.0

8.0

10.0

C++: Standard

C++: Simple inline

C++: Aggressive inline

Two-Directional Bi-Directional

Fig. 5. Average no. of layers in different hierarchies

For example, the number of layers used by a given type, gives an indication
on the number of different dereferences required to access all the object fields.
The corresponding metric in C++ is the number of virtual bases, which can be
accessed only by dereferencing a VBPTR.

Figure 5 compares the average number of layers of the new scheme with that
of the standard C++ implementation, the simple inlined implementation and
the aggressive inlined implementation. In making the comparison we bear in
mind that the new scheme is both language-independent and space-optimal—
properties which the C++ schemes do not enjoy.

We see in the figure that with the exception of Self hierarchy (which as
we mentioned above has a very unique topology), the new layout scheme is
always superior to the standard- and simple-inlined implementation of C++.
Moreover, the new scheme is superior or comparable with the aggressive-inline
layout scheme, with the exception of four hierarchies: Ed, LOV, Geode and Self.
Comparing the maximal- rather than the average- number of layers yields similar
results.

Table 2 shows the extra dynamic memory consumed by the various C++
layout schemes, specifically for VPTRs.

346 Yoav Zibin and Joseph (Yossi) Gil

Table 2. No. of VPTRs using standard C++ layout, simple inline (S-Inline),
and aggressive inline (A-Inline)

Hierarchy
Average Median Maximum

C++ S-Inline A-Inline C++ S-Inline A-Inline C++ S-Inline A-Inline
Flavors 3.4 3.2 2.4 3 3 2 9 8 5
IDL 1.9 1.6 1.2 2 2 1 3 2 2
MI: IBM XML 2.8 2.8 2.0 2 2 1 9 9 6
JDK 1.1 2.1 2.0 1.8 2 2 2 4 4 3
Laure 3.9 3.2 2.3 4 3 2 8 7 5
Ed 5.2 5.0 4.2 4 4 4 16 16 12
LOV 5.6 5.5 4.6 5 5 4 17 17 13
Cecil2 4.6 4.4 3.4 3 3 3 17 15 9
Cecil- 4.6 4.3 3.5 3 3 3 17 15 9
Unidraw 1.4 1.4 1.4 1 1 1 4 3 3
Harlequin 3.6 3.2 2.7 2 2 2 21 19 16
MI: Orbacus Test 2.5 2.1 1.7 2 2 1 8 6 5
MI: HotJava 2.9 2.9 2.7 2 2 2 17 17 15
Dylan 2.0 1.9 1.3 2 2 1 7 6 5
Cecil 3.7 3.5 2.7 3 3 2 16 13 8
Geode 9.9 9.5 8.3 9 9 7 32 31 27
MI: Orbacus 2.8 2.6 2.2 2 2 1 13 12 11
Vor3 4.6 4.2 3.5 4 3 3 17 14 11
MI: Corba 2.6 2.3 1.7 2 2 1 14 12 10
JDK 1.18 1.9 1.9 1.7 2 2 1 14 13 12
Self 21.2 21.2 21.1 22 22 22 26 25 25
Vortex3 4.4 3.8 3.4 3 3 3 18 15 11
Eiffel4 3.7 3.4 3.1 2 2 2 20 17 16
MI: Orbix 1.5 1.4 1.3 1 1 1 7 7 6
JDK 1.22 2.4 2.3 2.1 2 2 2 16 15 14
JDK 1.30 2.4 2.3 2.1 2 2 2 17 17 16
MI: JDK 1.3.1 2.3 2.3 2.0 2 2 1 23 22 21
MI: IBM SF 5.8 5.8 3.6 6 6 3 16 16 13

Total 4.2 4.0 3.3 - - 22 32 31 27
Median 3.2 3.0 2.4 2 2 2 16 14.5 11
Minimum 1.4 1.4 1.2 1 1 1 3 2 2
Maximum 21.2 21.2 21.1 22 22 22 32 31 27

Curiously, the four hierarchies in which the new scheme does not perform as
well, Ed, LOV, Geode and Self, are exactly the hierarchies in which the C++
schemes, including the highly optimized aggressive inline waste the most amount
of dynamic memory.

We also offer a more sophisticated theoretical model for comparing the per-
formance of various schemes of object layout which involve indirection to access
various fields. Suppose that a certain field was retrieved from a certain layer.
Then, a good optimizing compiler should be able to reuse the address of this
layer in retrieving other fields from this layer. Even in the standard C++ lay-
out, the compiler may be able to reuse the address of a virtual base to fetch
additional fields from this base.

For a fixed type t, and for a sequence of k field accesses, we would like to com-
pute At(k), the expected number of extra dereferences required to access these
fields. Since much empirical data is missing from our ensemble of hierarchies, we
were inclined to make two major simplifying assumptions:

1. Uniform class size. The number of fields introduced in each type is the same.
Although evidently inaccurate, this assumption should not be crucial to the

Two-Dimensional Bi-directional Object Layout 347

results. We do expect that most classes introduce a small number of fields,
with a relatively small variety.

2. Uniform access probability. The probability of accessing any certain field is
fixed, and is independent of the fields accessed previously, nor of the type in
which the field is defined. This assumption is clearly in contradiction to the
principle of locality of reference.
However, as we shall see, locality of reference improves the performance of
layout schemes. It is not clear whether this improvement contribute more to
any specific scheme.

The θt ancestors of t are laid out in Lt different layers or virtual bases, such
that layer i (virtual base i) has θt(i) ancestors. The first layer can always be
accessed directly. Access to a field in layer i in step k requires a dereference
operation, if that layer was not accessed in steps 1, . . . , k − 1.

Let Xt(i), i = 2, . . . , Lt be the random binary variable which is 1 if a field of
level i was not referenced in any of the steps 1, . . . , k. Then,

Prob[Xt(i) = 1] = Exp(Xt(i)) =
(

1 − θt(i)
θt

)k

.

Additivity of expectation allows us to sum the above over i, obtaining that the
expected number of levels (other than the first) which were not referenced is

Lt∑
i=2

(
1 − θt(i)

θt

)k

.

Using the linearity of expectation, we find that the expected number of referenced
levels, i.e., the number of dereferences is simply

At(k) = (L − 1) −
Lt∑
i=2

(
1 − θt(i)

θt

)k

. (1)

Averaging over an entire type hierarchy, we define

A(k) =
1
n

∑
t∈T

At(k) (2)

Figure 6 gives a plot of A(k) vs. k in four sample hierarchies in the layout
schemes field dispatching, standard C++ layout, simple inline (S-Inline), ag-
gressive inline (A-Inline), and two-dimensional bi-directional (TDBD). Values
of A(k) were computed using (1) and (2) in the respective hierarchy and object
layout scheme. For field dispatching, we set θt(i) = 1.

It is interesting to see that in all hierarchies and in all layout schemes, the
expected number of dereferences is much smaller than the number of actual
fields accessed. It is also not surprising that A(k) increases quickly at first and
slowly later. As expected, the new scheme is much better than field dispatch-
ing. The graphs give hope of saving about 75% of the dereferences incurred in

348 Yoav Zibin and Joseph (Yossi) Gil

IBM SF

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25

No. of field accesses

A
ve

ra
g

e
n

o
. o

f
d

er
ef

er
en

ce
s

A-Inline

S-Inline

C++

TDBD

Field
Dispatching

Geode

0

1
2

3

4
5

6

7

8
9

10

1 3 5 7 9 11 13 15 17 19 21 23 25

No. of field accesses

A
ve

ra
g

e
n

o
. o

f
d

er
ef

er
en

ce
s

A-Inline

S-Inline
C++

TDBD

Field
Dispatching

Eiffel4

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25

No. of field accesses

A
ve

ra
g

e
n

o
. o

f
d

er
ef

er
en

ce
s

A-Inline

S-Inline

C++

TDBD

Field
Dispatching

Vor3

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25

No. of field accesses

A
ve

ra
g

e
n

o
. o

f
d

er
ef

er
en

ce
s

A-Inline
S-Inline

C++

TDBD

Field
Dispatching

Fig. 6. Average no. of dereferences vs. no. of field accesses in four hierarchies

field dispatching. (Note however that the model does not take into account any
optimizations which runtime systems may apply to field dispatching.)

The other, C++ specific techniques are also more efficient than field dis-
patching. We now turn to comparing these with our scheme. In the Vortex3
hierarchy the new scheme dramatically improves the expected number of deref-
erences compared to any of the C++ layout schemes. The new scheme is also
the best in smaller k values in the Eiffel4 hierarchy, and is comparable to aggres-
sive inline with greater values of k. Another typical behavior is demonstrated by
MI: IBM SF, in which the new scheme is almost the same as aggressive-inline.
In the Geode hierarchy which is one of the two hierarchies in which the two-
dimensional bi-directional scheme cannot find a good partitioning into a small
number of layers, we find that aggressive inline gives the best results in terms of
field access efficiency. Still, even in this hierarchy the new scheme is better than
the standard C++ implementation and the simple-inline outline heuristic.

8 Conclusions and Open Problems

The two-dimensional bi-directional object layout scheme enjoys the following
properties: (i) the dynamic memory overhead per object is a single type-
identifier, (ii) the static memory per type is small: at most 11 cells in our data
set, but usually only around 5 cells, (iii) small time for computing the layout: an
average of 13 µSec per type in our data set, and (iv) good field access efficiency
as predicted by to our analytical model: the new scheme always improves upon

Two-Dimensional Bi-directional Object Layout 349

the field dispatching scheme and on the standard C++ layout model. Even com-
pared to the highly optimized C++ layout, after performing aggressive inline,
the new scheme still compares favorably.

We note that the new scheme does not rely on this -adjustment, and in
the few hierarchies the aggressive-inline C++ won, it was with the cost of large
dynamic memory overheads, e.g., as much as 21 VPTRs on average in the Self
hierarchy.

The one-dimensional bi-directional layout of Pugh and Weddell’s [9] realizes
field access in a single indirection, but it may leave holes in some objects. In
comparison, our two-dimensional bi-directional layout has no dynamic memory
overheads, but a field access might require extra dereferences. In the Flavors
hierarchy Pugh and Weddell reported 6% dynamic memory overhead (assuming
a single instance per type). Our scheme uses only two layers for this hierarchy,
and the probability that a field access would require extra dereferences is only
0.19.

Directions for future work include empirical study of frequencies of field ac-
cesses, and further reducing the static memory overheads. In dynamically typed
languages where fields can be overloaded, the layout algorithm must color fields
instead of types. Empirical data should be gathered to evaluate the efficiency of
the layout algorithm in such languages.

References

[1] T. Cargill, B. Cox, W. Cook, M. Loomis, and A. Snyder. Is multiple inher-
itance essential to OOP? Panel discussion at the Eighth Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’95) (Washington, DC), Oct. 1993. 329

[2] C. Chambers. The Cecil language, specification and rationale. Technical Report
TR-93-03-05, University of Washington, Seattle, 1993. 334

[3] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer. A fast method dispatcher for
compiled languages with multiple inheritance. In Proceedings of the 4th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 211–214, New Orleans, Louisiana, Oct. 1-6 1989. OOPSLA’89, ACM
SIGPLAN Notices 24(10) Oct. 1989. 344

[4] N. Eckel and J. Y. Gil. Empirical study of object-layout strategies and opti-
mization techniques. In Proceedings of the 14th European Conference on Object-
Oriented Programming, number 1850 in Lecture Notes in Computer Science, pages
394–421, Sophia Antipolis and Cannes, France, June 12–16 2000. ECOOP 2000,
Springer Verlag. 329, 330, 335, 342

[5] J. Y. Gil and P. Sweeney. Space- and time-efficient memory layout for multiple
inheritance. In Proceedings of the 14th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 256–275, Denver, Col-
orado, Nov.1–5 1999. OOPSLA’99, ACM SIGPLAN Notices 34(10) Nov. 1999.
329, 331, 335

[6] S. B. Lippman. Inside The C++ Object Model. Addison-Wesley, 2nd edition,
1996. 334

350 Yoav Zibin and Joseph (Yossi) Gil

[7] B. Magnussun, B. Meyer, and et al. Who needs need multiple inheritance. Panel
discussion at the European conference on Technology of Object Oriented Pro-
gramming (TOOLS Europe’94), Mar. 1994. 329

[8] D. A. Moon. Object-oriented programming with flavors. In Proceedings of the
1st Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 1–8, Portland, Oregon, USA, Sept. 29 - Oct. 2 1986. OOP-
SLA’86, ACM SIGPLAN Notices 21(11) Nov. 1986. 342

[9] W. Pugh and G. Weddell. Two-directional record layout for multiple inheritance.
In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation (PLDI), pages 85–91, White Plains, New York, June
1990. ACM SIGPLAN, ACM Press. SIGPLAN Notices 25(6). 329, 331, 334, 342,
349

[10] W. Pugh and G. Weddell. On object layout for multiple inheritance. Technical
Report CS-93-22, University of Waterloo—Department of Computer Science, May
1993. 331

[11] A. Royer. Optimizing Method Search with Lookup Caches and Incremental Col-
oring. In Proceedings of the 7th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 110–126, Vancouver, British
Columbia, Canada, Oct.18-22 1992. OOPSLA’92, ACM SIGPLAN Notices 27(10)
Oct. 1992. 344

[12] A. Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison-Wesley, Reading, Mass., 1997. 334

[13] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading,
Massachusetts, Mar. 1994. 335

[14] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 3rd edition, 1997. 334

[15] W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
The Johns Hopkins University Press, 1992. 343

[16] O. Zendra, C. Colnet, and S. Collin. Efficient dynamic dispatch without virtual
function tables: The SmallEiffel compiler. In Proceedings of the 12th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
pages 125–141, Atlanta, Georgia, Oct. 5-9 1997. OOPSLA’97, ACM SIGPLAN
Notices 32(10) Oct. 1997. 334

[17] Y. Zibin and J. Y. Gil. Efficient subtyping tests with PQ-encoding. In Proceedings
of the 16th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 96–107, Tampa Bay, Florida, Oct. 14–18 2001.
OOPSLA’01, ACM SIGPLAN Notices 36(10) Oct. 2001. 329, 332, 342

[18] Y. Zibin and J. Y. Gil. Fast algorithm for creating space efficient dispatching
tables with application to multi-dispatching. In Proceedings of the 17th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 142–160, Seattle, Washington, Nov. 4–8 2002. OOPSLA’02, ACM
SIGPLAN Notices 37(10) Nov. 2002. 329, 332, 334, 342

[19] Y. Zibin and J. Y. Gil. Incremental algorithms for dispatching in dynamically
typed languages. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL’03), pages 126–138. ACM Press,
2003. 329, 332

	Two-Dimensional Bi-directional Object Layout
	Introduction
	Definitions
	The Object Layout Problem
	Two-Dimensional Bi-directional Object Layout
	Computing Type Addresses
	Data Set
	Experimental Results
	Conclusions and Open Problems

