
Condition-Based Consensus in Synchronous Systems

Yoav Zibin

Technion—Israel Institute of Technology
zyoav@cs.technion.ac.il

Abstract. The condition-based approach for solving problems in distributed sys-
tems consists of identifying sets of input vectors, called conditions, for which
it is possible to design more efficient protocols. Recent work suggested using
the condition based approach in asynchronous systems suffering from crashes,
for solving various agreement problems [5, 9, 1, 4, 6]. This paper designs a fast
condition-based consensus protocol for synchronous systems.

1 Introduction

The consensus problem stands in the heart of distributed systems prone to failures [2].
In this problem each process proposes a value and all correct processes must agree on
one of the proposed values. It is well known that consensus cannot be solved in asyn-
chronous systems even in the presence of a single possible crash. Many ways have been
suggested to circumvent this impossibility result, such as considering a weaker prob-
lem (approximate agreement, set agreement, and randomized algorithms) or a stronger
environment (failure detectors, and partially asynchronous environment).

The condition-based approach, which is the focus of this paper, consists of iden-
tifying sets of input vectors, called conditions, for which a problem is solvable. Re-
cent work used the condition based approach in asynchronous systems suffering from
crashes, for solving consensus [5], set-agreement [9, 1], and interactive-consistency [6].
These problems were also studied in the presence of Byzantine errors [6, 4]. A corre-
lation with error correcting codes was recently found [4], where crashes correspond to
erasures, and Byzantine faults to corruption errors.

Consider, for example, the condition Cmax
d which includes only input vectors in

which the largest value appears at least d times. It is easy to solve consensus if the in-
put always belongs to Cmax

f+1 , where f is the number of processes that can crash. The
difficulty is in designing a strict consensus protocol, i.e., a protocol which also handles
inputs that do not belong to the condition. Mostefaoui et al. [5] presented a strict con-
sensus protocol which always guarantee safety (i.e., agreement and validity), however
the protocol may not terminate if the input does not belong to Cmax

f+1 . More generally,
Mostefaoui et al. defined the class of d-legal conditions and presented a generic pro-
tocol for any f + 1-legal condition. A more efficient consensus protocol for stronger
conditions was presented later [8, 7].

In synchronous systems it is well known that solving consensus requires at least f+1
rounds. This paper uses the condition-based approach in order to design a consensus
protocol which requires a smaller number of rounds. Specifically, for d-legal condi-
tions, 1 ≤ d ≤ f +1, we present a protocol which solves consensus in (f +1)−(d−1)

F.E. Fich (Ed.): DISC 2003, LNCS 2848, pp. 239−248, 2003.
 Springer-Verlag Berlin Heidelberg 2003

rounds if the input always belongs to the condition. We also present a strict consen-
sus protocol which adds an additional validation round to ensure all processes reached
agreement (we assume that 2f < n). More precisely, if the input belongs to the condi-
tion then consensus is solved in (f + 1) − (d − 1) + 1 rounds, otherwise it is solved
in f + 1 rounds.

Outline Sec. 2 presents our notation and defines the strict and non-strict variants of the
condition-based approach. Sec. 3 defines the consensus problem and describes the well-
known flood-set protocol for solving it. The non-strict consensus protocol for any d-
legal condition is presented in Sec. 4, and its strict variant in Sec. 5. Finally, open
problems and direction for future research are discussed in Sec. 6.

2 Notation

This paper assumes a standard synchronous message passing model. The number of
processes is denoted by n, and f is a bound on the number of processes that can crash
(without ever recovering). A process that did not crashed is called correct.

Definition 1 (Immediate crash). A process which crashes in the first round is said to
immediately crash. (Note that this process can still send messages in the first round to
a subset of the other processes.) Similarly, an immediate crash is a crash that occurred
in the first round.

The finite set of input values is denoted by V . We assume a default value⊥ not in V .
Let Vn be the set of all possible vectors (of size n) with entries from V , and let V n

f be
the set of all possible vectors with entries from V ∪⊥, with at most f entries equal to⊥.
We typically denote by I a vector in Vn and by J a vector in Vn

f .

Definition 2 (Partial view). For vectors J1, J2 ∈ Vn
f , we say that J1 is a partial view

of J2, denoted J1 ≤ J2, if for k = 1, . . . , n, J1[k] 5= ⊥ ⇒ J1[k] = J2[k], i.e., J1 can
be extended into J2 by changing some of its ⊥ entries.

Definition 3 (Union of partial views). When J1, J2 ∈ Vn
f are partial views of the same

vector I , i.e., J1, J2 ≤ I , we define their union J = J1∪J2, such that for k = 1, . . . , n,

J [k] = a 5= ⊥ ⇔ J1[k] = a or J2[k] = a.

Observe that Ji ≤ J ≤ I for i = 1, 2.

We define two functions:

– #x(J) = |{i | J [i] = x}|, i.e., the number of entries of J whose value is x.
– dist(J1, J2) = |{i | J1[i] 5= J2[i]}|, i.e., the Hamming distance between J1 and J2.

We assume that there is some linear ordering of V and we can define the func-
tion max : ℘(V) 3→ V . Next, we assume that⊥ is the smallest value, and extend max to
handle also⊥ values. We will sometimes treat a vector J ∈ Vn

f as a set and write max(J);
Note that⊥will never be picked by max unless J = {⊥}n. By defining a lexicographic
ordering over Vn, we can extend this function to handle vectors, i.e., max : ℘(Vn) 3→
Vn. (No confusion will occur due to this overloading of the max function.)

240 Y. Zibin

Definition 4 (Conditions). A condition C!⊆ Vn!is a set of input vectors.

A protocol which solves non-strict consensus [4] for a given condition C!need to
consider only input vectors in C, i.e., if the input vector does not belong to C!then no
guarantees are made on the output. In contrast the strict variant must consider every
possible input vector in Vn. In an asynchronous environment [5, 8, 9, 7, 4], a strict pro-
tocol must always guarantee safety (i.e., agreement and validity), even for input vectors
that do not belong to C, but it may not terminate. (The consequences of making other
properties more strict can be found in [5, 4], e.g., a correct process must always termi-
nate but it may sometimes decide on ⊥.) In a synchronous environment the protocol
must always terminate, and it must terminate faster for input vectors in C.

Definition 5 (d-legal conditions). A condition C!is called d-legal if there exists a map-
ping h!:!C! 3→ V with the following properties:

1. ∀I!∈ C !:! #h(I)(I)!≥ d,
2. ∀I1, I2!∈ C !:! h(I1)!5=!h(I2)!⇒ dist(I1, I2)!≥ d.

It was shown [5, 4] that (f!+1)-legal conditions are necessary and sufficient for solving
both strict and non-strict consensus in asynchronous systems.

An example of a d-legal condition is Cmax
d ,

Cmax
d =!{I!∈ Vn! | #max(I)(I)!≥ d},!i.e., d!occurrences of the maximum value.

The mapping h!associated with Cmax
d returns the maximal value in the vector. It is

straight forward to verify the two properties h!must have according to Def. 5.

3 Consensus Problem

In the consensus problem each process has to decide on a value (the output value), such
that the following properties holds:

Agreement: No two different values are decided by correct processes.
Termination: A correct process must decide.
Validity: The decided value is one of the proposed values.

In all the protocols in this paper, whenever a process decides it also halts. Therefore ev-
ery process that decides (whether correct or faulty) chooses the same value; this prop-
erty is called uniform agreement, and our protocols in fact solve uniform consensus.
(If processes are allowed to halt after they decided then solving consensus requires at
least t+1!rounds, whereas solving uniform consensus requires at least t+2!rounds [3],
where t!<!f!− 1 !is the number of processes that actually crashed.)

Protocol 1 describes the well-known flood-set protocol (see e.g., [2]) in which sets
of input values are iteratively flooded during d!rounds. Each process pi! represents its
set as a partial view Ji!≤ I !which is extended during d!rounds. It is well known that
after f+1!rounds all the partial views are equal and thus FloodSetf+1!solves consensus.

In order to prove our results in the next sections, we will need the following lemmas.

241Condition-Based Consensus in Synchronous Systems

Protocol 1 FloodSetd
Input: a value xi ∈ V .
Output: a decided value yi ∈ V , and a partial view Ji ∈ Vn

f .
Code for process pi:
1: Ji ← {⊥}n

2: Ji[i] ← xi // we always maintain the invariant that Ji ≤ I
3: For r = 1, . . . , d do // run for d rounds
4: Send Ji to all processes (including yourself)
5: V ← ∅ // the set of partial views received
6: Upon receiving Jj from pj do V ← V ∪ {Jj}

// update our partial view
7: Ji ← !

Jj∈V Jj

8: end For
9: yi ← max(Ji)

10: return 〈yi, Ji〉

Lemma 1. For every correct process pi, Ji ≤ I .

Proof. Observe that Ji is updated only in lines 1,2 and 7. By induction, each Jj ∈ V
satisfies Jj ≤ I , and therefore their union also satisfies

⋃
Jj∈V Jj ≤ I .

Lemma 2. Let pi be a correct process. If pj did not immediately crash then Ji[j] =
I[j], and if Ji[j] = ⊥ then pj must have immediately crashed.

Proof. If pj did not immediately crash then it must have sent its input to pi, i.e., Ji[j] =
I[j] 5= ⊥.

Lemma 3. Let Ji, Jj ≤ I be two resulting partial views from running FloodSetd. Then,
if there exist I ′i, I

′
j , such that Ji ≤ I ′i , Jj ≤ I ′j , and dist(I ′i, I

′
j) ≥ k, then there were at

least k immediate crashes.

Proof. Assume by contradiction that there were less than k immediate crashes. Let S ⊆
[1, n], |S| ≥ k, be the set of indices where I ′i and I ′j differ, i.e., for every m ∈
S, I ′i[m] 5= I ′j [m]. Then, there is some m ∈ S such that pm did not immediately
crashed. From Lemma 2, if either Ji[m] = ⊥ or Jj [m] = ⊥ then pm immediately
crashed. Therefore, both Ji[m] 5= ⊥ and Jj [m] 5= ⊥. Since Ji, Jj ≤ I , we have
that Ji[m] = Jj [m]. Since Ji ≤ I ′i and Jj ≤ I ′j , then I ′i[m] = I ′j [m]; contradiction.

Lemma 4. If d immediate crashes occurred then after running FloodSet(f+1)−(d−1)

all the partial views are equal.

Proof. Since in the first round there were at least d immediate crashes, there could be
at most (f − d) crashes in the remaining (f − d) + 1 rounds. Therefore, there must be
a round in which no crashes occurred, after which all the partial views become equal.

In order to gain some intuition on the consensus protocols of the next sections, we
first show how to solve non-strict consensus for the specific condition Cmax

d .

242 Y. Zibin

Lemma 5. Running FloodSet(f+1)−(d−1)! solves non-strict consensus for the condi-
tion Cmax

d .

Proof. It is straightforward to prove Validity and Termination in (f!+!1)!− (d!− 1)
rounds. Next we prove Agreement. Let I!∈ Cmax

d be the input vector. Then, there are at
least d!processes whose input is max(I). On the one hand, suppose that one of those d
processes did not immediately crash. Then according to Lemma 2, for every correct
process pi, we have max(I)!∈ Ji, and thus pi!decides on max(I). On the other hand,
if those d!processes did immediately crash, then according to Lemma 4, all the partial
views are equal, i.e., Ji!=!Jj , and every correct process decides on the same max(Ji).

Lemma 6. It is not possible to solve non-strict consensus for Cmax
d in less than (f!+

1)!− (d!− 1)!rounds.

Proof. Observe that, when d!=!1, Cmax
1 =!Vn, i.e., we need to solve the problem

for any possible input and therefore the known lower bound of f!+!1!rounds holds.
When d!>!1, by causing d!− 1 !of the processes with the maximal input to crash even
before they start, we returned to the general form of the problem. Specifically, after-
wards we need to solve consensus with up to f!− (d−1)!crashes for any possible input,
which cannot be done in less than (f!− (d!− 1))!+!1!rounds.

4 Non-strict Consensus Protocol

Given a d-legal condition C, and its associated mapping h!:!C! 3→ V (see Def. 5), the
protocol for solving non-strict consensus is presented in Protocol 2. Remember that
when the input does not belong to C!we make no guarantees on the protocol.

Protocol 2 Non-strict consensus protocol for a d-legal condition C with the mapping h :
C 3→ V
Input: a value xi ∈ V .
Output: a decided value yi ∈ V , and a partial view Ji ∈ Vn

f .
Code for process pi:
1: Ji ← FloodSet(f+1)−(d−1)(xi) // Run the protocol for (f + 1)− (d− 1) rounds
2: Ei ← {I ′ ∈ C | h(I ′) ∈ Ji and Ji ≤ I ′} // Determining the set of candidate vectors
3: If Ei = ∅ then

// It must be that #⊥(Ji) ≥ d, and thus Ji = Jj for all correct processes pi, pj .
4: yi ← max(Ji)
5: else
6: I ′i ← max(Ei)
7: yi ← h(I ′i)
8: return 〈yi, Ji〉

In line 1 process i calculates its partial view Ji by running FloodSet(f+1)−(d−1).
The essence of the protocol is that Ji is either “close enough” to the input vector or that
all the partial are equal. Lines 2–7 are a deterministic procedure to select the agreed

243Condition-Based Consensus in Synchronous Systems

value yi. In line 2 we determine a set of candidate vectors from C. Each candidate I ′

must satisfy two requirements: (i) I ′ is an extension of Ji, Ji ≤ I ′, and (ii) h(I ′) ∈ Ji.
The second requirement ensures the validity of our protocol, however because of it, the
input vector I might not be a candidate. If the set of candidates is empty we will prove
that all the partial views are equal and the processes can agree on max(Ji) (lines 3–
4). Otherwise, we can deterministically select any candidate vector and agree on h(I ′i)
(lines 6–7). We note that the use of the max function in lines 4 and 6 is arbitrary; Any
other deterministic decision procedure will maintain the correctness of the protocol.

Consider, for example, the condition Cmax
2 , where the maximal value must appear

at least twice, and h returns the maximal value in a vector. Assume that f = 3, n = 5,
and V = {1, 2, 3, 4}. Suppose that we run the protocol with the input I = 〈1, 4, 4, 3, 2〉,
and process i finishes with the partial view Ji = 〈⊥,⊥,⊥, 3, 2〉. There are many exten-
sions of Ji which belong to C, e.g.,

I = 〈1, 4, 4, 3, 2〉
I ′ = 〈1, 3, 3, 3, 2〉

The set E i includes I ′ since Ji ≤ I ′ and h(I ′) = 3 ∈ Ji, but

I 5∈ E i,

since h(I) = 4 5∈ Ji.
In general, the fact that I 5∈ E i is not surprising. Recall that we demanded that for

every I ∈ C, #h(I)(I) ≥ d. It might be the case that all those d processes crashed, and
you cannot choose h(I) because you have not seen h(I), i.e., h(I) 5∈ Ji. However, we
will prove that in such a case all the partial views Ji are equal, and thus you can safely
choose max(Ji).

Theorem 1. Protocol 2 solves non-strict consensus for any d-legal condition C, i.e.,
for any input vector I ∈ C it satisfies:

Agreement No two different values are decided.
Termination A correct process decides in (f + 1)− (d− 1) rounds.
Validity The decided value is one of the proposed values, i.e., yi ∈ I .

Proof. It is straightforward to see that every correct process decides after exactly (f +
1)− (d− 1) rounds.

Next we prove Validity, i.e., yi ∈ I . From Lemma 1, we have that Ji ≤ I . On the
one hand, if E i = ∅ then yi ∈ Ji, and since yi 5= ⊥ we have that yi ∈ I . On the other
hand, every I ′ ∈ E i satisfies h(I ′) ∈ Ji, and again since yi = h(I ′) 5= ⊥ we have
that yi ∈ I . (Note that validity holds even when I 5∈ C.)

Finally we prove Agreement. Assume by contradiction that two processes pi and pj

decided on different values yi 5= yj . Note that lines 2–8 are deterministic, i.e., if Ji =
Jj then yi = yj (which will be a contradiction). We wish to show that d processes
immediately crashed, since by applying Lemma 4, after running FloodSet(f+1)−(d−1),
we will have the contradiction that Ji = Jj .

Suppose that one of pi or pj reached line 4. W.l.o.g., assume it is pi, i.e., E i = ∅.
Since Ji ≤ I and I 5∈ E i we have that h(I) 5∈ Ji. From the first property of h (see

244 Y. Zibin

Def. 5), #h(I)(I)!≥ d. Thus those d!entries must be ⊥ in Ji, and we have d!processes
which immediately crashed.

Now suppose that both pi!and pj! reached line 6, i.e., yi! = !h(I ′i)!and yj! = !h(I ′j).
Since the condition is d-legal we have that

h(I ′i)!5=!h(I ′j)!⇒ dist(I ′i, I
′
j)!≥ d.

Since Ji, Jj! ≤ I , Ji! ≤ I ′i , Jj! ≤ I ′j , and dist(I ′i, I
′
j)!≥ d, from Lemma 3 we know

that d!processes immediately crashed. 19

5 Strict Consensus Protocol

It was proven [5, Theorem 7.1] that in order to solve strict consensus (for a non-trivial
condition) in an asynchronous system, you must assume that 2f! < !n. Although this
is not mandatory in synchronous systems, we also assumed that 2f! < !n! in our strict
consensus protocol which is presented in Protocol 3.

This protocol amends the non-strict consensus protocol of the previous section by
adding an additional validation round. If the processes reached an agreement then the
protocol stops after running for only (f!+!1)!− (d!− 1)!+!1!rounds. Otherwise the input
does not belong to the condition, and the protocol runs for f!+!1!rounds.

The idea is to check if we reached consensus using Protocol 2, and in parallel to
continue running the basic flood-set protocol. If we reached consensus after running
Protocol 2 in line 1, then all the suggestions yi!will be equal, and all processes will reach
line 19 and terminate. However, it is possible that consensus have not been reached and
still one process will terminate in line 19 and return the value y, and another process pj

will not.
If we removed our assumption that 2f!<!n!then it is possible that pj!will decide on

a different value in line 19. But if 2f!<!n, we can be sure that y!is the majority value
among the suggestions pj!received, and pj!will reach line 21 and eventually decide on y.

Another problematic scenario is the possibility that one process pi! decides on a
majority value mi! in line 26, and another process pj! decides on the maximal value
in Jj! in line 28. To avoid this possibility, the majority value mi! is flooded to all other
processes using the Majority!message. Since we ran for f!+!1!rounds there must be
a round in which no crashes occurred. Therefore, either (i) consensus was reached in
line 1 or (ii) a Majority!message will reach pj . In both cases pj! will not decide in
line 28.

Theorem 2. When 2f!< !n, Protocol 3 solves strict consensus for any d-legal condi-
tion C, i.e., it satisfies:

Agreement No two different values are decided.
Termination A correct process decides in at most f!+!1!rounds.
Improved Termination When the input belongs to the condition, a correct process

decides in (f + 1)− (d− 1) + 1 rounds.
Validity The decided value is one of the proposed values.

245Condition-Based Consensus in Synchronous Systems

Protocol 3 Strict consensus protocol, when 2f < n, for a d-legal condition C

Input: a value xi ∈ V .
Output: a value in V .
Code for process pi:
1: 〈Ji, yi〉 ← run Protocol 2 on xi // Runs for (f + 1)− (d− 1) rounds

// yi is the suggestion of process i
2: mi ← ⊥ // The majority value among the suggestions
3: For r = 1, . . . , d− 1 do // run for d− 1 more rounds
4: If mi = ⊥ then
5: Send 〈Suggestion, Ji, yi〉 to all processes (including yourself)
6: else
7: Send 〈Majority, mi〉 to all other processes
8: V ← ∅ // the set of partial views received
9: S ← {⊥}n // the vector of suggestions received

10: Upon receiving msgj from pj do
11: If 〈Majority, mj〉 = msgj then
12: mi ← mj

13: else
14: Let 〈Suggestion, Jj , yj〉 = msgj

15: V ← V ∪ {Jj} // Collect the partial views
16: S[j] = yj // Collect the suggestions

17: If mi = ⊥ then
18: If ∃y such that: #y(S) = n−#⊥(S) then // all the values in S are equal to y
19: return y
20: else if ∃y such that: #y(S) > n

2
then // y is the majority value

21: mi ← y
22: else
23: Ji ← !

Jj∈V Jj // update our partial view
24: end For

25: If mi 0= ⊥ then
26: return mi

27: else
28: return max(Ji)

246 Y. Zibin

yi or on max(Ji), the decided value is one of the proposed values.

Proof. Termination in f + 1 rounds is straight forward: we run Protocol 2 for (f +
1) − (d − 1) and then we run for d − 1 more rounds. Improved Termination is also
easy: when the input belongs to the condition, all the values yi returned from Protocol 2
are equal, and in the next round all processes will reach line 19 and terminate.

Next we prove Validity. Note that the validity proof of the non-strict version (see
Thm 1) did not use the fact that the input belongs to the condition, i.e., I ∈ C. There-
fore, after line 1, we have that yi ∈ Ji ≤ I . Since we decide either on some sugges-
tion

Agreement. Assume by contradiction that two processes pi and pj

decided on different values. It cannot be that both pi and pj decided in line 19 or 26,
because it cannot be that two different suggestions are in majority. Therefore, at least
one of pi or pj decided in line 28, w.l.o.g., assume it is pi. Note that mi = ⊥, i.e.,
no Majority message reached pi.

Suppose that some process decided in line 19 on the value y, i.e., pj only saw sug-
gestions for the value y. Then, in the same round it must be that all the other processes
saw at least ,n

2 - suggestions for y. Otherwise, the number of correct processes is less
than ,n

2 -. But that cannot be for pi, since pi decided in line 28 and mi = ⊥.
Therefore pj decided in line 26 or 28. Since both pi and pj ran for f +1 rounds, and

there are at most f crashes, there must be a round r in which no crashes occurred. If r ≤
f − d + 2, then after running Protocol 2 in line 1 all processes would reach consensus
and terminate in line 19. Therefore, r ≥ f − d + 3. In round r, all processes will have
the same set V , and therefore starting from that round we always have that Ji = Jj .
Process pj cannot decided in line 28 since Ji = Jj ⇒ max(Ji) = max(Jj). Thus, pj

decided in line 26.
It must be that pj received its Majority message exactly in the last round, since

otherwise pj would send a Majority message to pi the next round (but pi decided in
line 28 so it did not receive any Majority message). Note that a process pk can reach
line 21 only in round f − d + 3 because the number of suggestions with the majority
value can only decrease in time due to crashes. By examining Protocol 3 we can see that
there must be a series of Majority messages starting from a process pk that reached
line 21 in round f − d + 3 and ending with process pj in the last round (without ever
reaching pi). But this is a contradiction since in some round r ≥ f − d + 3 there were
no crashes. 19

6 Open Problems

This paper presented both a strict and a non-strict consensus protocol for any d-legal
condition in synchronous systems. When the input belongs to the condition, the non-
strict protocol saves d! 1 !rounds, and the strict protocol saves d! 2− − rounds. It is easy
to modify the protocols described here to solve the interactive-consistency problem in
which the processes need to agree on an equal vector (see the author website1).

We could neither prove the optimality of our algorithms nor the necessity of assum-
ing 2f!<!n!in the strict variant.

The most important problem this paper leaves open is finding classes of conditions
for which k-set agreement can be solved more efficiently. Even in asynchronous sys-
tems, except for the wait-free case [1], no necessary conditions were found. Finally,
generalizing the results for other kinds of crashes, e.g., Byzantine faults, also seems
like a worthwhile task.

1 http://www.cs.technion.ac.il/˜zyoav

247Condition-Based Consensus in Synchronous Systems

Finally we prove

References

1. H. Attiya and Z. Avidor. Wait-free n-set consensus when inputs are restricted. In Proceedings
of the 16th International Symposium on DIStributed Computing (DISC 2002), pages 118–132.
Springer LNCS 2508, 2002.

2. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill, 1998.

3. B. Charron-Bost and A. Schiper. Uniform consensus harder than consensus. Technical Report
DSC/2000/028, École Polytechnique Fédérale de Lausanne, Switzerland, May 2000.

4. R. Friedman, A. Mostefaoui, S. Rajsbaum, and M. Raynal. Distributed agreement and its
relation with error-correcting codes. In Proceedings of the 16th International Symposium on
DIStributed Computing (DISC 2002), pages 63–87. Springer LNCS 2508, 2002.

5. A. Mostefaoui, S. Rajsbaum, and M. Raynal. Conditions on input vectors for consensus
solvability in asynchronous distributed systems. In Proceedings of the 33rd annual ACM
symposium on Theory of computing, pages 153–162. ACM Press, 2001.

6. A. Mostefaoui, S. Rajsbaum, and M. Raynal. Asynchronous interactive consistency and its re-
lation with error-correcting codes. In Proceedings of the 21st annual symposium on Principles
of distributed computing, pages 253–253. ACM Press, 2002.

7. A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy. Efficient condition-based consensus.
In Proceedings of the 8th International Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO’01), pages 275–291. Carleton Univ. Press, 2001.

8. A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy. A hierarchy of conditions for consensus
solvability. In Proceedings of the 20th annual ACM symposium on Principles of distributed
computing, pages 151–160. ACM Press, 2001.

9. A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy. Condition-based protocols for set
agreement problems. In Proceedings of the 16th International Symposium on DIStributed
Computing (DISC 2002), pages 48–62. Springer LNCS 2508, 2002.

248 Y. Zibin

	Introduction
	Notation
	Consensus Problem
	Non-strict Consensus Protocol
	Strict Consensus Protocol
	Open Problems
	References

